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Abstract: In drug design, the prediction of new active compounds from protein sequence data has
only been attempted in a few studies thus far. This prediction task is principally challenging because
global protein sequence similarity has strong evolutional and structural implications, but is often only
vaguely related to ligand binding. Deep language models adapted from natural language processing
offer new opportunities to attempt such predictions via machine translation by directly relating
amino acid sequences and chemical structures to each based on textual molecular representations.
Herein, we introduce a biochemical language model with transformer architecture for the prediction
of new active compounds from sequence motifs of ligand binding sites. In a proof-of-concept
application on inhibitors of more than 200 human kinases, the Motif2Mol model revealed promising
learning characteristics and an unprecedented ability to consistently reproduce known inhibitors of
different kinases.

Keywords: proteins; ligand binding sites; active compounds; molecular design; sequence motifs;
molecular string representation; machine translation; transformer architecture; kinase inhibitors

1. Introduction

In drug design, it is generally attempted to establish relationships between biological
targets and chemical matter. This can be accomplished in different ways, directly or indi-
rectly, for example, by using a three-dimensional (3D) structure of a protein as a template
for the design of new ligands or by using a set of small molecules with activity against a
given target to infer new active compounds by employing principles of molecular similarity.
Early attempts to directly associate target and ligand information for predictive modeling
date back about 15 years, when combined protein and small molecule representations (de-
scriptors) were designed to generate machine learning models for distinguishing between
true and false protein–ligand associations (complexes) [1–3]. For such predictions tasks,
neural network or support vector machine classification models were derived [1–3].

With the advent of deep learning in drug discovery, various deep neural network
(DNN) architectures were adapted for exploring new design concepts establishing immedi-
ate links between target and ligand information. For example, on the basis of protein 3D
structures, graph or voxel representations of ligand binding pockets were generated using
DNNs and combined with other networks to produce ligand shapes and new compounds
consistent with such shapes [4–6]. Furthermore, voxel-based representations obtained via
convolutional DNNs [5,6] were used to bridge between structure-based design and deep
generative modeling by combining convolutional and recurrent neural networks (RNNs)
to produce string representations of new compounds [6].
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Deep generative modeling [7,8] is increasingly used for compound design [9–11].
Preferred DNN architectures for generative modeling include RNNs consisting of long
short-term memory (LSTM) units [12], which can also be utilized as encoder–decoder
frameworks with intermittent latent space [13], and transformer networks with attention
mechanisms [14,15]. Such models have originated from natural language processing [16] for
addressing machine translation tasks, that is, converting one (input) sequence of characters
into another (output) sequence. In chemistry and drug design, these DNN architectures
have been adapted as “chemical language models” for various applications, in particular,
for chemical reaction modeling and generative compound design [17–20]. They depend on
the use of textual representations of small molecules, for which “simplified molecular input
line entry system” (SMILES) strings [21] continue to be the most widely employed format.

In a few studies, RNNs or transformers have also been applied to associate protein
and ligand representations. Specifically, three studies have attempted to generate new
small molecule ligands from target protein sequences via language models [22–24]. Hence,
in these cases, the machine translation task required the derivation of models to construct
SMILES representations encoding new compounds from amino acid sequences of targets.
In the first study [22], an approach from image processing for generating image captions
was adapted [25]. Therefore, a DNN was employed to generate protein sequence vector
embeddings [26] that served as input for an RNN comprising multiple LSTM units to
generate SMILES strings of new compounds via reinforcement learning [22]. In addition,
two methodologically distinct studies trained transformer networks to directly associate
protein sequences with SMILES of known compounds and generate new molecules [23,24].
Therefore, a transformer architecture with an attention mechanism was adapted [14,23].
Furthermore, a transformer variant was developed based on the Lmser network [27]
to combine embeddings of protein sequences and molecule strings and generate new
compounds conditioned on given protein sequences via Monte Carlo tree search over
intermittent strings [24]. Both transformer-based approaches used conventional protein–
ligand docking scores to assess or the guide compound design [23,24], which increased the
intrinsic uncertainty of the design approach (that is, one hypothetical model was employed
to guide another).

In this work, we report the development and application of a simpler transformer
model for the design of new active compounds from sequence data. Since the transformer
relates amino acid sequences to molecular structure, it is termed a “biochemical language
model”. Different from the earlier studies [22–24] that learned from complete protein
sequences, we use sequence motifs defining ligand binding regions as input to avoid
redundancy or noise of sequence information that might not be relevant for ligand binding.
In addition, we apply a compound evaluation scheme that does not rely on hypothetical
scoring, but directly assess the ability of a model to produce active compounds. As
a proof-of-concept application, we design candidate compounds for ATP site-directed
protein kinase inhibitors (PKIs) [28–30], representing a major class of drug candidates and
approved drugs [30].

2. Materials and Methods
2.1. Methodological Concept

The Motif2Mol approach was designed to generate chemical structures from different
amino acid sequence segments (motifs). The underlying idea was to derive a language
model that associates sequence signatures of target proteins with specifically active com-
pounds and use the model to predict new compounds for targets (sequence motifs) of
interest. For this purpose, a transformer model was implemented.

2.2. Model Architecture

The choice of the transformer architecture instead of RNNs for this machine translation
task involving different types of molecular representations was motivated by the availability
of the transformer-specific attention mechanism that makes it possible to operate on hidden
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states of different parts of input sequences in parallel [14]. Transformers consist of multiple
encoder and decoder modules, including attention sub-layers. Each module combines
a multi-head self-attention sub-layer and a fully connected feed-forward sub-layer. In
a multi-head self-attention sub-layer, several attention functions act on different parts
of sequences simultaneously. Figure 1 schematically represents the architecture of the
Motif2Mol transformer model.
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Figure 1. Motif2Mol transformer. Shown is a schematic representation of the architecture of the
Motif2Mol transformer specifying multiple units and sub-layers as well as the dimensions (dim) of
the input and output embeddings and feed-forward sub-layer.

The encoder (left) consists of three modules with eight multi-head attention sub-layers
each and a feed-forward sub-layer (512 dimensions), which generates a 512-dimensional
vector embedding of input sequence motifs through positional encoding (which ensures
that the sequential information is retained). The embedding represents the hidden states.
The decoder (right) also comprises three modules with multiple attention sub-layers and
a feed-forward sub-layer. Here, however, each module contains two types of attention
sub-layers (with eight sub-layers of each type). The multi-head attention sub-layers cor-
responding to those in the encoder operate on encoder-generated hidden states as well
as the output of the first decoder module. Thereby, the multi-head attention sub-layers
can learn relationships between sequence encodings on the encoder side and structure
encodings on the decoder side and pay attention (that is, assign importance) to particular
sequence segments based on structural features (and vice versa). This architecture facilitates
an effective use of the self-attention mechanism. By contrast, the masked attention sub-
layers representing the second type only operate on the output of the preceding attention
sub-layer of the decoder modules. The masked attention sub-layers identify (and mask)
transmitted information that should not be utilized to ensure that translated encodings
are created in the correct sequential order. Hence, these layers are designed to prevent
translation errors. SMILES tokens are sampled according to the probability distribution
learned by the model. Output probabilities are derived in the softmax layer and the decoder
generates a 512-dimensional embedding of the output sequence via positional encoding
(corresponding ot the encoder).
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2.3. Proof-of-Concept Application

As a proof-of-concept application for the Motif2Mol approach, we selected the design
of candidate compounds for ATP site-directed PKIs based on kinase sequence motifs:
a topical drug discovery task. Figure 2a depicts a character string from PROSITE [31]
encoding the sequence signatures of the kinase ATP-binding region. The narrowly defined
ATP-binding region comprises 21–34 amino acid residues and was further extended with
the following segment of 150 residues, forming an extended kinase sequence signature.
The resulting sequence motifs contained kinase-specific sequence information beyond the
narrowly defined ATP-binding region while excluding essentially invariant regions of the
catalytic kinase domain, as illustrated in Figure 2b. The extended kinase sequence signature
was expected to include most residues relevant for the binding of ATP site-directed PKIs.
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Figure 2. Protein kinase sequence motifs. In (a), the PROSITE character string encoding the protein
kinase ATP-binding region signature and the extended kinase sequence signature are shown. The
character string represents 21–34 residues forming the ATP-binding region in kinases. Alternative
amino acids permitted at a given position are indicated by square brackets ‘[]’. For example, [LIV]
represents Leu, Ile, or Val at a given position. Amino acids excluded at a position are indicated by
curly brackets ‘{ }’. For example, {PW} prohibits Pro and Trp at this position (but permits any other
amino acid). ‘x’ accepts any amino acid at a given position and values in parentheses ‘( )’ define
sequence ranges. For example, ‘x(5,18)’ defines a sequence segment comprising 5 to 18 residues where
any amino acids are permitted at each position (for further details, see PROSITE accession number
PS00107). In the extended sequence signature, ‘x(150)’ denotes a sequence segment comprising 150
residue positions (where any amino acids are permitted at each position) added to the PROSITE
signature. In (b), the PROSITE-encoded ATP-binding region (blue) and the 150-residue extension
(magenta) are mapped on a ribbon representation of the catalytic domain of Abl kinase in complex
with an ATP site-directed inhibitor (Protein Data Bank ID 2HYY).
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So-defined sequence motifs of human kinases and inhibitors of these kinases were
extracted from ChEMBL [32] (version 29). The data curation process is summarized in
Figure 3. It ultimately yielded 225 kinases, with a total of 42,066 inhibitors at the highest
target confidence level (target confidence score: 9) and with pIC50 potency values of 6 or
larger. Pairs of 225 sequence motifs and corresponding PKIs were used as input and output
for Motif2Mol model derivation and validation, respectively. In addition, three qualifying
kinases (BTK, p38, and PLK1) and their inhibitors were exclusively used as test kinases for
model evaluation.
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Figure 3. Training and test data. A workflow diagram summarizes the curation of training and test
data from ChEMBL (cpds stands for ‘compounds’ and PKIs for ‘protein kinase inhibitors’).

2.4. Model Derivation

The Motif2Mol transformer architecture depicted in Figure 1 was implemented using
Pytorch [33] based on code available in the “Language Translation with NN.Transformer
and Torchtext” section of the Pytorch tutorial [34]. Sequence motif and SMILES tokens
were embedded in 512 dimensions, respectively. For the 225 kinases, all possible pairs of a
kinase sequence motif and corresponding PKIs were enumerated, pooled, and randomly
divided into training (80%) and validation (20%) data. Model training was carried out
over 100 epochs using a batch size of 32. The Motif2Mol model was trained on a NVIDIA
GeForce RTX 2080 Ti GPU for approx. three hours.

2.5. Generation of New Candidate Compounds

For the generation of new PKI candidate compounds, SMILES tokens were sampled
according to the learned probability distribution of the Motif2Mol transformer. To evaluate
the sampling characteristics and output of the Motif2Mol model based on training and
validation data, sampling runs were performed at temperature T = 1.0 until 100 unique
candidate compounds were generated for each kinase. Furthermore, to evaluate Motif2Mol
on test kinases, 1000 sampling runs were carried out at T = 1.0 modifying the probability
distribution for the sampling of the tokens [35]. The calculation time for 1000 sampling runs
for structure generation was ~4.7 min on an Intel Core i9-9900K CPU. Compound structures
generated using the Motif2Mol transformer were assessed using the following metrics.
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Validity was used as a metric to quantify the proportion of chemcially correct (valid)
structures among all generated SMILES strings. It is defined as the ratio Nvalid/Nall, where
Nvalid is the number of valid structures, as assessed using RDKit [36], and Nall the total
number of generated SMILES strings.

Maximum 1-nearest neighbor (1-NN) similarity (Equation (1)) and average 1-NN
similarity (Equation (2)) were calculated to compare the newly generated structures (set of
structures A) and existing inhibitors (set of structures B) of a target kinase.

1NN Simmax(A, B) = max
a∈A

(
max
b∈B

(Tc(a, b))
)

(1)

1NN Simave(A, B) =
1
|A| ∑

a∈A
max
b∈B

(Tc(a, b)) (2)

where Tc is the Tanimoto coefficient [37] and |A| represents the number of structures in set
A. The Tc was calculated using 2048-bit Morgan fingerprints of radius 3 [38] of structures a
and b.

2.6. Sequence Comparison

Sequence identity between two kinases was calculated via pairwise sequence align-
ment using the pairwise2 function implemented in BioPython [39] using BLOSUM62 [40] as
the scoring matrix.

3. Results and Discussion
3.1. Motif2Mol Model Evaluation and Performance

To establish proof-of-concept of the approach, a large-scale investigation on sequence
motifs and PKI data of 228 human kinases was carried out. The Motif2Mol transformer was
trained on 49,969 sequence motif/PKI pairs (80%). The trained model was then evaluated
using 12,493 sequence motif/PKI pairs (20% validation data). Figure 4a compares the
training and validation loss over 100 epochs, which accounts for the sum of errors over
all training and validation instances, respectively, after each iteration. Both training and
validation loss sharply decreased over the first iterations and became essentially constant
(validation loss) or nearly constant (training loss) at a low loss level after ~40 epochs. During
training, the loss further decreased slightly over the remaining epochs. The evolution of
training and validation loss over 100 epochs indicated that the Motif2Mol quickly reached
a high level of prediction accuracy. Validation loss remained constant and comparable to
training loss, hence providing no indications for potential model overfitting.

In Figure 4b, the 225 kinases are ordered according to decreasing numbers of available
PKIs, corresponding to decreasing volumes of training data, confirming that the number
of known inhibitors significantly varied among the large number kinases, as one would
expect. Accordingly, model derivation should become increasingly difficult as amounts
of training data decrease. Figure 4c reports the number of sampling runs required to
generate 100 unique valid compounds for each kinase arranged in the same order. For the
first 50 kinases with largest numbers of available training instances, only ~100 runs were
required and for most of the first 100 kinases, 200 or fewer runs. Then, the number of runs
gradually increased to ~400. For the ~100 kinases with the smallest amounts of available
training data, only a few outliers with much larger numbers of runs were observed, but
also a number of kinases for which only less than 200 sampling runs were required. Taken
together, these observations not only revealed an expected (moderate) loss of structure
generation frequency for decreasing amounts of available training data, but also an overall
stable structure generation capacity for the Motif2Mol model.
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Figure 4. Evaluation of the Motif2Mol model based on training and validation data. (a) shows
learning curves with training and validation losses over 100 epochs, (b) the number of known
inhibitors of each of the 225 kinase targets (with kinase identifiers (IDs) arranged in the order
of decreasing numbers of available PKIs), (c) the number of sampling runs required to generate
100 unique candidate compounds for each kinase, (d) the proportion of valid SMILES strings produced
over all sampling runs, and (e) the average (ave) and maximal (max) 1-NN similarity of the 100 newly
generated compounds compared to known inhibitors of each kinase.

3.2. Validity of Generated Molecular Representations

In addition to studying learning curves and structure generation frequency, analyzing
the validity of generated molecular representations (see Section 2.5) represented another
relevant measure of model performance. Figure 4d reports the proportion of valid SMILES
representations among all SMILES strings generated using the Motif2Mol model over all
sampling runs for all ordered kinases. With the exception of a few outliers among kinases
with smallest numbers of training compounds, the quality of molecular representations
generated using the Motif2Mol model was generally high (the calculations essentially failed
for only a single kinase). For the first 100 kinases, consistently more than 80%, and often
close to 100%, of the generated SMILES strings were valid (with only one exception). For
the next 100 kinases, the proportion of valid SMILES only slightly decreased, and even for
the majority of kinases with the smallest numbers of training compounds, the proportion
of valid SMILES strings remained at or close to the 80% level.

3.3. Similarity Analysis

We then systematically determined the similarity of newly generated Motif2Mol
compounds to PKIs. The results reported in Figure 4e reveal another clear trend for average
nearest neighbor similarity. For ~70 kinases with largest amounts of available training
data, the average 1-NN similarity between newly generated and known compounds was
consistently high, at or above the 80% level, and then monotonically decreased with
decreasing amounts of training data to less than 20% for kinases with the fewest training
instances. The correlation between decreasing average similarity and decreasing amounts
of training data indicated that the ability of the transformer to produce structures with
varying levels of similarity to known compounds could be controlled by adjusting the
number of training instances; an interesting feature for model derivation and tuning. The
ability of the Motif2mol model to generate increasingly similar or diverse structures relative
to known compounds can be easily monitored based on average nearest neighbor similarity
calculations, as shown in Figure 4e. The average 1-NN similarity of 100 newly generated
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structures to known PKIs tended to decrease with decreasing numbers of PKIs (for each
of the first 50 kinases, more than 300 known PKIs were available and for each of the last
50 kinases, less than 15 known PKIs). Statistically, the average 1-NN similarity between
a constantly sized set of candidate compounds and increasing numbers of known PKIs
is likely to increase. This is the case because for each new structure, increasing numbers
of reference compounds are available for pairwise comparison that do not represent a
structurally diverse sample but tend to be similar (since they are active against the same
target). This statistical tendency is observed in Figure 4e. However, potential contributions
of training bias due to increasing numbers of related PKIs that might limit the diversity of
newly generated structures can principally not be excluded.

Furthermore, maximal nearest neighbor similarity calculations revealed that new
structures with 100% fingerprint similarity to known inhibitors were generated for all
kinases, regardless of the amounts of available training data (giving rise to the apparent
horizontal red bar at the top of Figure 4e that is formed by adjacent diamond symbols).
We note that 100% fingerprint similarity defines pairs of identical or nearly identical
compounds. Thus, the Motif2Mol transformer consistently reproduced known PKIs across
the 225 kinases for both training and validation data.

3.4. Predictions for Test Kinases

The ability of a generative model to reproduce known active compounds such as
PKIs represents the best possible criterion for model performance prior to prospective
applications. Therefore, in addition to training and validation sets of sequence motif/PKI
pairs, the Motif2Mol model was also applied to predict candidate PKIs of three test kinases
in independent trials that were not encountered during the training or validation phase.
The test kinases included the popular drug targets BTK, p38, and PLK1 that were selected
based on varying global sequence identity to training set kinases.

For BTK, the Motif2Mol model generated 258 unique candidate compounds covering
a wide range of 1-NN similarities to known BTK inhibitors, ranging from distinct structures
(10–20% similarity) to identical structures (Figure 5a). BTK displayed a sequence identity
of 50–70% to four training set kinases (Figure 5b). The Motif2Mol model exactly repro-
duced 44 known BTK inhibitors (Figure 5a). Representative examples of new candidate
compounds and known BTK inhibitors are shown in Figure 5c. For p38, the model sampled
298 candidate compounds that also covered a wide range of 1-NN similarities to known
PKIs (Figure 6a). Kinase p38 displayed 60% to more than 80% sequence identity to three
training set kinases (Figure 6b). The model reproduced 20 known p38 inhibitors. Represen-
tative examples are shown in Figure 6c. For PLK1, a total of 538 candidate compounds were
obtained that were mostly dissimilar to known inhibitors (Figure 7a). For PLK1, no training
set kinase with more than 50% sequence identity was available (Figure 7b). More than
500 candidate compounds were successfully sampled in this case, and one of 275 known
PLK1 inhibitors was exactly reproduced, as shown in Figure 7c. Hence, for all three test
kinases, the Motif2Mol model successfully reproduced known PKIs, indicating its capacity
to predict active compounds based on sequence motifs.

Taken together, the findings discussed above show that the Motif2Mol model con-
sistently reproduced known PKIs for all 225 training/validation kinases and three test
kinases not encountered during the training and validation phase. Thus, the results provide
substantial support for the ability of the Motif2Mol model to generate new specifically
active compounds.
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Figure 5. Evaluation of the Motif2Mol model based on BTK test data. (a) shows the distribution of
1-NN similarities of 258 unique candidate compounds generated in 1000 sampling runs compared to
1382 known BTK inhibitors, (b) the distribution of sequence identities of BTK compared to 225 training
kinases, and (c) exemplary newly generated compounds and the most similar known BTK inhibitors
(with ChEMBL IDs). For each pair of newly generated compounds and PKIs, the fingerprint Tanimoto
similarity value is reported. In addition, the “Comp x” label gives the position of the compound pair
in the ranking of Motif2Mol candidate PKIs according to its maximal nearest neighbor similarity to
known inhibitors.
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Figure 6. Evaluation of the Motif2Mol model based on p38 test data. (a) shows the distribution of
1-NN similarities of 298 unique candidate compounds generated in 1000 sampling runs compared to
1808 known p38 inhibitors, (b) the distribution of sequence identities of p38 compared to 225 training
kinases, and (c) exemplary newly generated compounds and the most similar known p38 inhibitors,
represented according to Figure 5c.
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1-NN similarities of 538 unique candidate compounds generated in 1000 sampling runs compared
to 275 known PLK1 inhibitors, (b) the distribution of sequence identities of PLK1 compared to
225 training kinases, and (c) exemplary newly generated compounds and the most similar known
PLK1 inhibitors, represented according to Figure 5c.

4. Conclusions

In this work, we have addressed the design of new active compounds from protein
sequence data by considering this design effort as a machine translation task. Accordingly,
machine learning was used to transform amino acid sequences into different sequences of
tokens representing chemical structures. Therefore, a transformer network was derived
to associate sequence motifs of binding site regions in target proteins with textual ligand
representations and predict new candidate compounds from sequence motifs. For estab-
lishing proof-of-concept, the pilot version of the Motif2Mol transformer was implemented
exclusively using public domain programs and available code [33,34,36], as specified above,
making it fully reproducible based on the methodological information provided herein. In
a large-scale proof-of-concept application, this biochemical language model was applied to
inhibitors of a total of 228 human protein kinases. The Motif2Mol model exhibited favorable
learning characteristics with closely corresponding training and validation loss, reflecting
a high level of accuracy and consistent generation of valid compound representations
for varying amounts of available training data. We reasoned that reproduction of known
inhibitors of different kinases represented a rigorous criterion for model validation, taken
into consideration that it is typically difficult to exactly reproduce known active compounds
using generative models. An underlying reason for this is the vastness of chemical space
surrounding islands of compounds with activity against given protein targets or families.
Importantly, however, the Motif2Mol model consistently reproduced varying numbers of
known inhibitors for all investigated kinases, including test kinases not encountered during
training and initial validation. Taken together, the findings reported herein suggest that the
prediction of novel active compounds from sequence motifs of pharmaceutical targets via
language models complements and further extends structure and ligand similarity-based
approaches currently used in drug design. Having established proof-of-concept for the
approach in the current investigation, subsequent Motif2Mol applications will focus on
compound design for other pharmaceutical target classes. Notably, this might require the
design of new or further refined sequence motifs for active sites or ligand binding sites in
different targets. Defining such sequence motifs generally depends on prior knowledge
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of active or ligand binding sites as well as compound binding or inhibition characteristics
and can thus be challenging. On the basis of these studies and depending on their results,
further methodological refinements of the Motif2Mol approach can be considered.
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