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Abstract: The objective of the present study was to review recent epidemiological and clinical data
on the association between selected minerals and trace elements and osteoporosis, as well as to
discuss the molecular mechanisms underlying these associations. We have performed a search in
the PubMed-Medline and Google Scholar databases using the MeSH terms “osteoporosis”, “osteo-
genesis”, “osteoblast”, “osteoclast”, and “osteocyte” in association with the names of particular
trace elements and minerals through 21 March 2023. The data demonstrate that physiological and
nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-
regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic
effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorp-
tive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At
the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent
with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which
promoted bone resorption and impaired bone formation. Concomitant with the results of the labora-
tory studies, several clinical trials and epidemiological studies demonstrated that supplementation
with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.

Keywords: osteoporosis; trace elements; bone mineral density; minerals; bone resorption; selenium;
zinc; fluoride; strontium

1. Introduction

Osteoporosis is considered as a skeletal disorder characterized by reduced bone
strength leading to increased fracture risk [1]. According to the World Health Organiza-
tion (WHO) diagnostic criteria, osteoporosis is characterized by a 2.5 or more standard
deviations of lower bone mineral density than the mean peak bone mineral density (BMD)
for healthy adults [2]. Primary osteoporosis is induced by estrogen deficiency in post-
menopausal women (Type I) as well as in both ageing men and women (Type II, senile
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osteoporosis) [3]. Secondary osteoporosis is formed due to a particular pathology or treat-
ment with pharmacological agents [4], similar to that observed in glucocorticoid-induced
osteoporosis, type 2 diabetes mellitus, obesity, and systemic inflammatory disease, to name
a few [5]. At the same time, rare causes of both primary and secondary osteoporosis have
also been identified [6].

The results of a recent meta-analysis demonstrated that the overall prevalence of
osteoporosis worldwide is 18.3%, although it is characterized by a high geographic vari-
ability, with the highest prevalence in Africa reaching 39.5% of the adult population [7].
In the EU, osteoporotic fractures are considered as the fourth most significant pathology
contributing to total disability-adjusted life years after ischemic heart disease, dementia,
and lung cancer [8]. The annual economic burden of osteoporosis-related fractures accounts
for more than USD 17 billion in the US [9]. It is expected that the number of fractures and
osteoporosis-related costs will further increase in the future decades [10].

The pathogenesis of osteoporosis involves the alteration of mechanisms of regula-
tion of bone remodeling. The latter results from increased osteoclast activity leading to
bone resorption and impaired osteoblast activity with decreased bone formation [11]. The
molecular mechanisms underlying these alterations were shown to involve increased
RANKL production and down-regulated OPG secretion with a subsequent decrease in
the OPG/RANKL ratio, contributing to the stimulation of osteoclast activity. This mecha-
nism is considered a target for a variety of stimuli, including proinflammatory cytokines,
growth factors, and hormones, affecting osteoclast activity. In turn, altered Wnt signaling
and the subsequent down-regulation of LRP5 signaling is associated with the inhibition
of osteoclastogenesis. In addition, the alteration of this pathway may also contribute to
reduced peak bone mass [12]. Given a complex pathogenesis of osteoporosis, various
endogenous and exogenous factors modify the risk of osteoporosis [13]. Osteoporosis
is considered an age-related disease due to its higher prevalence in advanced-age sub-
jects. Pathogenetic mechanisms involved in senile osteoporosis include ageing-induced
alterations in autophagy, iron overload, disturbances in gut microbiota, as well as ageing-
associated metabolism dysregulation, altogether resulting in bone marrow mesenchymal
stromal cells (BMMSCs) senescence with the subsequent inhibition of osteoporosis and
the promotion of adipogenesis [14]. Due to the role of sex steroids in bone physiology, an
age-related decline in endocrine function also contributes to osteoporosis, especially in
women, resulting in postmenopausal osteoporosis [15]. One of the leading mechanisms of
postmenopausal osteoporosis involves estrogen deficiency, which contributes to increased
RANKL production and suppression of OPG secretion, altogether resulting in osteoclast
activation. In addition, a lack of stimulatory effect of estrogen on growth factor production
and a subsequent osteoblast differentiation also contribute to reduced bone formation [16].

Dietary factors including Ca and vitamin D intake as the key regulators of bone
health have a significant impact on osteoporosis risk [17]. Calcium (Ca) and phospho-
rus (P) are the key minerals composing inorganic bone matrix as calcium hydroxyapatite
[Ca10(PO4)6(OH)2], and the less abundant octacalcium phosphate [Ca8H2(PO4)6·5H2O] [18].
Therefore, the homeostasis of these minerals is essential for bone formation and function-
ing. Ca and P metabolism is strictly regulated by the parathyroid hormone (PTH) and
1,25-dihydroxyvitamin D (1,25(OH)2D) [19]. The role of Ca and vitamin D as key nutrients
for bone health have been widely discussed in the context of osteoporosis in a number of
excellent reviews [20,21]. Although Ca is essential for bone health, a systematic analysis of
the available data demonstrates that populations from developing countries with lower
Ca intake are characterized by a lower risk of osteoporotic bone fractures as compared
to developed countries [22]. Correspondingly, it has been demonstrated that the associ-
ation between increased Ca intake and bone mineral density is clinically irrelevant [23].
These observations demonstrate that micronutrients other than Ca and vitamin D play an
important role in osteoporosis [24].

Patients with osteoporosis are characterized by a higher incidence of micronutrient de-
ficiency [25], whereas an improvement in micronutrient intake may result in bone-protective
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effects against osteoporosis. A recent meta-analysis by Feng et al. (2021) demonstrated
that dietary patterns including micronutrient intake are associated with the incidence of
osteoporosis [26]. The role of micronutrient deficiency in osteoporosis is also confirmed by
observations on postoperative osteoporosis in subjects undergoing bariatric surgery with
sleeve gastrectomy and Roux-en-Y-gastric bypass, characterized by impaired micronutrient
intake [27]. Previous studies demonstrate that higher serum essential trace element levels
(Zn, Cu, Fe) are associated with a lower risk of osteoporosis [28]. An inverse association
between trace element and mineral intake and osteoporosis is mediated by the role of those
in the modulation of bone physiology targeting the main cell types, osteoblasts, osteocytes,
and osteoclasts [29,30].

At the same time, the distinct mechanisms which govern the effects of trace elements
and minerals on bone physiology and osteoporosis pathogenesis have yet to be elucidated,
and epidemiological findings have been contradictory. Therefore, the objective of the
present study was to review recent epidemiological and clinical data on the association
between selected minerals and trace element effects with osteoporosis as well as to discuss
the molecular mechanisms underlying these associations.

2. Magnesium (Mg)

Mg is an essential mineral that shares certain similar chemical properties with Ca,
being considered as an essential factor of bone health [31], while adequate Mg intake
and homeostasis was shown to be protective against osteoporosis [32]. The results of the
meta-analysis demonstrated significantly reduced serum Mg levels in osteoporotic post-
menopausal women [33], although this association was country-specific, being significant
in European but not Asian populations [34]. In addition, a recent systematic review and
meta-analysis showed a significant positive relationship between dietary Mg intake and hip
BMD values in older adults [35], corroborating the observed negative association between
Mg intake and osteoporosis [36]. The results from a large prospective study demonstrated
that higher dietary Mg intake is associated with a reduced risk of future osteoporotic
fractures in American adults [37]. Mg supplementation was also shown to reduce bone
turnover in Turkish osteoporotic postmenopausal women [38]. In agreement with data on
dietary intake, low serum Mg concentration is associated with an increased risk of fractures
in middle-aged men from the Kuopio Ischemic Heart Disease cohort [39].

Mg was shown to promote osteogenic differentiation of mesenchymal stem cells
through a variety of mechanisms [40], including the up-regulation of the Wnt/β-catenin
pathway [41], as well as of BMP-2 [42] and BMP-6 expression [43]. Mg-promoted osteoblast
proliferation and differentiation was also associated with increased extracellular signal-
regulated kinase (ERK) and glycogen synthase kinase-3 beta (GSK3β) phosphorylation [44].
The activation of the phosphatidylinositol-3 kinase (PI3K)/Akt serine/threonine kinase
(Akt) pathway may also underlie the stimulatory effect of Mg on osteoblast differentiation
and adhesion [45]. Notch1 signaling may be involved in the Mg-induced osteogenic differ-
entiation of mesenchymal stem cells [46]. It is also notable that Mg deficiency-associated
inhibition of osteoblast differentiation was associated with increased inducible nitric oxide
(NO) synthase (iNOS) up-regulation with subsequent NO overproduction [47].

Mg was also shown to promote osteoblast motility, resulting in the increased infiltra-
tion of osteoblasts in Mg-containing scaffolds [48]. The increased mobility of osteoblasts
upon Mg exposure was also associated with the relocalization of zona-occludens 1 tight
junction protein into cytoplasm [49]. Mg also promoted intercellular gap junction commu-
nication [50].

Due to the beneficial effects of Mg on osteogenesis, Mg-containing biomaterials were
considered as potential agents for bone regeneration [51].

At the same time, high Mg levels can inhibit osteoblast differentiation at least partially
due to the alteration of intracellular Ca2+ levels [52]. Correspondingly, 0.5–2.0 mM Mg
increased extracellular matrix mineralization, whereas higher doses were found to be
inhibitory [53].
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In a coculture of osteoblasts and osteoclasts, Mg significantly reduced osteoclast differ-
entiation in parallel with osteoblastogenesis stimulation [54], indicative of the inhibitory
effect of Mg on bone resorption, especially in proinflammatory conditions. Specifically,
Mg lithospermate B ameliorated LPS-induced bone resorption through the inhibition of
RANKL/RANK-dependent osteoclastogenesis [55]. Correspondingly, the impact of Mg
on inflammation-induced bone resorption was shown to be mediated by the Mg-induced
reduction in IκB degradation and the subsequent down-regulation of NF-κB signaling in
parallel with the inhibition of NFATc1 mRNA and protein expression [56].

The antiresorptive effect of Mg was demonstrated in Mg-deficient conditions. Specifi-
cally, Mg deficiency was associated with reduced bone mineral density due to inflammation-
induced increase in osteoclast activity along with reduced osteoblast differentiation [57],
being in agreement with earlier findings by Rude et al. (2003) [58]. Reduction in dietary Mg
by 25% in rats resulted in lower trabecular thickness and reduced bone volume, which may
be associated with inflammation-associated activation of osteoclastic bone resorption [59].
The up-regulation of RANKL expression along with the down-regulation of OPG expres-
sion was considered a key mechanism linking bone resorption and Mg deficiency [60].
Yet, despite a significant increase in osteoclastogenesis upon Mg deficiency, the resorptive
activity of these cells was reduced [61]. Ultrastructural analysis demonstrated that Mg-
deficient osteoclasts upon OPG stimulation had decreased contact with the endosteal bone
surface and the absence of a ruffled border [62]. In turn, Mg overload resulted in increased
osteoclast differentiation by vitamin D3, thus reprograming the effect of vitamin D3 on
bone remodeling [63], and thus corresponding to an earlier demonstrated biphasic effect of
Mg on osteoclast differentiation and activity [64].

Taken together, the existing data demonstrate that osteoporosis is associated with
Mg deficiency, whereas Mg intake or systemic levels directly correlate with BMD, being
inversely related to osteoporotic fracture risk. Correspondingly, laboratory in vivo and
in vitro findings demonstrated that antiosteoporotic effect of Mg is mediated by the up-
regulation of BMP-2/6 and Wnt/β-catenin signaling, as well as the activation of PI3K/Akt
and ERK and the promotion of GSK3β phosphorylation. RANKL-dependent osteoclastoge-
nesis was also inhibited by Mg, which is tightly associated with OPG production. However,
even for Mg that is characterized by a rather wide therapeutic window, high doses were
shown to inhibit osteoblastogenesis and increase osteoclast differentiation.

3. Selenium (Se)

Selenium (Se) is also an essential factor of bone development and regulation of bone
turnover through multiple mechanisms involving selenoproteins [65].

The existing epidemiological data demonstrate that osteoporosis is associated with
low Se levels in hair of both Korean men and women with mean ages of 51–54 years
old [66]. Lower dietary Se intake was associated with reduced bone mineral density in
Brazilian women [67] and a history of bone fractures in postmenopausal women from the
National Health and Nutrition Examination Survey (NHANES) (2013–2014) [68], as well as
a higher prevalence of osteoporosis in the general middle-aged and older subjects from
China [69]. Correspondingly, Se deficiency was shown to be associated with bone mass loss
and trabecular separation due to increased bone resorption [70]. Therefore, Se deficiency is
considered a risk factor for osteoporosis [71]. Selenoprotein P is considered an essential
transporter of Se to bones [72], whereas selenoprotein W was shown to be involved in the
regulation of osteoclast differentiation [73].

The association between Se status and bone quality is mediated by the regulatory
effect of Se and selenoproteins on bone formation and bone resorption processes. A
number of studies demonstrated that the osteogenic effect of Se was associated with the
modulation of redox homeostasis due to its antioxidant activity [74–76]. Specifically, Se
up-regulates the expression of two antioxidant selenoproteins, glutathione peroxidase
(GPX) and thioredoxin reductase (TXNRD), resulting in the activation of osteoblastogenesis
and the inhibition of osteoclastogenesis [77]. Concomitantly, sodium selenite increased
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the mRNA expression of osteogenic transcription factors as well as prevented the H2O2-
induced inhibition of osteoblast differentiation through its antioxidant activity and the
activation of the Wnt/β-catenin signaling pathway [78], as well as through the inhibition
of ERK activation [79]. Another study demonstrated that Se-induced osteogenesis may
be mediated by the modulation of redox homeostasis and the activation of the c-Jun N-
terminal kinase (JNK)/Forkhead box O3 (FOXO3) pathway rather than alterations in ERK
or p38 mitogen-activated protein kinase (MAPK) signaling [80]. Se nanoparticles promoted
osteogenic differentiation of mesenchymal stem cells instead of adipogenic lineage through
the activation of Smad-dependent BMP signaling [81].

A number of studies demonstrated the protective effects of Se in models of bone dam-
age. Specifically, the activation of the BMP-2/MAPKs/β-catenin pathway was responsible
for preventing diabetic osteoporosis by Se [82]. Se-containing nanoparticles were also
shown to alleviate dexamethasone-induced osteoporosis [83]. Se treatment prevented ROS
overproduction, dysregulation of Ca signaling, and mitochondrial apoptosis in osteoblast
cell line exposed to zoledronic acid, bevacizumab, and dexamethasone [84]. When locally
introduced with bone cement, Se promoted bone defect repair through the up-regulation of
GPX1 expression [85] and the modulation of OPG/RANKL signaling [86]. The lipopolysac-
charide (LPS)-induced apoptosis in MC3T3-E1 osteoblast cells was prevented by Se through
the up-regulation of PI3K/Akt signaling [87].

Se was shown to inhibit RANKL-induced osteoclasts differentiation from bone marrow-
derived monocytes [88]. Selenite was also shown to induce osteoclast apoptosis through the
mitochondrial pathway including mitochondrial dysfunction, cytochrome c leakage, and
caspase 3 activation [89]. Se nanoparticles also suppressed osteoclastogenesis through the
inhibition of interleukin (IL) 6 signaling [90]. Correspondingly, the Se-mediated prevention
of osteoblast dysfunction was shown to invoke the inhibition of NF-κB activation with
the subsequent down-regulation of IL-6, monocyte chemoattractant protein-1 (MCP-1),
cyclooxygenase (COX) 2, and iNOS production [91].

Epidemiological data demonstrate that both Se intake and Se status were associated
with BMD, reduced bone loss, and lower osteoporosis risk. Being in agreement with the role
of Se as an antioxidant or a precursor of antioxidant selenoproteins, its osteoprotective effect
of Se against reactive oxygen species (ROS)-induced damage was demonstrated. Beneficial
effects of Se may be at least partially mediated by the regulation of the expression of
selenoproteins GPX, TXNRD, selenoprotein P (SELENOP), and W (SELENOW). Osteogenic
effects of Se were mediated by the stimulation of Wnt/β-catenin and BMP2 signaling
associated with ERK, p38 MAPK, PI3K/Akt, and Smad pathways. In turn, Se may reduce
bone resorption by inhibiting RANKL-induced osteoclastogenesis and subsequent nuclear
factor κB (NF-κB) activation (Figure 1).
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GPX and TXNRD. Antioxidant activity of selenoproteins inhibits RANKL/RANK/tumor necrosis
factor (TNF) receptor-associated factor 6 (TRAF6) signaling-associated ROS overproduction, thus
inhibiting activation of redox sensitive NF-κB, resulting in down-regulation of nuclear factor of
activated T-cells (NFATc1)-dependent osteoclastogenesis.

4. Zinc (Zn)

Zn is an essential factor of bone health that may counteract the development of
osteoporosis under different pathological conditions [92]. Zn transport is also critical for
physiological bone formation and metabolism [93]. A meta-analysis demonstrated that
serum Zn is inversely associated with osteoporosis in both patients with osteoporosis and
postmenopausal women, whereas Zn supplementation significantly increases bone mineral
density [94]. Plasma Zn levels were shown to be positively associated with vertebra bone
mineral density in Turkish postmenopausal women [95]. It is also notable that osteoporosis
is associated with higher Zn excretion, which may contribute to Zn deficiency [96].

Zn plays a significant regulatory role in bone mesenchymal stem cell differentia-
tion [97]. Being in agreement with its effect on osteoblast proliferation and differentiation,
Zn promoted collagen synthesis [98] and calcium deposition [99]. Correspondingly, Zn
deficiency was associated with reduced collagen synthesis and extracellular matrix calcifica-
tion [100]. At the same time, despite the significant stimulation of osteoblast differentiation
at low Zn levels, its overexposure was shown to inhibit bone mineralization [101]. The
biphasic effects of Zn may be mediated by Zfp521 signaling [102]. The promotion of
osteogenesis by Zn may involve the activation of osteoprotegerin expression due to the up-
regulation of phosphoenolpyruvate carboxykinase (PCK) and MAPK/ERK pathways [103].
Another mechanism of Zn-induced osteogenic differentiation may involve the activation of
cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-
binding protein (CREB) signaling [104].

The role of Zn in bone physiology was also confirmed by the observed adverse
effects of Zn deficiency on osteoblasts. Specifically, Zn deficiency is associated with in-
creased mitochondria-mediated apoptosis in osteoblasts [105]. Zn deficiency may be
associated with reduced bone mineral density through increased parathyroid hormone
production [106,107].

At the same time, Zn deficiency may be associated with the inhibition of both os-
teoblastogenesis and osteoclastogenesis through the inhibition of Wnt/β-catenin-induced
Runt-related transcription factor 2 (Runx2) expression [108] and microphthalmia-associated
transcription factor (MITF)-mediated RANK expression, respectively [109].

Laboratory studies demonstrated that, in parallel with the promotion of osteogenic
differentiation, Zn treatment is capable of inhibiting osteoclastic and adipogenic differentia-
tion [110] due to the inhibition of NF-κB signaling [111]. Correspondingly, Zn significantly
reduced osteoclast-mediated bone resorption [112] via the inhibition of the RANKL/OPG
pathway [113,114]. The inhibition of Ca2+-Calcineurin-NFATc1 signaling may also be con-
sidered as the potential mechanism of Zn-induced suppression of osteoclastogenesis [115].

Given the modulatory role of Zn in the regulation of bone formation and bone re-
sorption, studies have addressed the protective effects of Zn supplementation in animal
models of osteoporosis. Specifically, Zn prevented osteoporosis in type 1 diabetic ovariec-
tomized rats through the down-regulation of RANKL signaling [116]. It is also notable
that Zn potentiated the antiosteoporotic effect of Ca and vitamin D3 treatment through
the down-regulation of the macrophage-colony stimulating factor receptor (M-CSFR) and
RANKL signaling [117]. In turn, the promotion of osteogenesis upon Zn supplementa-
tion to STZ-diabetic rats was associated with the activation of insulin-like growth factor 1
(IGF-1)/IGF-1 receptor (IGF-1R)/Akt/GSK3β/β-catenin [118].

The osteogenic effect of Zn was used for the construction of biomaterials used as
implants [119–121] and agents for bone regeneration [122–124].
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Taken together, the existing epidemiological findings demonstrate that Zn intake and
status are positively associated with BMD, being inversely related to osteoporosis risk.
Such an association is mediated by the stimulatory effect of Zn on osteoblast proliferation
and differentiation through its relationship to Wnt/β-catenin cascade activity as well as
the up-regulation of other pathways including MAPK/ERK, cAMP-PKA-CREB, and IGF-
1/IGF-1R/Akt/GSK3β/β-catenin signaling. The inhibition of bone resorption by Zn is
mediated by the inhibition of RANKL signaling and the promotion of OPG expression,
ultimately resulting in the down-regulation of osteoclast differentiation and activity. Given
the significant osteoprotective effect of Zn, it was successfully used as a component of
biomaterials for implants and bone regeneration.

5. Iron (Fe)

Fe plays an essential role in the regulation of bone formation and metabolism [125],
whereas the dysregulation of Fe metabolism is associated with osteoporosis [126].

Fe overload severity is associated with osteoporosis in patients with hereditary
hemochromatosis [127] and thalassemia major [128]. Age-associated bone Fe accumulation
is also associated with reduced bone mass [129]. Therefore, Fe chelators are considered as
potential therapeutic agents in osteoporosis [130]. In addition, osteoporosis is associated
with reduced serum Fe levels [28], whereas prior Fe-deficiency anemia may be considered
as a risk factor for osteoporosis [131], as clearly demonstrated in a national-wide study in
Taiwan [132]. These observations demonstrate that both Fe deficiency and overload may
be associated with osteoporosis.

In agreement with the observed differential relationship between Fe overload and
deficiency with osteoporosis, low (physiological) and high (toxic) doses of Fe exert distinct
effects on bone formation and bone resorption. Specifically, a U-shaped relationship was
observed between Fe levels and osteoblast activity wherein moderately low Fe doses
promoted osteoblast activity and both critically low and high Fe doses inhibited osteoblast
functioning due to an increase in ROS production [133]. Both Fe deficiency anemia [134] and
Fe overload [135] were shown to affect BMP-2-induced osteoblastogenesis. Finally, it has
been demonstrated that physiological Fe levels were essential for osteogenic differentiation,
which was significantly impaired by Fe chelation [136]. Fe deficiency was associated with
reduced bone mineral density and osteocalcin levels due to the inhibition of renal 1α-
hydroxylase activity and a subsequent decrease in 1,25-dihydroxyvitamin D3 levels [137].

In turn, high doses of Fe, corresponding to conditions of Fe overload, exert significant
toxicity in osteoblasts, affecting bone formation. In particular, Fe overload was shown
to reduce alkaline phosphatase activity, type I collagen mRNA and protein expression,
as well as deposition of calcium by osteoblasts [138]. Fe overload induced osteoblast
apoptosis due to mitochondrial dysfunction and endoplasmic reticulum stress via the
phosphorylated eukaryotic initiation factor-2α (eIF2α)/activating transcription factor 4
(ATF4)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) path-
way [139]. The inhibition of PI3K/AKT/FOXO3a/dual specificity phosphatase 14 (DUSP14)
signaling was also shown to be involved in this effect [140]. In addition to apoptosis, Fe over-
load induced necroptosis in osteoblast cells [141]. One of the recently posited mechanisms
for the Fe overload-induced inhibition is ferroptosis [142] associated with iron-responsive
element (IRE)/iron regulatory protein 1 (IRP1)-mediated NADPH-activation [143]. The
inhibition of Wnt/β-catenin signaling may also be responsible for Fe overload-induced
osteoporosis [144], whereas the activation of Wnt signaling may ameliorate the ferroptosis-
mediated disruption of osteoblast differentiation [145] with Wnt5a playing a key role [146].
In turn, Fe chelation with deferoxamine (DFO) promoted Wnt5a-dependent osteogenic
differentiation through the up-regulation of PI3K/Akt and NFATc1 signaling [147].

ROS generation in osteoblasts exposed to Fe was also promoted by the inhibition
of autophagy [116], which may be associated with the mammalian target of rapamycin
(mTOR) activation [148].
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In addition, serum hepcidin, a negative Fe regulator, was shown to be inversely asso-
ciated with osteoporosis risk [149] through reduction in Fe levels and ROS generation [150].
Concomitantly, hepcidin was shown to reverse the Fe overload-induced inhibition of osteo-
genesis [151]. These findings demonstrate that targeting hepcidin should be considered as
a potential therapeutic strategy in osteoporosis management [152].

In addition to the adverse effects on osteoblastogenesis and bone formation, Fe over-
load was associated with aberrant osteoclast activity and subsequent bone resorption.
Specifically, Fe overload was shown to promote osteoclastogenesis through the induction
of ROS generation [153,154] with RANKL signaling [155] and the subsequent activation of
NF-κB signaling [156].

Fe availability and the activation of Fe-uptake proteins with the inhibition of Fe efflux
are essential for osteoclast differentiation [157] with Tfr1 playing a key role [158]. At the same
time, the impact of hepcidin on osteoclast differentiation remains controversial [159,160].

Recent findings demonstrate that both Fe deficiency anemia and Fe overload in
hemochromatosis and thalassemia major may exert adverse effect on bone quality, being in
agreement with the observed U-shaped association between Fe exposure and osteoblast
activity. Fe deficiency was associated with impaired osteogenic BMP-2 signaling, whereas
high-dose Fe exposure exerted a prooxidant effect and induced adverse effects on osteoblast
activity through a variety of ROS-dependent mechanisms including mitochondrial dys-
function, endoplasmic reticulum stress, ferroptosis, apoptosis, and necroptosis, associated
with the inhibition of BMP-2 and Wnt/β-catenin pathway signaling. Fe-induced ROS
overproduction was also related to RANKL-dependent osteoclastogenesis and subsequent
bone resorption (Figure 2). Hepcidin, being a negative regulator of Fe metabolism, reversed
the inhibitory effect of Fe on osteogenesis.
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mitochondrial dysfunction, which also contributes to ROS generation. In the presence of elevated
intracellular Fe levels, ROS induce lipid peroxidation (LPO), in turn triggering ferroptosis. In addition
to ferroptosis, Fe-induced mitochondrial dysfunction results in increased cytochrome c leakage and
apoptosis, altogether resulting in osteocyte and osteoblast damage. Excessive ROS production due to
Fe overload also interferes with canonical Wnt signaling, leading to reduced β-catenin levels and
inhibiting osteoblastogenesis. In turn, ROS was also shown to induce excessive RANKL secretion,
which promotes osteoclastogenesis. Taken together, Fe overload promotes osteocyte/osteoblast
damage, reduced osteoblast differentiation, as well as excessive osteoclastogenesis with induction of
bone resorption through ROS-dependent mechanisms.

6. Copper (Cu)

Dietary Cu intake was shown to be positively associated with bone mineral density,
being inversely related to osteoporosis risk in American adults [161], while osteoporosis
patients were characterized as having significantly reduced serum Cu levels [28]. At the
same time, the association between Cu status and osteoporosis risk was shown to be non-
linear. The analysis of NHANES 2011–2014 data demonstrates that subjects with the lowest
serum Cu concentration are characterized by lower BMD values, whereas those at the
highest quartile of Cu levels have a higher fracture rate, especially in adult men [162], being
indicative of the adverse effect of Cu overexposure on bone health. Correspondingly, the
results of the meta-analysis demonstrate that Wilson’s disease, characterized by systemic
Cu overload, is directly associated with osteopenia, osteoporosis, and fracture risk in
children and middle-aged adults [163]. Therefore, both suboptimal and excessive Cu levels
in the organism may increase the risk of osteoporosis. Laboratory studies also demonstrate
a U-shaped relationship between Cu exposure and osteogenesis, when low doses of Cu
(0.1–1 µM) promote osteogenesis with the increase in bone nodule formation, whereas high
doses of Cu (50–100 µM) induce a cytotoxic effect [164].

Cu (50 µM) was shown to promote osteogenic differentiation of mesenchymal stem
cells (MSCs) [165] with increased calcium deposition as well as angiogenesis [166]. A
number of studies demonstrated the osteogenic effect of Cu addition to different bioma-
terials. Specifically, the stimulation of osteogenesis by Cu-containing 316L stainless steel
was shown to be mediated by Akt activation and Runx2 up-regulation [167]. The doping
of porous TiO2 coatings with Cu nanoparticles also increased osteoblast proliferation and
adhesion along with extracellular matrix mineralization, which may be associated with the
stimulation of vascular endothelial growth factor (VEGF) and NO production [168,169]. Cu
ion-substituted hydroxyapatite-based titanium dioxide nanotubes were shown to promote
osteogenesis through the stimulation of osteoblast adhesion, proliferation, and differentia-
tion [170]. Hypothetically, the beneficial effect of biomaterial-bound Cu as compared to
Cu2+ ions is likely associated with its lower catalytic activity and reduced ROS generation.

Furthermore, 100–150 µM Cu induced osteoblast damage and dysfunction through the
inhibition of the transforming growth factor beta (TGF-β1)/Smad3 pathway [171]. Another
study also demonstrated that Cu is capable of inhibiting osteogenic differentiation of bone
marrow mesenchymal stem cells with the inhibition of collagen formation [172].

In addition to the modulation of osteoblast differentiation and activity, Cu was shown
to reduce osteoclastic bone resorption [173,174]. Correspondingly, Cu supplementation
was shown to counteract ovariectomy-induced reduction in bone mineral density [175].

Cu-modified cobalt–chromium particles significantly increased the production of
anti-inflammatory cytokines, whereas the expression of proinflammatory cytokines was
reduced due to the inhibition of NF-κB, which is also responsible for the down-regulation
of osteoclastogenesis as compared to Cu-free particles [176]. Cu-doped titanium alloys
inhibited RANKL-induced osteoclastic proliferation with the subsequent inhibition of
osteoclast-specific enzymes [177]. At the same time, the impact of Cu2+ on osteoclast
tartrate-resistant acid phosphatase (TRAP) activity and bone resorption may be different in
differentiating and mature osteoclasts [178].
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Therefore, despite the adverse effects of Cu overload in Wilson’s disease on bone
health, nutritional Cu intake was associated with improved BMD, lower risk of osteoporo-
sis, and fracture rate. The differential effect of Cu supply on osteoporosis risk is mediated
by a U-shaped influence of Cu on osteogenesis. While high doses of Cu inhibited osteoblast
differentiation through the inhibition of the TGF-β1/Smad3 pathway, low doses of Cu
applied as a component of biomaterials promoted the osteogenic differentiation of mes-
enchymal stem cells via the activation of PI3K/Akt signaling and the stimulation of VEGF
and NO production. In addition to the dose, it has been proposed that the beneficial effect of
biomaterial-bound Cu may be mediated by its lower catalytic activity and prooxidant effect.
Cu-induced prevention of bone resorption is mediated by the inhibition of RANKL-induced
osteoclastic proliferation. Therefore, Cu may be considered as a beneficial component of
bone biomaterials, although the prooxidant activity of the Cu2+ cation may mediate the
association between Cu overload and osteoporosis.

7. Cobalt (Co)

Co is an essential metal that possesses hypoxia-mimicking activity through the up-
regulation of hypoxia-inducible factor 1-alpha (HIF-1α) signaling [179]. Co-based alloys are
widely used for bone and joint implants [180], and therefore their impact on bone health is
of particular interest. In turn, epidemiological studies on the association between dietary
Co deficiency and bone quality are lacking.

A number of studies demonstrated that the incorporation of Co2+ into biomaterials sig-
nificantly improved their osteogenic properties. Specifically, Co-enriched hydroxyapatite
significantly improved osteoporotic bone regeneration [181]. Micromolar Co2+ embedded
into calcium phosphate layers was shown to increase osteoclast differentiation and osteo-
clastic mineral resorption [182]. At the same time, the effects of Co on osteogenesis were
shown to be dose-dependent with low doses (1 ppm) exerting osteogenic, angiogenic, and
anti-inflammatory activity, whereas higher doses promoted osteoclastogenesis (5 ppm) and
cytotoxicity (>5 ppm) [183]. Low doses of Co (50–100 µmol/L) also significantly increased
osteogenesis with the up-regulation of HIF-1α, BMP-2, Runx2 expression and subsequent
collagen type 1 production, whereas higher doses of Co suppressed cell proliferation [184].
The doping of tricalcium phosphate scaffolds with Co induced angiogenesis by increasing
VEGF expression and human umbilical vein endothelial cells (HUVECs) growth and migra-
tion, as well as promoted osteogenesis, whereas excessive Co doping significantly inhibited
osteogenesis [185]. These findings corroborate earlier findings by Kim et al. (2002) who
demonstrated the HIF-1α-dependent increase in VEGF expression in osteoblast cells [186].
Correspondingly, Co-containing hydroxyapatite at a dose of 1.5% significantly increased
osteoblast activity and reduced apoptotic cell death, whereas higher Co content resulted in
cytotoxic effects [187].

The effect of Co on osteogenesis was shown to be mediated by its role as HIF-1α
inducer. Specifically, the induction of HIF-1α signaling by CoCl2 treatment was shown to
promote Wnt/β-catenin-mediated osteogenesis [188]. At the same time, Co significantly in-
hibited osteogenesis in a HIF-1α-dependent manner and increased cell stemness [189,190].

Adverse effects of Co on bone formation were shown to involve a plethora of mecha-
nisms including the inhibition of TGF-β expression [191] and the induction of oxidative
stress in osteoblasts [192], as well as inducing necrosis in osteocytes [193]. Co was also
shown to inhibit osteoblast migration in addition to the reduction in collagen produc-
tion [194]. It has been also demonstrated that Co affects collagen matrix formation through
the interaction with the hydroxyl group of the carboxylic terminal of the collagen molecule,
preventing its stabilization and collagen formation [195].

Co2+-induced interference with inflammatory pathways was shown to modulate its ef-
fect on osteogenesis. Specifically, the osteogenic effect of Co incorporated with β-tricalcium
phosphate was ameliorated in presence of macrophages, which responded to Co-containing
tricalcium phosphate with M1 polarization and promoted inflammation [196]. Moreover,
it has been demonstrated that, in addition to the inhibition of osteoblast functioning, Co
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up-regulated the gene and protein expression of IL-8 and MCP-1 [197] and IL-6 produc-
tion [198], thus promoting an inflammatory response. These Co-induced effects in mature
osteoblasts were also accompanied by increased RANKL protein and Toll-like receptor
4 (TLR4) mRNA expression [199], as well as a reduction in the OPG/RANKL ratio, being
indicative of a shift to osteoclastogenesis [200].

Concomitantly, existing data demonstrate that the impact of Co on osteoclastic bone
resorption is also dose-dependent. Andrews et al. (2011) characterized the effects of Co2+

based on its physiological (blood serum) concentrations. It has been demonstrated that, at
serum levels, Co treatment led to a mild stimulatory effect on osteoclast formation, whereas
higher exposure levels reduced cell number and osteoclast activity [201]. The effect of Co
on osteoclast activity was also species-specific. While both CoCl2 and Co nanoparticles
significantly inhibited osteoclast proliferation and differentiation, low doses of CoNPs
increased carbonic anhydrase II (CA II) and cathepsin K mRNA expression [202]. Corre-
spondingly, Co2+ incorporated into Ca phosphate bone cement promoted bone resorption
by increasing cathepsin K, CA II, and TRAP activity [174]. In turn, Co protoporphyrin,
a potent inducer of heme oxygenase 1 (HO-1), was shown to inhibit RANKL-dependent
osteoclastogenesis through the modulation of inhibitor of nuclear factor kappa B (IκB), Akt,
ERK, JNK, and p38 MAPKs signaling [203].

Taken together, the existing data demonstrate that low-dose Co2+ can improve bone
health that and its incorporation into biomaterials may potentiate osteogenic effects of the
latter, whereas high-dose Co inhibits osteogenesis by promoting cell death, oxidative stress,
and inflammation. Given the strong dose-dependence of the effects of Co on osteogenesis
and osteoclastogenesis, its introduction into biomaterials needs to be thoroughly regulated,
and its release from Co-containing metal implants should be monitored.

8. Fluoride (F)

Fluoride is considered as an effective treatment for osteoporosis [204]. The results of the
meta-analysis demonstrated that fluoride treatment significantly increases vertebral spine
and hip BMD in postmenopausal women, older adults, and patients with various diseases,
whereas a reduction in fracture risk was observed only at low daily fluoride intake [205].
Another meta-analysis demonstrated that fluoride was the most effective in increasing
BMD in postmenopausal osteoporosis among all agents including bisphosphonate (BP)
and vitamin D3 [206]. Concomitantly, elevated serum F levels were not associated with
BMD or osteoporotic fractures in American women [207].

Excess fluoride can induce systemic toxicity adverse effects on bone health [208].
However, recent findings demonstrate that community water fluoridation in Korea is not
associated with any adverse effects on bone health [209], whereas fluoride exposure from
drinking water is not associated with hip fracture risk in a previous meta-analysis [210].
Fluoride exposure at US-specific levels did not have any effect on bone health in adoles-
cents [211]. In Swedish postmenopausal women, higher F intake was associated with
increased BMD and hip fracture risk [212], being contradictory to earlier observations in
Sweden [213].

Increased F accumulation was shown to result in decreased bone density, bone cortex
thinning, reduced bone mineralization [214], as well as altered mechanical properties of the
bone with an increase in indentation distances and lower elastic modulus [215].

Fluoride is capable of affecting a plethora of signaling pathways [216] that may under-
lie its complex effect on bone homeostasis through modulation of proliferation, differentia-
tion, and functioning of osteoblasts and osteoclasts.

Low-dose fluoride treatment was shown to exert a beneficial effect on bone formation
through the stimulation of osteoblastogenesis. Specifically, fluoride-induced osteoblast
proliferation is dependent on Wnt/β-catenin pathway activation due to down-regulated
GSK3β expression [217] or its increased phosphorylation [218]. In addition to GSK3β, the
phosphorylation of Akt at Ser473 may also contribute to the activation of Wnt/β-catenin
signaling in osteoblasts [219].
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The osteogenic effect of fluoride may be associated with the up-regulation of insulin
receptor mRNA expression [220]. Correspondingly, the up-regulation of TGFβ1 by fluoride
exposure was inhibited in streptozotocin diabetic rats, being indicative of the role of insulin
signaling in the osteogenic and osteoclastogenic effects of fluoride [221]. F-induced TGF-β1
expression was shown to mediate the impact of fluoride on autophagy [222]. Low-dose
F treatment increased mRNA and protein expressions of connexin 43 and connexin 45 in
osteoblasts, whereas high-dose exposure induced an inhibitory effect [223].

Given the role of physiological doses of fluoride in bone functioning, F-releasing
chitosan hydrogels [224], strontium-substituted porous apatite microspheres [225], and
fluoride-containing bioactive glasses [226] were used for treatment of osteoporosis and
bone regeneration. In addition to the osteogenic effect, fluoride-containing bioglasses also
possessed bactericidal activity [227].

Fluoride exposure was shown to induce endoplasmic reticulum stress in osteoblasts,
which may be involved in the biphasic regulation of osteogenesis. Specifically, F-induced
increased protein kinase RNA-like endoplasmic reticulum kinase (PERK) expression [228]
due to endoplasmic reticulum stress [229] and unfolded protein response [230] was shown
to be associated with osteogenic effect. In contrast, the induction of endoplasmic reticulum
stress upon F exposure along with mitochondrial dysfunction triggers apoptosis and
autophagy in osteoblast cells [231,232] and osteocytes [233].

High-dose fluoride exposure impaired osteogenesis by inducing osteoblast dysfunc-
tion. Fluoride exposure significantly reduced BMP-2 expression [234], which may underlie
the inhibitory effect of F on osteoblast differentiation. Fluorosis-induced cell-cycle arrest
and apoptosis in osteoblast cells was shown to be counteracted by up-regulated SIRT1 sig-
naling [235] through the induction of autophagy via the sirtuin 1 (SIRT1)-FoxO1-Ras-related
protein 7 (Rab7) axis and a SIRT1-FoxO3-Bcl-2 interacting protein 3 (Bnip3) signaling [236].
High-dose fluoride-induced inhibition of osteoblast viability may also be associated with
MAPK-mediated Yes-associated protein (YAP) activation [237]. Fluoride also inhibited
osteocyte response to mechanical loading due to cytoskeletal alterations [238].

The fluoride-induced effects on bone cells were also tightly associated with the modu-
lation of Ca homeostasis. Specifically, low-dose fluoride significantly reduced PTH-related
peptide (PTHrP) expression and increased i[Ca2+] in osteoblast cells, whereas high-dose
exposure induced inverse changes in parallel with increasing calcium-sensing receptor
(CaSR) mRNA and protein levels [239]. An increase in intracellular Ca2+ levels and in-
creased osteogenesis upon low-dose fluoride treatment was associated with increased
mRNA and protein expression of Cav1.2, the main subunit of L-type voltage-dependent
calcium channels [240].

The impact of fluoride on osteogenesis may also involve epigenetic mechanisms.
Specifically, fluoride exposure was shown to induce p16 gene hypermethylation [241] and
deacetylation [242], resulting in its reduced expression and increased osteoblast prolifera-
tion. It has also been demonstrated that high F intake with drinking water is associated
with RUNX2 promoter methylation contributing to reduced BMD in women [243]. CALCA
(calcitonin-related polypeptide alpha) gene methylation is associated with higher suscep-
tibility to fluoride-induced decrease in BMD in women [244]. Low-dose NaF treatment
significantly increased methylguanine methyltransferase (MGMT) and MutL protein ho-
molog 1 (MLH1) gene methylation, resulting in osteoblast proliferation and activation [245].
Fluoride induced DNA hypomethylation of BMP-2 and BMP-7 promoter regions associated
with increased protein expression during the development of dental fluorosis [246]. DNA
hypermethylation of BMP1, methionyl aminopeptidase 2 (METAP2), matrix metallopro-
teinase (MMP) 11, and BTB domain and CNC homolog 1 (BACH1) gene promoter was also
observed in fluoride-exposed human osteosarcoma cells [247].

The impact of fluoride exposure on osteoblast may be significantly mediated by the
modulation of microRNAs (miRNAs) expression [248]. Specifically, miR-486-3p was shown
to mediate the up-regulation of cyclin D1 through the TGF-β1/Smad2/3 pathway [249],
being in agreement with the role of TGF-β1 in fluoride-induced effects in osteoblasts [250]
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as evidenced by the F-induced increase in TGF-β receptor 2 (TβR2), smad3, and MAPK
expression [251]. MicroRNA (miRNA) let-7c-5p was also shown to be involved in the
modulation of cyclin D1 expression by fluoride [252]. Increased miR-21-5p expression
upon fluoride treatment was shown to induce canonical Wnt signaling pathway activation
with the down-regulation of phosphatase and tensin homolog (PTEN) and Dickkopf WNT
Signaling Pathway Inhibitor 2 (DKK2) [253]. miR-200c-3p promoted proliferative effects
of fluoride in the SaoS2 cell line via the up-regulation of the BMP4/Smad pathway [254]
(Figure 3).

Biomolecules 2023, 13, 1006 14 of 35 
 

 
Figure 3. The role of miRNA in mediation of the effects of fluoride in the bone. F-induced modula-
tion of miR-486-3p expression up-regulates cyclin D1 through TGF-β1/Smad2/3, resulting in in-
creased osteoblast proliferation. Let-7c-5p also modulates cyclin D1 upon fluoride exposure. miR-
200c-3p was shown to mediate proliferative effects of fluoride via up-regulation of BMP4/Smad 
pathway. Finally, F-induced increase in miR-21-5p expression promotes Wnt signaling through 
LRP5/6 and subsequent dissociation of a destruction complex consisting of Axin, GSK3β, and ade-
nomatous polyposis coli (APC), leading to β-catenin accumulation. The impact of miR-21-5p on ca-
nonic Wnt signaling may also be mediated by its inhibitory effect on PTEN and DKK. Upward ar-
row is indicative of stimulation. 

Vitamin D deficiency [255] or Ca excess [256] were shown to aggravate F-induced 
alterations in bone metabolism. Correspondingly, vitamin D treatment significantly re-
duced F-induced osteoblast apoptosis [257]. 

Fluoride was also shown to exert antiresorptive effects due to its impact on osteoclast 
functioning [258]. However, an inverted U-shaped association between fluoride exposure 
and osteoclastogenesis was observed with the highest number of osteoclasts upon expo-
sure to medium-dose (50 mg/L F) and a lower number at higher doses, especially in F-free 
medium [259]. A biphasic effect of F on osteoclast differentiation and activity was shown 
to be mediated by F-induced TGFβ/TβR1/Smad3 activation [260]. 

Micromolar fluoride suppressed ageing-induced bone resorption through the inhibi-
tion of RANKL signaling, NFATc1, cathepsin K, and MMP-9 expression [261–263]. At the 
same time, the activation of the same RANK-JNK-NFATc1 signaling pathway was shown 
to underlie the stimulatory effect of high-dose F exposure on osteoclastogenesis [264]. In 
addition, the up-regulation of interferon gamma (IFNγ) production may also be 

Figure 3. The role of miRNA in mediation of the effects of fluoride in the bone. F-induced modulation
of miR-486-3p expression up-regulates cyclin D1 through TGF-β1/Smad2/3, resulting in increased
osteoblast proliferation. Let-7c-5p also modulates cyclin D1 upon fluoride exposure. miR-200c-3p
was shown to mediate proliferative effects of fluoride via up-regulation of BMP4/Smad pathway.
Finally, F-induced increase in miR-21-5p expression promotes Wnt signaling through LRP5/6 and
subsequent dissociation of a destruction complex consisting of Axin, GSK3β, and adenomatous
polyposis coli (APC), leading to β-catenin accumulation. The impact of miR-21-5p on canonic Wnt
signaling may also be mediated by its inhibitory effect on PTEN and DKK. Upward arrow is indicative
of stimulation.

Vitamin D deficiency [255] or Ca excess [256] were shown to aggravate F-induced
alterations in bone metabolism. Correspondingly, vitamin D treatment significantly reduced
F-induced osteoblast apoptosis [257].

Fluoride was also shown to exert antiresorptive effects due to its impact on osteoclast
functioning [258]. However, an inverted U-shaped association between fluoride exposure
and osteoclastogenesis was observed with the highest number of osteoclasts upon exposure
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to medium-dose (50 mg/L F) and a lower number at higher doses, especially in F-free
medium [259]. A biphasic effect of F on osteoclast differentiation and activity was shown
to be mediated by F-induced TGFβ/TβR1/Smad3 activation [260].

Micromolar fluoride suppressed ageing-induced bone resorption through the inhibi-
tion of RANKL signaling, NFATc1, cathepsin K, and MMP-9 expression [261–263]. At the
same time, the activation of the same RANK-JNK-NFATc1 signaling pathway was shown to
underlie the stimulatory effect of high-dose F exposure on osteoclastogenesis [264]. In addi-
tion, the up-regulation of interferon gamma (IFNγ) production may also be considered as
the potential mechanism of F-induced bone loss in postmenopausal women characterized
by a reduction in estrogen, which inhibits IFNγ secretion [265].

Generally, fluoride is considered as an effective agent for the treatment of osteoporosis
associated with improvement of BMD. Nonetheless, excessive fluoride intake can exert
systemic toxic effects, including adverse effects on bone health, although the latter were
not observed at dietary intake. Osteogenic effects of fluoride may be mediated by its
stimulatory influence on the Wnt/β-catenin pathway associated with Akt activity, nega-
tive regulation of GSK3β activity, up-regulation of TGFβ1 signaling, activation of insulin
receptor, as well as endoplasmic reticulum stress modulation. In turn, the negative ef-
fect of high doses of fluoride is associated with the inhibition of BMP-2 signaling. The
effect of fluoride on osteoclastogenesis was also shown to be biphasic, characterized by
the stimulation of RANKL-induced osteoclastogenesis by low-dose F treatment and its
inhibition in response to higher doses (Figure 4). Epigenetic mechanisms were also in-
volved in the osteogenic response to fluoride treatment by the modulation of methylation
of genes involved in osteoblast differentiation and functioning (RUNX2, CALCA, MGMT,
MLH1, BMP2, BMP-7). In addition, F-induced changes in microRNA (miR-486-3p, miRNA
let-7c-5p, miR-21-5p, miR-200c-3p) expression may also mediate its effects on osteoblast
differentiation and functioning. These findings demonstrate that fluoride is an effective
modulator of bone physiology, although its overload may exert adverse effects on bone
formation and resorption.

Biomolecules 2023, 13, 1006 15 of 35 
 

considered as the potential mechanism of F-induced bone loss in postmenopausal women 
characterized by a reduction in estrogen, which inhibits IFNγ secretion [265]. 

Generally, fluoride is considered as an effective agent for the treatment of osteoporo-
sis associated with improvement of BMD. Nonetheless, excessive fluoride intake can exert 
systemic toxic effects, including adverse effects on bone health, although the latter were 
not observed at dietary intake. Osteogenic effects of fluoride may be mediated by its stim-
ulatory influence on the Wnt/β-catenin pathway associated with Akt activity, negative 
regulation of GSK3β activity, up-regulation of TGFβ1 signaling, activation of insulin re-
ceptor, as well as endoplasmic reticulum stress modulation. In turn, the negative effect of 
high doses of fluoride is associated with the inhibition of BMP-2 signaling. The effect of 
fluoride on osteoclastogenesis was also shown to be biphasic, characterized by the stimu-
lation of RANKL-induced osteoclastogenesis by low-dose F treatment and its inhibition 
in response to higher doses (Figure 4). Epigenetic mechanisms were also involved in the 
osteogenic response to fluoride treatment by the modulation of methylation of genes in-
volved in osteoblast differentiation and functioning (RUNX2, CALCA, MGMT, MLH1, 
BMP2, BMP-7). In addition, F-induced changes in microRNA (miR-486-3p, miRNA let-7c-
5p, miR-21-5p, miR-200c-3p) expression may also mediate its effects on osteoblast differ-
entiation and functioning. These findings demonstrate that fluoride is an effective modu-
lator of bone physiology, although its overload may exert adverse effects on bone for-
mation and resorption. 

 
Figure 4. Biphasic effect of fluoride on osteoclastogenesis and bone resorption. Micromolar fluoride 
concentrations were shown to reduce RANKL production, resulting in decreased RANKL/OPG ra-
tio and down-regulation of osteoclastogenesis, as well as inhibition of bone resorption. In contrast, 
excessive doses of fluoride up-regulate RANKL production with an increase in RANKL/OPG pro-
duction, which promotes osteoclast formation and bone resorption. Upward and downward arrows 
are indicative of stimulation and inhibition, respectively. Green color of the arrows is indicative of 
positive effect on bone health, whereas red arrows demonstrate effect leading to bone resorption. 

Figure 4. Biphasic effect of fluoride on osteoclastogenesis and bone resorption. Micromolar fluoride
concentrations were shown to reduce RANKL production, resulting in decreased RANKL/OPG ratio



Biomolecules 2023, 13, 1006 15 of 33

and down-regulation of osteoclastogenesis, as well as inhibition of bone resorption. In contrast,
excessive doses of fluoride up-regulate RANKL production with an increase in RANKL/OPG pro-
duction, which promotes osteoclast formation and bone resorption. Upward and downward arrows
are indicative of stimulation and inhibition, respectively. Green color of the arrows is indicative of
positive effect on bone health, whereas red arrows demonstrate effect leading to bone resorption.

9. Strontium (Sr)

Sr is involved in the regulation of bone functioning through a variety of mecha-
nisms [266]. The results of the meta-analysis demonstrated that the administration of Sr
ranelate (SrRa) is associated with a 31% and 40% decrease in osteoporotic fractures and
vertebral fractures in postmenopausal osteoporosis cases, respectively [267]. Sr ranelate
was also shown to promote bone fracture healing [268]. However, SrRa did not improve
wrist fracture healing in advanced-age Italians suffering from wrist fracture, while being
administered during the acute phase [269].

Long-term SrRa treatment was shown to result in improved BMD over 10 years in
women with postmenopausal osteoporosis from the SOTI/TROPOS cohort (Belgium) [270]
and patients with thalassemia major-related osteoporosis from Italy [271]. Despite the
positive influence on bone health, long-term SrRa administration may significantly increase
cardiovascular disease (CVD) risk [272].

In addition, the results of a systematic review demonstrated that Sr supplementation
may be considered as an effective agent for the stimulation of implant osteointegration
with osteoporotic bones [273]. Correspondingly, a meta-analysis of laboratory studies
demonstrated that Sr increases the osteointegration of titanium implant surfaces [274].

Laboratory studies demonstrated that Sr promotes osteogenic differentiation both in
mesenchymal and ectomesenchymal bone marrow stromal cells [275], as well as adipose
tissue-derived mesenchymal stem cells [276]. The stimulation of osteogenic differentiation
by Sr was associated with an increased number of cells in the S and G2/M phases, while
maintaining stem cell population at the same size [277]. Moreover, SrRa was shown to
inhibit adipocytic but stimulate osteogenic differentiation of bone marrow mesenchymal
stem cells, as evidenced by the up-regulation of Runx2 and other genes [278]. In agreement
with the observed Sr-induced increase in osteogenic differentiation, Sr increased osteoblast
activity, as evidenced by increased type I collagen expression and nodule formation [279].

As for the particular mechanisms, Sr-induced osteoblast proliferation and differen-
tiation associated with ERK phosphorylation and the up-regulation of BMP-2 may be at
least partially mediated by CaR activation [280] and the subsequent JAK2/Signal trans-
ducer and activator of transcription 3 (STAT3) signaling [281]. The latter was shown to
be associated with Akt activation, ultimately resulting in canonical Wnt/β-catenin sig-
naling [282]. In addition, Sr promoted bone regeneration and osteogenesis through the
activation of TGF-β/Smad and β-catenin signaling [283], as well as the up-regulation of
BMP-2 expression [284].

Sr-induced osteogenesis was also associated with AMP-activated protein kinase
(AMPK)-activated autophagy via the phosphorylation of AMPK and a subsequent de-
crease in mTOR phosphorylation [285]. Similar mechanisms were involved in Sr-induced
osteoporotic bone regeneration [286]. It has been also demonstrated that Sr may partially
compensate for the lack of calcium for osteogenesis [287].

The epigenetic effects of Sr may be also involved in its osteogenic activity. Specifically,
a histone methylase, Setd2 up-regulation was shown to be associated with Sr-induced
osteoblast differentiation [288].

Sr was shown to improve bone formation in glucocorticoid-induced osteoporosis [289]
through the stimulatory effect of Sr on ERK signaling [290]. Correspondingly, Sr also
activated rat sarcoma viral oncogene homolog (RAS) along with increased ERK1/2 and
p38 MAPK phosphorylation, ultimately contributing to the osteogenic differentiation of
bone marrow mesenchymal stem cells [291].
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Analogous to fluoride, Sr-releasing biomaterials including nanoscale cement [292],
porous hydroxyapatite bioceramics [293], and bioactive glasses [294] were shown to pro-
mote osteogenesis.

Several studies demonstrate that excessive Sr exposure may induce adverse effects on
bone formation. Specifically, low doses (0.5–1 µg/mL Sr) reduce bone nodule formation
without any impact on bone mineralization, whereas high doses of Sr (20–100 µg/mL)
inhibit the mineralization process and hydroxyapatite formation without any alteration
of nodule formation [295]. Despite the observed stimulation of osteogenic differentiation
in adipose-derived stem cells at lower levels, high-dose Sr exposure induces apoptosis
associated with ERK1/2 signaling [296].

In addition to bone formation promotion through the stimulation of osteoblast differ-
entiation and activity [297], Sr was also shown to reduce osteoclast differentiation [298],
resulting in decreased bone resorption. Specifically, the Sr-induced up-regulation of OPG
expression is associated not only with the activation of osteoblastogenesis, but also the in-
hibition of osteoclast differentiation due to the suppression of RANKL signaling [299]. The
inhibition of RANKL signaling with the down-regulation of osteoclastogenesis may also
be mediated by the anti-inflammatory effect of Sr [300] and Sr ranelate-induced activation
of calcium-sensing receptor [301]. In addition, the up-regulation of LRP6/β-catenin/OPG
signaling may also underlie the inhibitory effect of Sr on osteoclastogenesis [302].

To date, the existing epidemiological studies and clinical trials demonstrate that Sr as
Sr ranelate induce significant antiosteoporotic effects characterized by increased BMD and
reduction in fracture risk, also promoting bone regeneration, although excessive Sr ranelate
intake may be associated with a higher incidence of CVD. Clinical effects of Sr are achieved
through promotion of osteoblastogenesis and osteoblast activity through the up-regulation
of BMP-2 signaling, the activation of the Wnt/β-catenin and TGF-β/Smad pathways, as
well as MAPK/ERK activation, the induction of AMPK-activated autophagy, and other
pathways. At the same time, the osteogenic effect appears to be dose-dependent with the
inhibition of osteoblast activity at high-dose Sr exposure. In addition, Sr is also capable of
reducing bone resorption by inhibiting RANKL-induced osteoclast differentiation and the
up-regulation of OPG signaling.

10. Silicon (Si)

Congruent with the role of Si in connective tissue functioning [303], several studies
demonstrated a significant positive relationship between dietary Si intake and bone regener-
ation [304]. Specifically, in the Framingham Offspring cohort of 1251 men and 1596 women,
Si intake was shown to be positively associated with hip BMD in men and premenopausal
women, but not postmenopausal ones [305]. The interaction between Si and estrogen status
was shown to have a significant impact on BMD, characterized by a positive association
between Si intake and BMD only in estrogen-replete women from the UK [306]. A 3-month
Si supplementation was shown to reduce oxidative stress and bone resorption in Italian
menopausal osteopenic women [307].

In contrast, Si overexposure may have adverse effects on bone quality markers. Specif-
ically, occupational Si exposure in Turkish stone carvers or quartz miners is associated with
reduced 25-hydroxycalciferol levels and BMD [308], being in agreement with laboratory
studies in a rat model of silicosis [309]. At the same time, increased intake of Si with artesian
drinking water for 12 weeks was not associated with alterations in bone resorption [310].

Laboratory in vivo studies also demonstrated the beneficial effect of nutritional Si on
bone health. In Si-supplemented rats serum, Si levels were found to correlate significantly
with serum osteocalcin levels and BMD, although this effect was observed only in female
but not male rats [311]. Si also induced the antiosteoporotic effect in Ca-deficient ovariec-
tomized rats through the inhibition of bone resorption [312]. Correspondingly, Si increased
BMD in ovariectomy-induced osteoporosis [313], while bioactive silica nanoparticles re-
versed ageing-associated bone loss [314].
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In vitro studies demonstrated that Si promotes osteoblast differentiation [315] via
the up-regulation of BMP-2 signaling [316] and the subsequent activation of the BMP-
2/Smad1/5/RUNX2 signaling pathway, resulting in increased osteocalcin [317] and type I
collagen expression by osteoblasts [318]. Si-induced increase in osteoblast differentiation is
also associated with the up-regulation of and stimulation of gap junction communication [319].

It has also been demonstrated that Si promotes Wnt/β-catenin signaling through the
up-regulation of Lrp5 and the down-regulation of DKK1 expression, altogether resulting
in increased osteoblast expression [320]. Being in agreement with the earlier observed
tight interplay between PI3K-AKT-mTOR and Wnt signaling [321], Si-induced osteogenesis
was shown to be dependent on the activation of the PI3K–Akt–mTOR pathway [322]. The
protective effect of Si against glucocorticoid-induced osteoporosis and osteocyte apoptosis
was also shown to be mediated by increased Akt phosphorylation [323].

The up-regulation of p38 MAPK [324] and ERK signaling [325] was also associated
with the osteogenic effect of Sr. In addition, the modulation of ERK signaling may also
contribute to the stimulation of osteoblast differentiation through the up-regulation of
autophagy [326].

Si was shown to up-regulate the expression of miR-146a, which inhibits TNFα-induced
activation of NF-κB, thus promoting osteoblast differentiation and exerting osteoclast-
inhibiting activity [327].

Osteoclasts should also be considered as targets for biological effects of Sr in bone.
Si may inhibit osteoclastogenesis through the suppression of M-CSF and RANKL expres-
sion [328], thus resulting in reduced bone resorption [329]. It has been demonstrated that
the down-regulation of NF-κB activation may be responsible for both inhibitory effects of
Si on osteoclast-dependent bone resorption and an increase in osteoblast activity [330]. Si-
induced inhibition of RANKL signaling is associated with the down-regulation of NFATc1
and other osteoclast-specific genes, which may underlie the protective role of ortho-silicic
acid in ovariectomy-induced bone loss [331]. The results of another study demonstrate
that Si was also shown to increase OPG expression without any significant impact on the
RANKL expression level, thus promoting a shift to osteoblastogenesis from osteoclastogen-
esis [332]. At the same time, certain studies demonstrate that Si may induce a stimulatory
effect on osteoclast activity [333].

Taken together, the existing data demonstrate that dietary Si intake is associated
with improved BMD, although at higher doses, including occupational exposure cases,
Si may induce adverse effects on bone quality. Epidemiological and clinical findings
generally corroborate the obtained data on the protective effect of Si in animal models
of osteoporosis. The up-regulation of BMP-2 and Wnt/β-catenin signaling was shown
to mediate the osteogenic effect of Si. The latter was also shown to be associated with
the activation of PI3K/Akt and MAPK/ERK pathways. In addition to the promotion
of osteoblastogenesis, Si was shown to increase OPG expression and inhibit M-CSF and
RANKL-induced osteoclast differentiation with the down-regulation of NF-κB signaling.
These findings demonstrate that Si should be considered protective against osteoporosis by
promoting bone formation and reducing its resorption.

11. Concluding Remarks

The existing data demonstrate a significant association between essential trace element
and mineral body burden and the risk of osteoporosis. At the same time, the effect on
bone health appears to be dose-dependent, with low doses promoting osteogenic effects,
whereas high doses exert opposite effects that may promote bone resorption and impaired
bone formation. Such a U-shaped relationship between the dose and osteogenic response
was especially profound in the case of Fe, Cu, F, and Sr.

Nonetheless, it is noteworthy that some studies have failed to reveal significant
associations between trace element and mineral intake and osteoporosis despite their
role in bone physiology and the relationship between trace element and mineral status and
bone health. These findings may be indicative of the limited role of malnutrition, and the



Biomolecules 2023, 13, 1006 18 of 33

primary role of impaired metal homeostasis in osteoporosis in well-nourished populations.
Specifically, the causal factors of osteoporosis may significantly modulate trace element
and mineral metabolism. Ageing is associated with the significant modulation of transport
and metabolism of Fe [334], Zn [335], Cu [336], Se [337], and Mg [338], resulting in its
deficiency. In turn, recent findings demonstrate that menopause is associated with altered
trace element and mineral metabolism [339] including Mg [338], Se [340], Fe [341], Zn [342],
and Cu [343] at least due to the deficiency of the impact of estrogen on trace element and
mineral transport [338,344–346]. Hypothetically, in view of the role of trace elements and
minerals in the regulation of bone physiology, alterations in their metabolism along the
ageing axis or menopause should be considered as potential additional factors contributing
to the pathogenesis of senile and postmenopausal osteoporosis.

In addition, given the distinct effects of trace elements and minerals on bone physi-
ology [347], elemental interactions may significantly modulate the relationship between
particular trace elements and minerals and osteoporosis. Specifically, high-dose Zn intake
was shown to promote Mg excretion in osteoporotic women [348]. An antagonistic rela-
tionship between Cu and Zn, as well as Fe and Zn, may also have a significant effect on
bone tissue metabolism and modulate the risk of osteoporosis [349]. Both Se [350] and
Zn [351] were shown to antagonize adverse effects of fluoride exposure in the organism. In
addition, several interactions may potentiate the effects of particular trace elements and
minerals in bones through the positive modulation of bioavailability as observed for Cu
and Fe [352], Zn and Se [353], Fe and Co [354]. Finally, a number of elements including
Fe [355], Zn [356], and Mg [357] significantly modulate Ca2+ metabolism, which may also
be considered as a potential mechanism mediating the role of altered trace element and
mineral metabolism in osteoporosis. Therefore, the role of particular elements in bone
metabolism and osteoporosis pathogenesis may also be mediated by other trace elements
and minerals that modify their bioavailability and handling.

The existing laboratory data demonstrate that essential trace elements and minerals
exert a significant modulatory effect on bone physiology by regulating bone formation
and bone resorption. Physiological and nutritional levels of trace elements and min-
erals promote osteogenic differentiation through a plethora of mechanisms, including
the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as the stimulation of
TGF1β/Smad, PI3K/Akt/GSK3β, and MAPK/ERK pathways, also protecting osteoblasts
from oxidative stress, ferroptosis, endoplasmic reticulum stress, mitochondrial dysfunction,
and apoptosis. Recent findings demonstrate a significant role of miRNA and epigenetic
factors in regulating the osteogenic effects of micronutrients. In addition, trace elements
and minerals contribute to a reduction in bone resorption through the inhibition of RANKL-
induced osteoclastogenesis, stimulation of OPG signaling, as well as inhibition of the
inflammatory response.

It appears that nutritional or ageing-associated deficiency of essential elements includ-
ing Mg, Se, Fe, Zn, and Cu results in the alteration of the above-mentioned mechanisms,
resulting in the inhibition of osteogenesis along with the promotion of osteoclastogenesis
with subsequent bone resorption. In turn, the improvement of body burden of essential
trace elements and minerals results in physiological bone remodeling and reduced osteo-
porosis risk. Although the relevance of the nutritional deficiency of F, Sr, and Si in humans
is rather questionable, it is proposed that these elements may promote osteogenic response
at nutritional and supranutritional doses. In addition, excessive intake of essential elements,
as well as F, Sr, and Si overload, may induce adverse effects on bone health. Correspond-
ingly, the results from recent meta-analyses demonstrate that intake/supplementation with
Zn, Mg, F, and Sr improve bone quality, thus exerting antiosteoporotic effects.

Based on the recent findings, it is proposed that an improvement of essential trace
element and mineral nutrition, especially Zn and Mg, may be considered as the primary
approach for the improvement of bone health in malnourished populations as well as
subjects with high risk of essential element deficiency. In turn, in subjects with low risk
of essential trace element and mineral deficiency, supplementation with F or Sr could be
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considered as a potential preventive strategy to reduce the risk of osteoporosis. At the same
time, in view of their narrow therapeutic window, F and Sr supplementation should be
performed with caution due to the high risk of overexposure.

Taken together, the existing data demonstrate that an improvement in trace element
and mineral status by alleviating its dietary insufficiency and overload, as well as an
improvement of its metabolism, can contribute to the prevention of osteoporosis. How-
ever, further studies are required for the investigation of the underpinning mechanisms of
micronutrients in bone physiology, and the estimation of the efficiency of micronutrient sup-
plementation in improving bone quality in osteoporotic patients as well as for prevention.
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