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Abstract: In this nano era, nanomaterials and nanostructures are popular in developing novel
functional materials. However, the combinations of materials at micro and macro scales can open new
routes for developing novel trans-scale products with improved or even new functional performances.
In this work, a brand-new hybrid, containing both nanofibers and microparticles, was fabricated using
a sequential electrohydrodynamic atomization (EHDA) process. Firstly, the microparticles loaded
with drug (berberine hydrochloride, BH) molecules in the cellulose acetate (CA) were fabricated
using a solution electrospraying process. Later, these microparticles were suspended into a co-
dissolved solution that contained BH and a hydrophilic polymer (polypyrrolidone, PVP) and were
co-electrospun into the nanofiber/microparticle hybrids. The EHDA processes were recorded, and the
resultant trans-scale products showed a typical hybrid topography, with microparticles distributed all
over the nanofibers, which was demonstrated by SEM assessments. FTIR and XRD demonstrated that
the components within the hybrids were presented in an amorphous state and had fine compatibility
with each other. In vitro dissolution tests verified that the hybrids were able to provide the designed
dual-step drug release profiles, a combination of the fast release step of BH from the hydrophilic PVP
nanofibers through an erosion mechanism and the sustained release step of BH from the insoluble
CA microparticles via a typical Fickian diffusion mechanism. The present protocols pave a new way
for developing trans-scale functional materials.

Keywords: dual-step release; berberine hydrochloride; hybrid; electrospinning; nanofibers;
electrospraying; microparticle

1. Introduction

As an advanced drug controlled release profile, dual-step release (or biphasic release)
has its advantages of endowing a fast therapeutic action effect and a long time period of
constant blood drug concentration for the patients’ conveniences [1–7]. In general, the
first phase fast or pulsatile release of a drug is able to promote the drug concentration in
the blood to a therapeutic window. Later, the second phase release is realized through
a sustained or extended manner, by which the drug blood concentration is kept within
the therapeutic window [8–15]. Thus, their combination, on one hand, can accelerate the
therapeutic action. On the other hand, it can reduce the oral administration times for an
increased patients’ compliance [16–19].

Berberine hydrochloride (BH), a popular biomolecule with broad functional perfor-
mances, is a typical poorly water-soluble drug. It can be extracted from coptis chinensis
and belongs to a chemical drug purified from traditional Chinese medicine. BH has a
broad antibacterial spectrum and has antibacterial effects on a variety of Gram-positive
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and negative bacteria, including hemolytic streptococci, Staphylococcus aureus, Vibrio cholera,
Meningococci, Shigella dysentery bacilli, Typhoid bacilli, and Diphtheria bacilli [20]. At a low
concentration, it inhibits bacteria, while at a high concentration, it kills bacteria. BH also
has certain inhibitory effects on influenza viruses, amoeba, leptospira, and certain skin
fungi [21]. In vitro experiments confirmed that BH can enhance the phagocytic ability of
white blood cells and the hepatic reticuloendothelial system. BH has a therapeutic effect on
helicobacter, and can alleviate gastritis, gastric and duodenal ulcers. It is reported that BH
can reduce the number of pili on the surface of the bacterial body, preventing bacteria from
adhering to human cells and, thus, has the therapeutic functional performance [22]. BH has
no cross resistance to penicillin, streptomycin, etc. However, the oral absorption of BH is
very poor. Furthermore, it quickly enters various organs and tissues and distributed widely
(mostly in the heart, bone, lung, and liver) after intramuscular injection, and the blood drug
concentration is maintained to the level over the minimum inhibitory concentration for
only a very short time period [23]. Thus, a frequent oral administration of the commercial
BH products (such as tablets, capsules, and pills) is needed for the patients. Biphasic release
of BH may benefit an improved therapeutic effect after oral administration.

During the past several decades, although many new excipients (including organic
materials such as polymers and lipids, inorganic materials, their composites and hy-
brids [24–29]) and new strategies were frequently introduced into the pharmaceutical
field for endowing the active ingredients a better therapeutic effect [30–34], the mainstream
is still the traditional pharmaceutical excipients. This is because these excipients were
demonstrated to be safe and compatible with organisms. Thus, for a certain drug, it is the
material conversion methods that played their important roles in endowing an improved
functional application. Particularly in this nano era, nano fabrication methods are continu-
ously adopted by pharmacists to convert the drug molecules and excipient molecules to
medicated nanoproducts for realizing the designed therapeutic effects [35,36]. Numerous
examples can be found in the literature. One example is the electrospun nanofibers of
traditional hydrophilic polymeric excipients (e.g., PVA, PVP, PEO, gelatin, and so on) for
fast dissolution and therapeutic action of a poorly water-soluble drug [37–41]. Another
example is the electrosprayed microparticles and electrospun nanofibers of conventional
insoluble or biodegradable polymeric excipients (e.g., CA, EC, PLA, PCL, PAN, and zein)
for a designed drug sustained release profile [42–47].

Based on the hints from the above-mentioned studies, the present work investigated
a combination of electrospinning and electrospraying (both belong to the technique of
electrohydrodynamic atomization, EHDA) [48–50], by which a new type of hybrids con-
sisting of both electrospun nanofibers and electrosprayed microparticles were fabricated
for providing a biphasic release of BH. The prepared hybrids were subjected to a series
of characterizations including their morphology, the physical state and compatibility of
the loaded components, and the in vitro drug controlled release profiles. Both the EHDA
mechanism and drug biphasic release mechanism are proposed.

2. Materials and Methods
2.1. Materials

Berberine hydrochloride (BH, purity over 98%) was purchased from a local Laobaixing
Drugstore (Shanghai, China). Cellulose acetate (Mw = 30,000) was bought from Aldrich.
Polyvinylpyrrolidone K90 (Mw = 1,300,000) was purchased from Sigma-Aldrich Corp.
(Shanghai, China) The solvents acetone, ethanol, Di-ChloroMethane (DCM) and N, N-
Dimethylacetamide (DMAc) were obtained from Shanghai Fitst Shiji Factory (Shanghai,
China). Water was double distilled just before use.

2.2. Fabrication Methods

Two different EHDA processes (i.e., a single-fluid blending electrospraying and a
single-fluid blending electrospinning) were arranged in a sequential manner for preparing
the hybrids of electrospun nanofibers and electrosprayed microparticles.
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According to literature [51], CA is soluble in a mixture of acetone/ethanol/DMAc
with a volume ratio of 4:1:1. Meanwhile, the drug BH is soluble in DMAc; thus, a co-
dissolving working fluid (Fluid 1, Table 1) containing CA and BH could be prepared for
the single-fluid electrospraying process. After some pre-experiments, 15 g BH and 25 g CA
were co-dissolved in 500 mL of the solvent mixture.

Table 1. Parameters for the EHDA processes.

No. EHDA Process Working Fluid Experimental Conditions Drug Contents Morpho-LogyV (kV) F (mL/h) D (cm)

E1 Electrospraying Fluid 1 a 20 1.0 20 20.0% Particles
E2 Electrospinning Fluid 2 b 8 2.0 20 10.0% Fibers

E3 Sequential
EHDA process Fluid 3 c 12 2.0 20 14.3% Hybrids

a Fluid 1: An amount of 5.0 g BH and 20.0 g CA were co-dissolved in 400 mL of the solvent mixture comprising
acetone/ethanol/DMAc with a volume ratio of 4:1:1. b Fluid 2: An amount of 36.0 g PVP and 4.0 g BH were
co-dissolved into 400 mL mixture of DCM and DMAc with a volume ratio of 9:1. c Fluid 3: An amount of 15.0 g
microparticles E1 from electrospraying were suspended into 200 mL Fluid 2 uniformly through continuous stirring.

A homemade EHDA apparatus was exploited to conduct the electrospraying process.
The experimental conditions include an applied voltage of 20 kV, a fluid flow rate of
1.0 mL/h, and a particle deposition distance of 20 cm from the nozzle of spinneret to the
grounded collector. The environmental temperature and humidity were 21 ± 5 ◦C and
47 ± 7%, respectively.

An amount of 15.0 g microparticles E1 from electrospraying was suspended into
200 mL Fluid 2 (containing 36.0 g PVP and 4.0 g BH in 400 mL mixture of DCM and DMAc
with a volume ratio of 9:1) uniformly through continuous stirring to form a suspension
working fluid (Fluid 3, Table 1). During the electrospinning process, little sedimentation of
the microparticles was observed, which should be attributed to the relatively lower density
of electrosprayed microparticles.

2.3. Characterization
2.3.1. Morphology

The morphologies of the EHDA products were evaluated using a field-emission scan-
ning electron microscope (SEM, Quanta FEG450, Hillsboro, OR, USA). The SEM pictures
were used to estimate the average diameters of the nanofibers in about 100 places using
the ImageJ software (National Institutes of Health, Bethesda, MD, USA). The sampling
processes included fixing some powders E1 or a strip of E2 and E3 on a sample holder
using a double-sided conductive adhesive, and a thin layer of Au was sprayed for 60 s
before assessments under an applied voltage of 5.0 kV.

2.3.2. Physical State and Compatibility among the Components

X-ray diffraction (XRD) tests were carried out using the Bruker X-ray Powder diffrac-
tometer (Bruker-AXS, Karlsruhe, Germany). The raw materials and their fiber mats were
measured within a 2θ angle range of 5◦–60◦. The applied voltage and working current
were 40 kV and 30 mA, respectively. The rotation speed was 5◦ per minute.

Fourier transform infrared (FTIR) analyses were implemented using a PerkinElmer
FTIR Spectrometer (Spectrum 100, Billerica, MA, USA). The experiments were performed
in range 500–4000 cm−1 with a resolution of 2 cm−1. The sampling for the solid materials
included weighing 0.2 g of potassium bromide powder, grinding it with about 10 mg of the
sample, pressing the mixture into solid tablets, and placing the tablets into the instrument
for scanning.

2.3.3. Functional Performances

The drug release profiles of the three EHDA products were assessed using the paddle
method in accordance with the Chinese Pharmacopoeia (2020 Ed.). Approximately 200 mg
of the EHDA products were placed into a vessel with 900 mL phosphate-buffered solution
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(PBS, 0.1 M, pH = 7.0). The dissolution media were maintained at 37 ± 1 ◦C and a rotation
rate of 50 rpm. At predetermined time points, a volume of 5.0 mL aliquot was withdrawn
and filtered through a 0.22 µm membrane (Millipore, MA, USA). Five milliliters of fresh PBS
was added to maintain a constant dissolution bulk volume. The amounts of BH released
were measured at λmax = 263 nm using a UV-vis spectrophotometer (UV-2102PC, Unico
Instrument Co. Ltd., Shanghai, China). A calibration equation was pre-determined for
calculating the BH concentration. The experimental results were reported as mean ± S.D.
All experiments were repeated six times.

3. Results and Discussion
3.1. The Sequential EHDA Process

EHDA processes are hydrodynamic atomization procedures that are initiated by an
applied high voltage, and they are exploited to prepare solid products by taking advantages
of the easy interactions between electrostatic energy and working fluids [52,53]. For
electrospinning, the solid products are often nanofibers resulted from the continuous
drawing of viscous polymer fluid jets [54–56]. For electrospraying, the solid products are
typically microparticles that resulted from the fission and repelling of droplets [57]. Thus,
based on the capabilities of these two EHDA processes, a new type of trans-scale hybrids
can be conceived as Figure 1, and three kinds of EHDA products were fabricated according
to the conditions listed in Table 1.
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Figure 1. A diagram showing the fabrication procedures of the hybrids composed of the electrospun
nanofibers and the electrosprayed microparticles.

Firstly, the water-insoluble polymer CA and drug BH were co-dissolved into a solvent
mixture containing acetone, ethanol, and DMAc with a volume ratio of 4:1:1. After some
pre-experiments, the solid microparticles could be prepared through a single-step and
straightforward electrospraying process. Later, these microparticles were dispersed into the
co-dissolving solution containing PVP and BH in a solvent mixture containing DCM and
DMAc with a volume ratio of 9:1. The CA particles did not dissolve in the solvent mixture.
Thus, the working fluid was a suspension. After the electrospinning of the suspension, the
hybrids containing both nanofibers of PVP and microparticles of CA were prepared, and
the drug BH was distributed both in the nanofibers and also in the microparticles.

For a successful electrospinning process, the working fluid must be electrospinnable [58,59].
Thus, a relatively high polymer concentration is needed to keep enough physical entangle-
ments of polymeric molecules in the working fluid, by which the electrostatic drawing can be
resisted for elongating the fluid jets till the formation of nanofibers [60–62]. However, for a
successful electrospraying process, the working fluid needs only to be solidifiable, i.e., the
effective removement of organic solvents [63]. Thus, the polymer concentration is often
lower than the electrospinnable one. Showed in Figure 2a is the typical digital picture
taken from the electrospraying processes for fabricating the microparticles E1. At the
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top of Taylor cone, an opposite cone can be observed for the Coulombic expansion. The
“white” section region, indicated by a red arrow, was formed by the fast moving speed
of the fast splitted droplets. As the droplets splitted and reduced their sizes and weights,
their movings were decelerated, which can be recorded by a digital camera (30 frames
per second). The PVP-BH solution had fine electrospinnability; a typical working process
is given in Figure 2b, by which the composite nanofibers E2 were fabricated. Figure 2c
exhibits the typical suspension electrospinning process for producing hybrids E3.
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Figure 2. Digital pictures taken from the different EHDA working processes: (a) a typical electro-
spraying process for fabricating the microparticles E1, the red arrow indicates a splitted and fast
moving region; (b) a typical solution electrospinning process for creating the nanofibers E2; (c) a
typical suspension electrospinning process for producing hybrids of E3; (d) an abnormal EHDA
process when treating the suspension under a super high applied voltage.

The comparison between Figure 2b,c can tell the influence of the added CA micropar-
ticles on the electrospinning processes. Although under the same experimental conditions
(a fixed applied voltage, flow rate, and a collected distance of 12 kV, 2.0 mL/h, and 20 cm,
respectively), the three sections (Taylor cone, straight fluid jet, and bending and whip-
ping region [64–67]) had significant differences. The Taylor cone and straight fluid jet of
the treated suspension had a larger volume and a longer size than those of treated PVP
solution. Apparently, the “large” weight of microparticles played their role in enlarging
the Taylor cone and elongating the straight fluid jet. Furthermore, in the bending and
whipping process of the unstable regions, it was clear that the bright dots, formed by
the microparticles, were always there from the end of straight fluid jet to the deposition
just above the collector. Meanwhile, the suspension jets movings showed the unsmooth
polygonal lines, different with the smooth and continuous lines of solution jets movement
trajectory. Still, the microparticles clung on the jets resulted in these complex phenomena.
During the electrospinning of suspension for fabricating hybrids E3, the fluid jets were
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more easily separated when a small elevation of the applied voltage to 15 kV. A typical
record is shown in Figure 2d. After separation into two branches, the branch that contained
more microparticles mainly moved downwards, owing to the presence of microparticles.
Meanwhile, the easy aggregation of electric charges on the surface of microparticles should
be also a reason for easy separation under a higher voltage. Thus, keeping a suitable
applied voltage can benefit a higher quality of EHDA hybrids in terms of the uniform
distribution of microparticles within the nanofibers. During all the processes, clogging of
spinneret was seldom observed. In this work, two different kinds of EHDA processes were
combined. Along this way, many other laboratory or even industrial techniques (such as
supercritical technology and three-dimensional printing) can be combined with EHDA to
develop novel materials conversion methods [68–70].

3.2. The Morphologies of the Resultant Products

The morphologies of the different EHDA products are included in Figure 3. Interest-
ingly, there were many satellites around the electrosprayed microparticles E1 (Figure 3a).
For the application of drug sustained release, these satellites may be a negative factor
due to the extremely small size and correspondingly the short routes for the loaded drug
molecules diffusion from them to the bulk solutions. Just as anticipated, the electrospun
BH-PVP nanofibers E2 had fine linear morphology without any discerned beads or spindles
(Figure 3b). Meanwhile, an enlarged image in the up-right inset of Figure 3b indicates that
these nanofibers had a very smooth surface without the possible drug particles formed by
phase separation during the storage process. The electrospun hybrids from the suspen-
sions exhibited a typical “mixture” of beads or spindles and nanofibers, as indicated by
Figure 3c,d.
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Figure 3. SEM images of the resultant products: (a) microparticles E1; (b) nanofibers E2, the up-right
inset shows an enlarged image; (c) hybrids E3; (d) an enlarged image of hybrids E3.
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The sizes and size distributions of these EHDA products were estimated using ImageJ
software. All the results are shown in Figure 4. The average diameters of nanofibers E2
were 330 ± 60 nm (Figure 4a). In sharp contrast, the diameters of the nanofiber sections in
the electrospun hybrids E3 were only 170 ± 80 nm (Figure 4b). The difference was a direct
result of the added microparticles, whose presence should increase the drawing effects on
the moving fluid jets and, in turn, a significant reduction in the nanofibers’ diameter. The
electrosprayed microparticles E2 had an average diameter of 2.89 ± 0.53 µm (Figure 4c). In
contrast, the diameter of particular sections in electrospun hybrids E3 was 2.41 ± 0.67 µm
(Figure 4d), showing a slight reduction in the average size. This indicates that the re-
dispersing of microparticles E1 in the solvent mixture of DCM and DMAc for preparing the
suspension working fluid may result in a little influence on their final morphology and size.
Although CA is insoluble in DCM and DMAc, the drug BH distributed on the surface of
microparticles may re-dissolve into the suspensions and build a dynamic balance between
the surfaces of microparticles and the bulk suspensions.
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Although there is no general theory for instructing the implementation of EHDA
processes, there are abundant suggested mechanisms in the literature for the treatment of a
certain working fluid, both for electrospinning and electrospraying. Those mechanisms
are important for the continuous and robust production and duplication of the EHDA
products. Meanwhile, as more and more EHDA products are going into the commercial
markets, these mechanisms for optimizing the production processes, and other related
issues such as energy-saving, safety implementation, and environmental friendliness and
projecting their places for the final social benefits and a better people life [71–74]. In this
work, the mechanism for the strange phenomenon of many satellites is diagrammed in
Figure 5. In the left part, a whole electrospraying process is sketched, i.e., a Taylor one, to a
convergent point, and later to the Coulombic explosion region, in which the droplets were
continuously splitted and reduced, until the formation and deposition of solid particles on
the collector.
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In the right part of Figure 5, two different fission processes are sketched. One kind
was the uniform fission, by which the final electrosprayed particles were generated, as
indicated in Figure 3a, where the surfaces of microparticles are smooth. The other kind
was uneven fission, by which many satellites were formed during the electrospraying
processes and were around the electrosprayed microparticles (Figure 3a). Their diameters
were estimated to be several decades nanometers. In the electrospraying solution, the three
solvents acetone, ethanol, and DMAc had their own main uses. CA is soluble in acetone
and BH is soluble in DMAc. Although ethanol is a non-solvent for both BH and CA, it is
useful for keeping the stretching state of CA molecules and, in turn, for promoting a stable
and robust EHDA process. However, these solvents have different boiling points (56 ◦C,
78 ◦C, and 164 ◦C for acetone, ethanol, and DMAc, respectively) and different volatility.
During the Coulombic explosion processes, it was possible that some droplets had more
DMAc and kept a longer time period of the fluid state. Meanwhile, the surface charges
may have different densities. Under these conditions, some sub-electrospraying processes
may occur, by which the satellites are formed around the microparticles.

3.3. The Physical State and Compatibility

XRD patterns of the raw materials (CA, PVP, and BH) and their EHDA products
(hybrids E3, nanofibers E2, and their combinations) are included in Figure 6. Just as
anticipated, BH had many sharp Bragg peaks in its pattern due to the crystalline state of
the original powders. In contrast, the hydrophilic polymer PVP K90 and insoluble polymer
CA were all amorphous materials and, thus, only humped on their XRD patterns. The
three EHDA products, i.e., the electrosprayed microparticles E1, the electrospun nanofibers
E2, and the electrospun hybrids E3, showed no any sharp peaks in their patterns. These
phenomena suggested that the drug BH was converted into amorphous composites in all
of them after the electrospraying or electrospinning processes. An amorphous state of the
drug is favorable for its dissolution and the manipulation of a certain controlled release
profile from the matrices [75,76].
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Figure 6. XRD patterns of the raw materials (CA, PVP, and BH) and their EHDA products (hybrids
E3, nanofibers E2, and particles E1).

FTIR spectra of the raw materials (CA, PVP, and BH) and their EHDA products are
shown in the left part of Figure 7. The molecular formats of CA, PVP, and BH are shown
in the right part of Figure 7. CA had its characteristic peaks at 1724, 1376, 1236, and
1051 cm−1. PVP had its characteristic peaks at 1662, 1423, and 1291 cm−1. BH had the
typical absorbance of 1740, 1598, and 1504 cm−1, owing to the three benzene rings in one
BH molecule. Compared with the raw materials, the spectra of microparticles E1 were
almost the same as CA with little hints from BH, suggesting E1 particles were composites.
Similarly, the spectra of electrospun nanofibers E2 were similar to PVP, giving a hint that
BH formed composites with PVP. In spectra of E1 and E2, the substantial decrease and even
disappearance in the intensities of characteristic peaks and peaks in the finger regions of BH
should be attributed to the secondary interactions between the drug BH and the polymeric
carriers. These secondary interactions include hydrogen bonding, hydrophobic interactions,
and electrostatic interactions, which favor the compatibility between the drug and its carrier
and are beneficial to the stability of formed binary composites [77,78]. Compared with
spectra of E1 and E2, the hybrids E3′s spectra, on one hand, had also no BH sharp peaks
and, thus, suggest an amorphous state of BH in them. On the other hand, E3′s spectra was
a superimposition of the spectra of E1 and E2 to a certain extent, suggesting that the ternary
EHDA products E3 were hybrids of the two binary composites.
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Figure 7. FTIR spectra of the raw materials (CA, PVP, and BH) and their EHDA products, and the
molecular formats of the components within the EHDA products (CA, PVP, and BH).

3.4. In Vitro Drug Release Profiles

The pre-determined calibration equation for BH was A = 0.0688 × C − 0.0047
(R = 0.9999, and a linear range of 0.5 to 50 µg/mL), where A and C represent absorbance
and BH concentration in µg/mL, respectively. The in vitro dissolution test results of the
three types of EHDA products are shown in Figure 8. In Figure 8a,b, the curves were drawn
according to the drug accumulative release percentage (%) vs. sampling time point (h), and
in Figure 8c, the results are expressed according to the estimated durations vs. a certain
percentage of BH (30%, 50%, and 90%).
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Figure 8. The in vitro dissolution test results: (a,b) drug accumulative release percentage (%)
vs. sampling time point (h) for a whole experimental time and the first hour, respectively; and
(c) estimated durations vs. a certain percentage of BH (30%, 50%, and 90%) that was released from
the three EHDA products.
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The first pre-determined time point for sampling was 0.5 h after the samples were
placed into the dissolution media. The electrospun nanofibers E2 released all the loaded
BH through an erosion mechanism, i.e., the drug BH and the polymeric matrix PVP were
co-dissolved into the dissolution media (Figure 8b). This pulsatile release can be attributed
to the following three reasons besides the fine solubility of PVP in water: (1) the small
diameter of the nanofibers and the related large surface area, (2) the amorphous state of the
drug BH, (3) the 3-D web structure of the fibrous mats and the related high porosity [79].
Compared with a 100% percentage release in 0.5 and 1 h, the electrosprayed microparticles
E2 and electrospun hybrids E3 released 23.4 ± 7.1% and 42.3 ± 6.8% after 0.5 h dissolution
and 34.5 ± 5.6% and 47.9 ± 5.3% within one-hour dissolution, respectively. After a time
period of 60 h dissolution, microparticles E2 and hybrids E3 released 91.7 ± 3.2% and
98.6 ± 3.5%, respectively. These data suggested that the hybrids E3 could provide a typical
biphasic release profile with a release amount of 42.3% at the first phase in a pulsatile
manner and 56.3% (98.6–42.3%) at the second phase in a sustained manner. It seems that
the electrosprayed particles E1 also furnished a biphasic release, i.e., 34.5% and 57.2%
(91.7–34.5%) at the first and second phases, respectively. However, the release contents at
different phases from hybrids E3 were intentionally tailored in a relatively accurate manner,
whereas the release contents at different phases from the microparticles E1 were random
and often uncontrollable. Thus, in pharmaceutics, this case was regarded as an abnormal
phenomenon to drug sustained release, i.e., initial burst effect.

The drug controlled release advantages of electrospun hybrids E3 over the electro-
sprayed microparticles E1 can be further projected from Figure 8b. For a 30% release of the
loaded BH, 0.38 h and 0.81 h were needed for the electrospun hybrids E3 and electrosprayed
microparticles E1, respectively. Meanwhile, for a 50% release of the loaded BH, 1.33 h and
4.76 h were needed for the electrospun hybrids E3 and electrosprayed microparticles E1,
respectively. For quickly reaching a therapeutic blood drug concentration, the faster the
dosage forms can provide, the better effectiveness and compliance the patients have. From
this standpoint, the hybrids E3 were apparently better than the microparticles E1.

For a 90% release of the loaded BH, 28.6 h and 55.32 h were needed for the electrospun
hybrids E3 and electrosprayed microparticles E1, respectively. In drug sustained release,
an abnormal phenomenon is a tailing-off release, in which the drug is exhausted very
slowly from its carrier and cannot keep an effective therapeutic blood drug concentration.
The release percentage between 90% and 100% often falls within this abnormal region
and should be avoided. From this standpoint, hybrids E3 are better than microparticle E1
due to a smaller tailing-off release and also a terminal release amount (98.7 ± 3.5% and
91.8 ± 3.2% after 60 h for E3 and E1, respectively).

Additionally, the suspension fluid had an amount of 15.0 g microparticles E1 from elec-
trospraying and 200 mL Fluid 2. The BH weight in the microparticles was 15.0 × 20% = 3.0 g.
The BH weight in the nanofibers was 4.0 × (200 mL/400 mL) = 2.0 g. Thus, in theory, the
drug released in the first phase should be 2.0/(2.0 + 3.0) × 100% = 40%. The released BH
from hybrids E3 after 0.5 and 1 h were 42.3 ± 6.8% and 47.9 ± 5.3%, respectively. The
values were larger than the theoretically calculated value of 40%. This case should be
attributed to both the preparation of working suspensions for creating hybrids E3 and drug
release from the particles. Some surface BH on the surface of electrosprayed microparticles
E1 should re-dissolve into the suspensions, making a little higher drug concentration in
the hydrophilic PVP. Further studies may be designed to improve the accuracy of drug
release contents at different phases, e.g., a blank CA coating on the microparticles through
coaxial electrospraying.

3.5. Drug Release Mechanism

To disclose the drug release mechanism, the Peppas equation (Q = ktn, where Q
is the drug release content, k is a constant, and t is an indicator of drug release be-
haviors [80]) was exploited to regress the BH release data achieved during the in vitro
dissolution tests (time ≥ 1 h). The results for the electrosprayed microparticles E1 and
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electrospun hybrids E3 are exhibited in Figure 9. For particles E1, the regressed equation
was LogQ = 1.54 + 0.24 Logt (R = 0.9968). For the second phase of hybrids E3, the regressed
equation was LogQ = 1.69 + 0.18 Logt (R = 0.9924). Both EHDA products had an n value
smaller than the critical judgment value of 0.45, suggesting that BH was released from the
CA microparticles through a typical Fickian diffusion mechanism, regardless of a sole state
of microparticles E1 or a co-existing state with hydrophilic polymer PVP in hybrids E3.
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After a full time period of 60 h dissolution, the residue particles were taken out from
the in vitro dissolution vessels and naturally dried. These particles experienced SEM
evaluations. Their images are exhibited in Figure 10. Compared with the previous images
before dissolution, both microparticles E1 (Figure 10a) particles in hybrids E3 (Figure 10b)
lost their original smooth surface and solid state, but they exhibited a porous surface
and a more concave morphology. Apparently, those surface holes and deformed surface
morphology (resulted from a void inner) were direct outcomes owing to the removement of
loaded BH molecules, providing an intuitive clue of a drug diffusion mechanism from the
insoluble CA matrix. Compared with previous reports of biphasic release from electrospun
core-sheath nanofibers [81], hybrids of electrospun nanofibers and casting films [82], and
electrospun Janus nanofibers [83], the present trans-scale hybrids E3 showed a longer
sustained release second phase and a better biphasic release profile.
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Based on the above-mentioned analyses, a diagram is shown in Figure 11. The
combined mechanism of the BH biphasic release from the hybrids E3 containing electrospun
PVP nanofibers and electrosprayed CA microparticles was clear. When the hybrids E3
are placed into the dissolution media, the BH-PVP nanofibers will be rapidly dissolved.
This is a typical erosion process for the fast release of BH in the first phase. Later, the BH
molecules distributed or absorbed on the surface of CA microparticles would dissolve into
the dissolution media, by which the routes for water molecules’ penetration into the inner
sections of CA particles gradually open. Along with the penetration of water molecules
from surface to the core of CA microparticles, the loaded drug BH molecules would be free
and inversely diffused from the CA particles to the bulk solution. During all the processes,
the CA skeleton is insoluble and keeps the routes for diffusions and exchanges of both
water and BH molecules. In theory, the diffusion process will not be terminated until a
uniform BH distribution all over the bulk solution and a dynamic absorbance balance
between the dissolution media and solid CA skeleton. After the CA skeletons are fetched
out and dried, it is inevitable for them to experience some deformations.
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New methods for human health are always highly desired [84–89]. Today, on one hand,
numerous strategies were reported in the literature to create novel functional ingredients
on a molecular scale with chemical reactions as the fundamental supports [90–95]. On the
other hand, new methods bloomed in manipulating the molecules into nano aggregates
from both “top-down” manner and “bottom-up” way [96–101]. In this study, a new concept
was demonstrated and a trans-dimensional strategy was explored to generate functional
hybrid materials through a combination of nanoproducts and products at microscale for an
improved final functional performance. Based on the protocols reported here, there are a
wide variety of possibilities for conceiving novel functional materials in the future.

4. Conclusions

In this study, a sequential EHDA process was successfully developed for creating a
new kind of medicated hybrids E3. The hybrids E3 contained both BH-loaded hydrophilic
PVP nanofibers and insoluble BH-loaded CA microparticles. The key element was that
the electrosprayed BH-CA microparticles were insoluble in the solvent mixture of DCM
and DMAc (with a volume ratio of 9:1) and, thus, an electrospinnable suspension was
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prepared, and in turn, the nanofiber-microparticle hybrids E3 were achieved through the
single-fluid electrospinning process. The routine characterization results indicated that
the hybrids E3 were a mixture of particles and nanofibers with BH distributed in the PVP
and CA matrices in an amorphous state. In vitro dissolution tests demonstrated that the
hybrids E3 were able to furnish the designed biphasic release profile, with a 42.3% drug
release at the first immediate release phase and a 56.3% drug release at the second phase
in a sustained manner. The BH molecule release was manipulated through a combination
of molecular erosion mechanism and the typical molecular Fickian diffusion mechanism.
This research paves a new way for developing functional materials through organizing
materials at different scale levels and with different outer shapes.
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