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Abstract: As natural medicines in complementary and alternative medicine, edible and medicinal re-
sources are being gradually recognized throughout the world. According to statistics from the World
Health Organization, about 80% of the worldwide population has used edible and medicinal resource
products to prevent and treat diseases. Polysaccharides, one of the main effective components in
edible and medicinal resources, are considered ideal regulators of various biological responses due
to their high effectiveness and low toxicity, and they have a wide range of possible applications for
the development of functional foods for the regulation of common, frequently occurring, chronic
and severe diseases. Such applications include the development of polysaccharide products for
the prevention and treatment of neurodegenerative diseases that are difficult to control by a single
treatment, which is of great value to the aging population. Therefore, we evaluated the potential of
polysaccharides to prevent neurodegeneration by their regulation of behavioral and major patholo-
gies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis,
autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic
plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial
pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway,
P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal
resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for
the development and application of polysaccharide health products and promote the recognition of
functional products of edible and medicinal resources.

Keywords: neurodegenerative diseases; edible and medicinal resources; polysaccharides; health
products; pathways

1. Introduction

People cannot survive without food. It is clear that food security is a priority for
many people. With the improvement in living standards, people have become more aware
of their health. As people meet their nutritional requirements, they gradually turn their
attention toward enjoying a green, safe, and healthy life. Edible and medicinal resources
represent the combination of food and health, with food as a substitute for medicine. Edible
and medicinal resources used in disease prevention are prioritized as nourishment first
and treatment second [1,2]. Especially in our new situation characterized by a constantly
changing epidemic, combined with the sub-optimal health situation that most people
find themselves in, edible and medicinal resources highlight the significance of health
maintenance, health care, and medical treatment. In recent years, edible and medicinal
resources have been widely recognized and accepted by the international community for
their use in the prevention and treatment of common, frequently occurring, chronic and
serious diseases [3].

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease
(PD) and Huntington’s disease (HD) are chronic diseases that are difficult to control with a
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single treatment [4]. With the rapidly increasing size of the aging population in our society,
the incidence of neurodegenerative diseases, which are “chronic killers” in the elderly
population, has risen sharply [5]. Patients who are supposed to enjoy a joyful old age after
working hard throughout their lives have been deprived of memory, independence and
dignity by neurodegenerative diseases that cause well-known pain and are an unbearable
physical, emotional, and financial burden on patients and even more so on the whole
family [6,7]. What is more frightening is that since brain cells cannot regenerate, the
degeneration and death of neurons worsen over time, with devastating and irreversible
consequences that ultimately end in death [8,9]. The World Health Organization has
predicted that by 2050, neurodegenerative diseases will be the second-leading cause of
death in humans [10]. Unfortunately, almost all neurodegenerative diseases today have
no effective treatments that relieve symptoms [11]. Edible and medicinal health products
inspire new ideas for the treatment of neurodegenerative diseases; their prevention and
treatment with safe and effective health products seem to be an excellent approach. At
present, many edible and medicinal resources, including Panaxginseng, Lycium barbarum,
Angelica sinensis, Codonopsis pilosula, and so on, have been included in the diet of Chinese
families for the maintenance of good health. Polysaccharides are some of the safest active
ingredients in these edible and medicinal sources, and are the focus for developing safe,
healthy, and green edible and medicinal health products [12]. Interestingly, the formation
and aggregation of abnormal proteins such as Aβ, NFTs, α-synuclein, and mHtt that cause
neuronal apoptosis and autophagy, oxidative damage, neuroinflammation, the release of
neurotransmitters, and synaptic plasticity in neurodegenerative diseases were confirmed
to be regulated by edible and medicinal polysaccharides (EMPs). The regulation of these
abnormal proteins depends on the influence of the NF-κB, MAPK, Nrf2, mitochondrial,
mTOR, PI3K/AKT, P53/P21, and BDNF/TrkB/CREB pathways. Therefore, we consider
EMPs to be a promising candidate for the prevention and treatment of neurodegenerative
diseases by targeting multiple signaling pathways. In this paper, the possible mechanisms
and pathways of EMPs in the prevention of neurodegenerative diseases were reviewed to
provide a basis for the development and application of polysaccharide health products and
promote the recognition of functional products of medicinal and edible resources.

2. The Potential of EMPs for Regulating Neurodegenerative Diseases

Because of the complex and chronic nature of neurodegenerative diseases, multi-way
long-term prevention and treatment with EMPs is effective. This is not only due to the
improvement of the pathological features of the behavior, movement, and reduction of
abnormal protein aggregation, but also due to the mechanism of regulating abnormal
apoptosis and autophagy, alleviating oxidative damage, promoting the secretion of neuro-
transmitters, promoting synaptic plasticity, and reducing the inflammatory response.

2.1. Behavioural Movement Enhancement

Neurodegenerative diseases are usually characterized by motor or cognitive impair-
ment [13]. AD symptoms include progressive memory and cognitive impairment, person-
ality changes, and language impairment [14,15]. Resting tremor, bradykinesia, rigidity,
and postural disturbances are common in PD [16,17]. HD is characterized by involuntary
movements, mental disorders, and progressive dementia [18,19].

These behavioral changes have been partially demonstrated in animal models of
neurodegenerative diseases. However, these changes were alleviated by EMPs. The
impairment of short-term learning, memory, and cognition in AD mice was indicated in
a series of behavioral experiments, including those where the researchers employed the
Y-maze, Morris water maze, open field test, and novel object recognition test [20,21]. EMPs,
such as Inonotus obliquus (IOP), Amanita caesarea (ACP), and Ganoderma lucidum (GLP),
alleviated pathological behavior disorders according to the results of the aforementioned
tests and reduced the effects of the spatial learning disabilities caused by AD [22–24].
For PD model mice, their coordination, cognitive, limb motor, and limb coordination
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ability were remarkably decreased compared with normal mice. The presence of complex
polysaccharides mainly composed of galactose and rhamnose from Momordica Charantia
considerably increased the behavioral test scores in rotation tests with longer dwell times,
caused mice to take a shorter amount of time to reach the bottom during pole tests, and
increased the motor ability of PD mice [25]. HD model TG mice exhibit phenotypes similar
to those of HD patients, including a shortened lifespan, motor deficits, and weight loss.
LBP, the main functional component of the thousand-year-old health food L. barbarum,
extended lifespan, considerably reduced weight loss, and increased dwell time on the
rotarod to promote the motor function of TG mice [26]. As shown in Supplementary Table
S1, other EMPs were present, which also enhanced the behavior and motor function of
mice, meaning that they show potential for anti-neurodegenerative diseases.

2.2. Reduction in Abnormal Protein Accumulation

The occurrence of neurodegenerative diseases is inseparable from the aggregation and
deposition of misfolded proteins [27,28]. Proteins are one of the components of organisms,
and they play an irreplaceable role in the normal growth and development of the body [29].
For neurons, which are a type of non-proliferating cells, the production of normal proteins
is even more important to ensure their viability [30]. Once the protein forms the wrong
structure, it will not only lose its biological function, but it will also trigger neuroinflam-
mation, oxidative damage, neuronal apoptosis, and autophagy and will eventually lead
to the loss of neurons [31,32]. Whether the cause is genetically familial or multifactorial
late-onset AD, the main neuropathological features are the extensive extracellular depo-
sition of insoluble amyloid Aβ formed by the hydrolysis of APP by β and γ hydrolases
and the intracellular neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau
protein [33,34]. Similarly, the major neuropathological features of PD are inseparable from
intracellular Lewy bodies composed of aggregates of the misfolded presynaptic protein
α-synuclein (α-syn) [35–37]. HD is caused by a mutated gene that produces mHTT, which
is a stretch of a protein called polyQ that is incorrectly stretched and alters the natural form
and function of HTT [38,39].

In AD mice, excessive Aβ deposition in the hippocampus was remarkably reduced
after chronic polysaccharides were administrated, as shown in Supplementary Table S1.
Abnormal Aβ production first depends on the cleavage of APP by β-secretase. The soluble
polysaccharides (CPP) of Codonopsis codonopsis, which are commonly found in Chinese
diets, reduced BACE1 (β-secretase) activity and inhibited Aβ1–42 production to reduce
deposition in the hippocampus of APP/PS1 mice and N2a-APP cells [40]. In addition
to Aβ1–42, the aggregation of NFTs caused by high levels of p-Tau was observed in the
brains of AD mice and rats. Fortunately, the aggregates were strongly reduced after
treatment with EMPs [22,41,42]. Related mechanisms suggested that the attenuation of tau
hyperphosphorylation by CPP was strongly associated with PP2A activation, which is the
major dephosphorylase of tau [43]. In addition, EMPs are also effective against PD and HD.
The level of aggregated α-syn is considerably increased in PD mice compared with normal
mice. LBP treatment effectively suppressed this aggregation, confirming the effectiveness
of anti-PD [44]. LBP also remarkably reduced mHtts in the cortex, hippocampus, and
striatum, which showed the potential to ameliorate HD [45]. In addition, the accumulation
of polyQ in the AM141 Caenorhabditis elegans model was inhibited by polysaccharides from
medicinal and edible Astragalus membranaceus, thereby reducing neurotoxicity [46].

2.3. Neuronal Apoptosis Inhibition

The massive loss of functional neurons is a major cause of neurodegenerative diseases.
Abnormal apoptosis affects neuron loss. In AD, DNA fragmentation and pro-apoptotic
protein upregulation, mitochondria damage, and increased caspase-3 expression in the
hippocampal region result in a loss of cholinergic neurons [47,48]. The pathological symbol
of PD is the loss of dopaminergic neurons primarily caused by apoptosis [49]. The massive
α-syn aggregation is critical for the ability to promote neuronal death as it affects the
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mitochondrial respiratory chain and activates caspases-9 and -3 [50]. In addition, mutations
in many genes associated with familial PD, such as parkin and PINK1, suppress protective
properties and increase the sensitivity of dopaminergic neurons to apoptosis [51]. Protein
mHTT in HD results in the decreased expression of respiratory chain enzymes and a
loss of MMP. The subsequent cytochrome C release and caspase activation promote the
cleavage and translocation of mHTT into the nucleus to aberrantly interact with multiple
transcription factors, including p53, to determine further striatal neuronal apoptosis [52].

EMPs inhibited apoptosis, thereby reducing loss in relevant neurons in neurodegener-
ative diseases. Morphological changes in apoptosis induced by H2O2 were observed under
DNA dye Hoechst 33342 staining, including the neurodegeneration and shrinkage of cell
bodies, as well as the fragmentation and condensation of the nucleus, which occurred in
22.9% of the total cells. Sulfated hetero-polysaccharides (UF) from Saccharina japonica—a
seafood used in traditional Chinese medicine Kunbu—reduced the number of apoptotic
and dead cells; especially, 500 g/mL of UF greatly reduced apoptosis to 10.7% [53]. In
addition, the anti-apoptotic properties of the EMPs were demonstrated by experiments
in vivo. Treatment with A. sinensis polysaccharides (ASP), which are found in medicinal
diets, considerably reduced the increase in the number of TUNEL-positive neurons in
AD rats [45]. After treatment with polysaccharides (PSK) from Trametes versicolor, one
of the most medicinal fungi, NeuN (neurons) and MAP2 (dendritic) staining areas were
significantly increased, and neuronal apoptosis, which was detected by caspase-3 in the
hippocampus, was reduced in APP/PS1 mice [54]. Ensuring the integrity of the mito-
chondria has always been the key to preventing apoptosis. In the brain tissue of PD mice,
considerably increased levels of cytochrome C and mitochondria-related apoptotic factors
such as Bax were observed; however, treatment using M. Charantia polysaccharide (MCP)
treatment remarkably reversed the expression changes of these proteins, thereby suggesting
anti-apoptotic effects [25].

2.4. Reduction in Neuronal Oxidative Stress

Under normal conditions, most of the oxygen absorbed by the body is reduced to water
and is converted into energy through mitochondrial respiration [55,56]. However, a small
amount (≤2%) of oxygen can accept one or two electrons in the middle of the respiratory
chain and can be partially reduced to generate ROS [57]. To maintain physiological balance,
excess ROS is removed through enzymatic and non-enzymatic defense systems at any
time [58]. However, when the physiological environment changes, such as by aging,
hypoxia, or other diseases that damage the mitochondrial respiratory chain, the generation
and accumulation of ROS are further increased, or the activity of antioxidant enzymes is
affected so that the imbalance between the oxidative system and the antioxidant system
cause oxidative damage [59,60]. Neurodegenerative diseases are at least associated with
aging, and oxidative stress is naturally inevitable [61]. In AD, accumulated ROS promotes
the cleavage of APP to Aβ by enhancing γ- and β-secretase activity, which results in an
increased Aβ deposition [55]. Aβ, in turn, induces oxidative stress from multiple pathways,
such as by interacting with catalase (CAT) in the brain to impair the ability to scavenge
ROS. This vicious cycle eventually leads to continuous damage to neurons [62]. In the
brains of PD patients, genetic abnormalities or environmental toxins lead to increased
concentrations of free dopamine that are auto-oxidized, and the product eventually splits
into a large amount of OH- via catalysis, which results in the exposure of dopaminergic
neurons to oxidation under stress [63]. Furthermore, free dopamine inhibits the transition
of α-syn from fibrils to mature fibrils, which leads to the accumulation of soluble fibrils in
dopaminergic neurons, which is a hallmark of PD [64]. This horrific vicious cycle occurs
in PD patients, whereby the accumulation of α-syn leads to a decrease in the number
of vesicles, which in turn increases free dopamine and enhances oxidative stress [65].
Relatively few studies have been conducted on HD, but we know that it is correlated with
oxidative stress. The levels of oxidative damage products were considerably elevated in
the corresponding degenerated regions in the brains of HD patients. Aggregated HTT
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directly leads to increased ROS production, which causes mHTT-expressing cells to die
before normal cells [66].

ROS levels in neurons were remarkably increased under various inductions, such as
Aβ1–40, L-Glu, paraquat, rotenone, and gene mutation, and EMPs reversed the excessive
ROS accumulation and reduced the oxidative damage. In addition to the direct inhibition
of ROS production in response to fungal Fomes officinalis Ames polysaccharides (FOAP)
against oxidative stress, the subsequent elevated SOD activity and reduced MDA levels in
Aβ25–35-treated PC12 cells were also key pieces of evidence of the effectiveness of EMPs [67].
Additionally, by successfully increasing the SOD activity and decreasing the MDA content,
paraquat-exposed C. elegans survived considerably longer after treatment with Epimedium
brevicornum polysaccharides [68]. Moreover, low SOD and GSH-Px levels and very high
ROS and MDA levels were observed in the serum and whole brain of APP/PS1 mice,
and these phenomena were strongly reversed by 8 weeks of IOP administration [22]. In
addition, mitochondrial-basal respiration and respiratory chain complex 1 were inhibited
in the midbrain tissue of rotenone-induced PD rats. However, fucoidan ameliorated the
above symptoms to reduce the possibility of ROS production and modulate the increase in
the content of three oxidative stress products: MDA, 3-NT, and 8-OhdG [69].

2.5. Neuroinflammation Inhibition

The neuronal damage and loss in neurodegenerative diseases are inextricably linked to
the chronic activation of the innate immune response in the central nervous system [70,71].
The immune cells in the brain are mainly microglia, which are innate immune cells in
the brain parenchyma that can respond to traumatic injury or inflammatory signals to
protect the brain and act as sensors for various environmental signals [72,73]. However,
the persistence of the activation signal or the failure of the repair mechanism can lead to
the continuous activation of microglia, which results in the release of excessive cytotoxic
factors, which then results in prolonged and persistent neuronal death [74,75]. The massive
deposition of abnormal proteins such as Aβ, NFTs, α-syn, and mHTT is not efficiently
cleared by microglia, but instead continuously triggers the secretion of pro-inflammatory
cytokines from these cells. These pro-inflammatory cytokines subsequently lead to the
loss of multiple neurons and also promote the accumulation of abnormal proteins, which
aggravate neurodegenerative diseases [76–78].

The anti-inflammatory activity of EMPs was first demonstrated by reversing a remark-
able increase in the number of astrocytes and microglia in neurodegenerative mice [54,79].
The polysaccharides from ginseng, a rare medicinal herb, regulate immunity, and related
healthcare products containing these polysaccharides have been developed. The active
polysaccharide NFP of Korean red ginseng remarkably inhibited the increase in the IBA-1(+)
area of AD mice, which is a marker of microglia cells [80]. Moreover, the expression of
Emr1 associated with microglial activation in MPTP-induced PD mice was inhibited after
treatment with algal polysaccharides from Chlorella pyrenoidosa (CPS) treatment [81]. A
remarkable elevation in the inflammatory factors IL-1β, IL-6, and TNF-α was observed
in AD and PD mice. In contrast, most EMP treatments inhibited the levels of these fac-
tors [25,54,79,82]. The polysaccharide ATP from Acorus tatarinowii, which is used to treat
forgetfulness and insomnia, inhibited the production of inflammatory cytokines in LPS-
stimulated BV2 microglia and thus counteracted the effect of LPS on nitrite production,
meaning it exhibited anti-neurodegenerative potential. The ATP-induced reduction in
iNOS transcriptional expression considerably suppressed the inflammatory mediator NO
production and pro-inflammatory COX-2 mRNA expression [83]. It has been reported
that 6-OHDA further activated the expression of inflammasome NLRP3 by inducing ROS.
However, the intervention of polysaccharides (ACP) from precious medicinal edible Antro-
dia camphorata suppressed NLRP3 expression to reduce toxicity in MES23.5 cells and PD
mouse-like lesions [84,85]. The disruption of intestinal barrier function, which is often
caused by gut microbe disorder, promotes the entry of bacterial-derived pathogens and
endotoxin LPS into the circulatory system, leading to neuroinflammation and even neuro-
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logical disorders [10]. The β-glucan, SCP-1 from health food of Sparassis crispa inhibited the
activation of microglia and astrocytes in the brains of AD-like mice and down-regulated
IL-6, IL-1β, and TNF-α levels, which may be attributed to the fact that SCP-1 significantly
increased the expression of ZO-1 and occludin in the colon and decreased LPS levels [86].
Similarly, the polysaccharides (PSP) of the supplement Polygonatum sibiricum regulated AD
symptoms by decreasing the inflammatory environment in the same way [87].

2.6. Gut Microbiota Regulation

Neurodegenerative disease is associated with early gastrointestinal motility abnor-
malities, including constipation and delayed gastric emptying, and patients also have an
imbalance of intestinal microbiota [88]. Subsequently, the interrelationship between gut
microbiota and neurodegenerative diseases has also been studied and demonstrated in
various animal models [89–91]. Disturbances in the gut microbiota at least exacerbate
the pathological development of neurodegenerative diseases [92]. This is because the gut
microbiota affects the secretion of metabolites, such as short-chain fatty acids, which are
related to the regulation of nervous immune function, sensory nerve signals, and metabolic
activities of the central nervous system [93–95]. In addition, disturbances in the gut micro-
biota often impair the intestinal barrier, elevate lipopolysaccharide, and increase abnormal
proteins, leading to neuroinflammation in neurodegenerative diseases [96,97]. Therefore,
pathological changes in PD, AD, and HD patients may be improved by regulating the gut
microbiota with drugs.

Gut microbiota have a clear preference for polysaccharides, which may be beneficial
for the growth of specific species and may play a role after fermentation by microbiota.
Changes in the gut microbiota of AD mice at the phylum level that were induced by AlCl3
and D-Gal were characterized by lower levels of Firmicutes and an increased abundance of
Bacteroidetes, which may be related to Aβ accumulation in the brain and systemic inflam-
matory status in patients with cognitive deficits. SCP-1 reversed this phenomenon by re-
shaping the composition of the gut microbiota. Moreover, SCP-1 also significantly promoted
the growth of Intestinaimonas, [Eubacterium] ventriosum group, Lachnospiraceae_UCG_010, and
Lachnospiraceae_UCG_001, and promoted the synthesis of short-chain fatty acids to maintain
intestinal integrity, improve cognitive function, and regulate the immune response [86]. The
study investigated that the abundances of the three major inflammation-stimulating bacte-
ria Helicobacter typhlonius, Helicobacter mastomyrinus, and Akkermansia muciniphila decreased
significantly after PSP was orally administered to 5 × FAD mice for 3 months, thus alleviat-
ing neuroinflammatory stress. Furthermore, PSP significantly inhibited the reduction in
muciniphila, which was negatively associated with neurodegenerative diseases [87].

2.7. Autophagy Regulation

Autophagy plays a dual role in neurodegenerative diseases [98]. Studies have shown
that dysfunction of autophagy led to disturbance of liposome-mediated degradation path-
ways, and thereby blocked the ability of lysosome to eliminate macromolecules and dam-
aged organelles, which resulted in the release of cytochrome c and other pro-apoptotic
proteins [99]. The expression levels of proteins LC3-II and Beclin often reflect the level of
autophagy. In 6-HODA-induced PC12 cells, the expression of LC3-II was decreased, which
suggested the impairment of autophagy, which was reversed by APS treatments [100].
Conversely, the overactivation of autophagy increased dopaminergic neuron degeneration.
The protein levels of LC3-II and Beclin were abundantly expressed in MPTP-induced PD
mice and were significantly downregulated by LBP treatment to suppress the degeneration
of neurons in SN [44].

2.8. Regulation of the Balance of Neurotransmitters

The balance of neurotransmitters reduces the risk of developing neurodegenerative
diseases [101]. An imbalance of neurotransmitters has been found in AD patients; for
example, a reduction in inhibitory amino acids (GABA and Ach) and an increase in the
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excitatory amino acid (Glu) is strongly associated with dementia and cognitive impairment.
Fortunately, the concentrations of these neuroactive substances tended to return to normal
levels after high-dose intervention of SCP [42]. Simultaneously, DA is the neurotransmitter
of most concern in PD. In MPTP-induced PD mice, the immunoreaction and mRNA ex-
pression of DA-initiating and rate-limiting enzymes TH and DAT were decreased, which
suggests a major loss of DA. Polysaccharides from Spirulina platensis (PSP1) pretreatment
significantly increased DA levels and decreased dopamine metabolic rate [102]. Similarly,
CPS protected the depletion of striatal DA and TH-positive neurons in SN and increased
the transportation of DA, significantly attenuating neurotoxin-induced behavioral impair-
ment [81]. Furthermore, elevated levels of DA and 5-HT were ameliorated after MCP
treatment in response to brain dysfunction under PD pathological conditions [25].

2.9. Restoration of Synaptic Plasticity

The loss of synapses and the reduction in synaptic plasticity in hippocampal neurons
may be one of the pathological features of AD and the neurobiological basis of learning and
memory dysfunction [103]. It is reported that LBP promoted neurogenesis and restored
hippocampal synaptic plasticity in APP/PS1 mice [104]. Moreover, CPP enhanced APP/PS1
synaptic plasticity, repaired synapses, and reduced cognitive deficits, and these effects were
possibly associated with a significantly increased expression of synaptic proteins PSD95
and synaptotagmin [40]. DCX is a hallmark of adult neurogenesis, and NFP treatment
significantly affected the number and dendritic morphology of DCX(+) neurons in healthy
and AD brains, stimulated neurogenesis, and increased connectivity between hippocampal
neurons [80].

3. Multiple Pathways Support the Regulation of Neurodegenerative Diseases with MEPs

The abovementioned ability of MEPs is mainly regulated through multiple targets
and pathways. The mitochondrial, NF-κB, MAPK, Nrf2, mTOR, PI3K/AKT, P53/P21,
and BDNF/TrkB/CREB pathways can be regulated by MEPs to prevent and treat neu-
rodegenerative diseases. The main related mechanisms and pathways of EMPs against
neurodegenerative diseases are shown in Figures 1–3.
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3.1. Mitochondrial Pathways

The mitochondrial pathways, which are apoptotic pathways triggered by a variety of
stress conditions and drugs, are severe pathways for functional neuronal loss in neurode-
generative diseases [105]. An abnormal respiratory chain reaction caused by a variety of
abnormalities leads to the enhancement of MMP, which causes the release of cytochrome
C to further activate the initial caspase and then activate terminal caspase to induce cell
apoptosis. When the apoptotic signal is transduced to the mitochondria, the pro-apoptotic
proteins Bad, Bid, Bax, and Bim of the Bcl-2 family are transferred from the cytoplasm to the
mitochondria and are combined with the anti-apoptotic protein Bcl-xL, thereby increasing
the MMP. Other signals, such as ROS, directly trigger the opening of mitochondrial inner
membrane pores, leading to the rupture of the outer mitochondrial membrane and the
outflow of cytochrome C [106]. A variety of polysaccharides from medicinal and edible
fungi such as edible Dictyophora echinovolvata (DEVP), Tremella fuciformis(TF04), Armillaria
mellea (AMPS), Fomes officinalis Ames (FOAP), and S. crispa (SCWEA) were found to inhibit
the mitochondrial apoptotic pathway against neurodegenerative diseases. H2O2 is com-
monly used to induce a considerable increase in the Bax/Bcl-2 ratio, cytosolic cytochrome
C, and cleaved caspases-3 levels in PC12 cells. The inhibitory effect of DEVP is achieved,
at least in part, by inhibiting the mitochondrial apoptotic pathway [107]. Exposure to
glutamate strongly increases Bax expression, cytochrome C release, and the activities of
caspase-8, -9, and -3; however, a remarkable reversal was observed after TL04 pretreatment,
which inactivated the caspase-dependent mitochondrial pathway to alleviate damage to
PC12 cells [108]. SCWEA, in L-glu-induced PC12 cells, restored the normalization of the
expression of the anti-apoptotic protein Bcl-2 and Bcl-xL, which indicated a protective
effect on neurons [109]. The autonomic activity of D-gal and AlCl3-induced AD mice was
enhanced after 4 weeks of AMPS administration, which was inseparable from the inhibition
of mitochondrial-mediated apoptosis [110]. FOAP potently inhibited Aβ25–35-induced cyto-
toxic effects, thereby attenuating apoptosis, increasing the ratio of Bcl-2/Bax, and inhibiting
the release of cytochrome C from mitochondria to the cytoplasm in PC12 cells. FOAP
remarkably alleviated mitochondrial dysfunction by regulating MMP and promoting the
synthesis of mitochondrial ATP [67]. In addition, polysaccharides from Gynostaphyllum
pentaphyllum, Taxus chinensis, and other medicine on the list of health products also save
mitochondrial pathways, as shown in Supplementary Table S1.

3.2. MAPK Pathway

The MAPK family consists of serine-threonine protein kinases that are widely dis-
tributed in mammalian cells, whose members play key roles in neuronal inflammation,
proliferation, differentiation, survival, and death [111]. For example, ERK, JNK, and
p38 pathways are involved in regulating the synthesis and release of pro-inflammatory
cytokines in microglia; the activation of the ERK pathway is necessary for neuronal pro-
liferation, survival, and differentiation, and the activation of JNK is thought to regulate
neuronal death, especially apoptosis. The MAPK pathway can be regulated by EMPs.
Fucoidan could inhibit LPS-activated microglia, which is manifested in the suppression of
the production of NO, the expression of iNOS, and the morphological transformations by
inhibiting the expression of p38 and ERK pathway-related proteins [112]. Polysaccharides
from Morchella importuna inhibited H2O2-induced PC12 cell apoptosis by downregulating
the p38-JNK pathway, as well as activating the ERK to enhance Bcl-2 expression, reduce
Bax expression, and decline caspase-3 [113]. In addition, in Aβ1–42 peptide-induced AD
mice, SCP considerably improved the changes in their cognition and histopathology, the
deposition of Aβ, the expression of pro-inflammatory cytokines, and the activation of
astrocytes and microglia, which were also associated with the MAPK pathway, which is
involved in inhibiting the phosphorylation of p38, JNK, and ERK [79].



Biomolecules 2023, 13, 873 10 of 20

3.3. NF-κB Pathway

The transcriptional factor NF-κB regulates the expression of a series of inflammatory
genes and plays an important role in various cellular inflammatory responses. In microglia,
when stimulated by inflammatory signals, such as LPS, the stable NF-κB with its inhibitor
IκB-α complex in the cytoplasm will liberate NF-κB to the nucleus, regulate the expression
of TNF-α and other genes and cause neuronal inflammatory responses [114]. EMPs have
been found to block the activation of NF-κB, which showed their potential to improve
several neurodegenerative diseases. APS, known as an immunostimulant, suppressed the
NF-κB and AKT signaling pathway to reduce LPS-stimulated NO, PGE2, the generation of
the pro-inflammatory cytokines IL-1β and TNF-α generation, and iNOS and COX-2 gene
expression [83]. The TLR4/MyD88 and PI3K/AKT pathway are the main upstream of the
NF-κB pathway, and ATP significantly reduced the abnormal rise in inflammatory cytokines
in LPS-induced BV2 cells by reversing the up-regulation of proteins, which provided
neuroprotection against inflammation-induced neurotoxicity [115]. Other inducers, such
as Aβ1–42 peptide-induced AD mice, also showed increased NF-κB and decreased IκB-α,
whereas the administration of polysaccharides SCP from Schisandra Chinensis decreased
the nuclear translocation of NF-κB, thereby reducing the expression and release of pro-
inflammatory cytokines [79]. MPTP treatment significantly promoted the expression of
TLR4, MyD88, and p-p65 proteins, while MCP inactivated the TLR4/MyD88/NF-κB
pathway and exerted anti-inflammatory effects in PD [25].

3.4. Nrf2 Pathway

The transcription factor Nrf2 regulates a series of antioxidant enzymes involved in
oxidative stress-related neuronal dysfunction, thereby aggravating the pathogenesis of
neurodegenerative diseases [116]. Under physiological conditions, the combination of
Nrf2 and keap1 is inactivated in the cytoplasm. After being stimulated and activated,
Nrf2 is liberated from keap1 and is subsequently translocated to the nucleus, which leads
to the activation of a series of antioxidant enzymes to exert antioxidant effects. Several
EMPs have been found to activate Nrf2 to reduce neuronal oxidative damage. For in-
stance, IOP enhanced the expression levels of Nrf2 and its downstream proteins, including
HO-1 and SOD-1, in L-Glu-induced HT22 cells and the brains of APP/PS1 mice [22]. APS
up-regulated the expression of Nrf2 in the nucleus in brain tissues of APP/PS1 mice and
restored the expression levels of antioxidant enzymes SOD and GSH-Px [117]. In vivo and
in vitro experiments showed that the reduction in Nrf2 and NQO1, which are anti-oxidative
stress-related proteins, although induced by MPTP, was restored after PSP administration,
which indicated the anti-dopaminergic neurodegeneration ability of PSP [118]. Rotenone
decreased the expression of the PGC-1α and Nrf2 proteins in the ventral midbrain, whereas
their expression was significantly up-regulated by Fucoidan, which may explain the protec-
tive effect of Fucoidan on mitochondrial function [69].

3.5. mTOR Pathway

The mTOR is a central cell growth regulator whose phosphorylation and dephos-
phorylation lead to the inhibition and induction of autophagic death under different
conditions [119]. mTOR is often regulated by its upstream pathway AKT, whereas the
inactivation of the AKT/mTOR signaling pathway impairs neuronal function and leads
to neuronal autophagic death after injury. PSP had the ability to prevent MPP+-induced
death of neuronal injury in vivo and in vitro by activating the AKT/mTOR pathway [118].
Autophagy, as a survival-promoting self-defense strategy, also plays an important role in
reducing oxidative stress. Polysaccharides from Hericium erinaceus positively regulated
mTOR, and this regulation was dependent on AKT activity, thereby inhibiting CaMK II/IV
phosphorylation-related oxidative stress-mediated calcium homeostasis, ultimately improv-
ing AD symptoms [41]. In addition, PTEN is a negative regulator of the mTOR pathway
that reduced the activation of AKT and prevented all downstream signal transduction
events regulated by AKT. LBP treatment up-regulated the phosphorylation of AKT and
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mTOR and may exert an anti-autophagic effect by activating the PTEN/mTOR signaling
axis in the SN to alleviate the excessive autophagy and loss of dopaminergic neurons in the
SN in MPTP-induced mice [44]. The hyperactivation of the mTOR signaling pathway leads
to severely impaired autophagy, which results in the accumulation of abnormal proteins in
neurons, which is a major feature of neurodegenerative diseases. This phenomenon was ob-
served in 6-HODA-induced PC12 cells, and it was gratifying that APS treatment inhibited
the AKT/mTOR signaling pathway to promote the conversion of LC3-I to LC3-II, improve
the formation of autophagosome and increase cell viability and the level of autophagy [100].

3.6. PI3K/AKT Pathway

AKT, as a proto-oncogene, has become a hot spot of interest due to its ability to
regulate various downstream targets for various neuronal functions, including regulation of
inflammation, oxidative stress, apoptosis, and autophagy [120]. Recent studies have shown
that LBP up-regulated miR-4295 in H2O2-injured HTM cells to activate the PI3K/AKT
signaling pathways, which are involved in regulating oxidative damage in HTM cells [121].
GSK-3β is the downstream pathway of PI3K/AKT, which is involved in and affects the
regulation of tau protein synthesis and dopamine signaling, and directly triggers apoptosis
signals and other downstream events. By initiating the Shh and PI3K/AKT signaling
pathway, increasing p-GSK-3β, and inhibiting GSK-3β activity, TMT-induced neurotoxicity
in N2a cells is antagonized by LBP [122]. Interestingly, anti-HD potential was demonstrated
in LBP as a result of reducing mHtt in the cortex, hippocampus, and striatum of TG
mice again by activating AKT [123]. In addition, OP treatment inhibited the decreased
expression levels of PI3K, p-PI3K, AKT, and p-AKT in the hippocampus of Aβ1–42-induced
AD model mice and increased the expression level of p-GSK-3β to improve metabolic
function and cognitive impairment [20]. L-Glu-induced AKT inhibition and subsequent
GSK-3β phosphorylation were also associated with the promotion of mitochondria-related
pro-apoptotic stimuli. These phenomena recovered after SCWEA administration [109]. The
study revealed that GLP potentiated activation of FGFR1 and downstream ERK and AKT
cascades, promoting neurogenesis upon growth factor deficiency, and had the potential
to serve as a preventive and therapeutic agent against neurodegenerative diseases [24].
Aβ25–35 treatment remarkably reduced the protein expression of p-AKT in PC12 cells,
whereas the pretreatment with PSP revealed its anti-apoptotic properties by enhancing
the PI3K/AKT pro-survival pathway to play a neuroprotective effect [124]. Conversely,
EMPs, such as APS and ATP, had inhibitory effects on the AKT pathway because the
hyperphosphorylation of AKT promoted the downstream NF-κB pathway and mTOR
pathway, stimulating inflammation and autophagy disorders [100,115].

3.7. P53/p21 Pathway

The P53 protein induces cell cycle termination or apoptosis, which is known as cell
senescence [125]. The level of P53 protein is low in normal cells, but in neurodegenerative
diseases, the post-transcriptional modification pathway of p53 is directly activated, and
the expression of P53 protein in the nucleus is increased. At this time, p53 can activate the
downstream signaling molecule p21, which plays a role in cell cycle arrest, differentiation,
and apoptosis [126]. The expression of protein P53 and P21 was up-regulated in D-gal-
induced AD mice; however, the ASP-induced inactivation of p53 and the target genes p21
prolonged the lifespan of the mice and reduced the oxidative damage and inflammation in
AD mice and thus resisting neurodegenerative diseases [127].

3.8. BDNF/TrkB/CREB Pathway

BDNF is the most widely distributed and most abundant neurotrophic factor in the
mammalian brain, and it is widely expressed in the central nervous system [128]. BDNF
often combines with Tyrosine Kinase B (TrkB) with a high affinity to exert biological
effects [129]. TrkB, as a specific receptor of BDNF, activates the MEK/ERK/RSK and
PI3K/Akt signaling pathways and promotes CREB phosphorylation, thereby activating
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genes related to long-term memory, promoting the expression of synapse protein and
synaptic vesicles proteins, inducing the enhancement of long-term memory, and affecting
the memory function of the brain by regulating synapse protein synthesis, changing the
morphology of dendrites and spines, and enhancing synaptic activity, which is of great
significance for the development of the nervous system [130–132]. It was found that the
expression of BDNF, TrkB, p-Akt, and p-CREB in AD rats induced by Aβ25–35 was de-
creased, and this was ameliorated by ASP treatment. ASP affects the learning and memory
processes of AD rats by activating the BDNF/TrkB/CREB pathway, which involves the
main transcription factors for brain development, neural survival, and neurogenesis [45].

4. Conclusions and Prospects

Polysaccharides are one of the most important active ingredients in medicine and
edible resources for the maintenance of human health. Some EMPs have been used in
health products on the market, such as Panaxginseng, A. membranaceus, and mushroom
polysaccharides, in the form of oral liquids, capsules, and drinks. However, other active
polysaccharide health products have seldom been developed. Additionally, polysaccha-
ride health products are not unique or highly functional. The development premise of
polysaccharide health products mainly involves supplementing deficiency and restor-
ing normal conditions, without mentioning which organs or diseases cause deficiency
and without targeting special consumer groups. In the age of aging, brain deficiencies
caused by neurodegenerative diseases affect the health of an increasing number of people.
Polysaccharides from edible and medicinal sources target neurodegenerative diseases and
have the potential to develop related functional products. Therefore, scientific evidence
of the anti-neurodegenerative effects of these EMPs was reviewed, and this will lay the
foundation for the development of relevant functional health products for the long-term
control and prevention of neurodegenerative diseases. Under the intervention of EMPs,
the main manifestations of neurodegenerative diseases, including memory and cognitive
impairment, motor retardation, and pathological features, such as abnormal protein Aβ,
NFTs, α-syn, and mHtt accumulation, were improved, depending on at least one of the
following aspects: (1) By promoting AKT phosphorylation, inhibiting the MAPK pathway,
inhibiting the expression of pro-apoptotic Bcl-2 family proteins and caspase3/9, and repair-
ing mitochondrial defects, the EMPs reduced the abnormal apoptosis of functional neurons.
(2) By bidirectionally regulating mTOR phosphorylation expression, the EMPs not only
reduced the excessive autophagic loss of neurons, but also prevented the accumulation of
abnormal proteins in the neurons caused by impaired autophagy. (3) The EMPs alleviated
ROS production and accumulation and promoted the expression of antioxidant enzymes,
such as SOD, GSH-Px, HO-1, and GCLC, via activating the Nrf2 pathway, inhibiting neu-
ronal oxidative damage. (4) The EMPs inhibited the expression of hyperphosphorylated
AKT and prevented TLR4 activation, thereby inactivating NF-κB and MAPK pathways and
inhibiting the release of TNF-α, IL-1β, IL-6, NO, iNOS, and other inflammatory cytokines in
activated microglia. (5) EMPs regulated the release of neurotransmitters ACh, DA, DOPAC,
HVA, 5-HT, and 5-HIAA and increased the activity of synaptic proteins to improve synaptic
plasticity, exhibiting a protective effect on the nervous system.

However, the development of polysaccharide products still faces many challenges.
First, the structure is the foundation. In nature, polysaccharides are mixtures with complex
structure and variety. Determining the separation, purification, and structure of polysac-
charides is difficult, and different extraction methods will have a certain influence on the
structure of polysaccharides. In order to provide solid scientific and theoretical guidance
for the extensive processing and development of functional products, further studies of the
precise high-order structure and structure–activity relationships of MEPs, as well as the
precise molecular mechanisms of their biological activity, are still necessary. Second, the
effect is the premise. Many animal and clinical trials are necessary. Due to the difficulty
in modeling brain diseases, current researchers mainly focus on in vitro mechanism stud-
ies and animal and clinical trials have seldom been conducted to determine the effect of
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polysaccharides on neurodegenerative diseases. Third, the clear mechanism of action is
the direction. As macromolecular components, the way that polysaccharides function in
the body has always been focused on. At present, researchers explored polysaccharides
mainly focus on the structure and activity of polysaccharides and less research is conducted
on the digestion, absorption, and glycolysis of polysaccharides in vivo. Because most
polysaccharide products are still orally administered, it is not clear whether the structure
and corresponding activity will be changed due to degradation by various enzymes and
acidic conditions in vivo and whether the use of digested polysaccharides plays a role in
absorption or intestinal microbial glycolysis. For functional products, the way the drug
works is the key to determining the type of products, whether absorbable or prebiotic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom13050873/s1, Table S1: Summary of the role of polysaccharides in the regulation of
neurodegenerative diseases. References [133–146] are cited in the Supplementary Materials.
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NFTs neurofibrillary tangles
AKT serine/threonine protein kinase B
MAPK mitogen-activated protein kinase
Nrf2 nuclear factor erythroid 2-related factor 2
BDNF brain-derived neurotrophic factor
TrkB neurotrophic tyrosine kinase receptor type 2
CREB cyclic AMP-responsive element-binding protein
AD Alzheimer’s disease
Gal galactose
PS1 presenilin 1
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MPP+ 1-methyl-4-phenylpyridine
6-OHDA 6-Hydroxydopamine hydrobromide
PD Parkinson’s disease
HTT Huntington protein
BBB Blood–brain barrier
DA dopamine
DAT dopamine transporter
SN substantia nigra
HD Huntington’s disease
PolyQ polyglutamic acid
LPS lipopolysaccharide
MMW morris water maze
OFT open field test
NOR novel object recognition test
α-syn α-synuclein
TUNEL TdT-mediated dUTP Nick-End Labeling
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CAT catalase
ROS reactive oxygen species
SOD superoxide dismutase
MDA malondialdehyde
GSH-Px glutathione peroxidase
AchE acetylcholinesterase
Ach acetylcholine
ChAT choline acetyltransferase
3-NT 3-nitrotyrosine
8-OHdG 8-hydroxy-2-deoxyguanosine
IBA-1 ionized calcium binding adaptor molecule-1
IL interleukin
TNF tumor necrosis factor
iNOS inducible nitric oxide synthase
COX-2 cyclo-oxyganese-2
NLRP3 NOD-like receptor thermal protein domain associated protein 3
5-HT 5-hydroxytryptamine
ERK extracellular signal-regulated kinase
GSK-3 glycogen synthase kinase-3
PGE2 prostaglandinE2
TLR4 Toll-like receptor 4
MyD88 myeloid differentiation primary response protein
JNK c-Jun N-terminal kinase
PGC-1α peroxisome proliferator-activated receptor-γ coactlvator-1α
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