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Abstract: Selenium is a trace mineral that is essential for health. After being obtained from food and
taken up by the liver, selenium performs various physiological functions in the body in the form
of selenoproteins, which are best known for their redox activity and anti-inflammatory properties.
Selenium stimulates the activation of immune cells and is important for the activation of the immune
system. Selenium is also essential for the maintenance of brain function. Selenium supplements can
regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating
effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk
of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of
type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems
beneficial to some extent; however, existing studies have not fully explained the influence of selenium
on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful
effects of selenium supplementation in various diseases.

Keywords: selenium; selenoprotein; oxidative stress; immune system; brain function; cardiovascular
disease; cancer; type 2 diabetes; heavy metals

1. Introduction

Trace elements play an important role in maintaining fundamental physiological
functions [1]. Selenium (Se) is a trace element first discovered in 1817 by the Swedish
chemist, Jöns Jacob Berzelius. Originally, selenium was considered a naturally occurring
toxicant [2]; however, this view changed following the unexpected discovery that selenium
prevented liver necrosis in rats by Schwarz and Foltz in 1957 [3]. Since then, the perception
of selenium as a health threat has changed. In fact, selenium began to be viewed as
an element beneficial to health. Selenium from food exerts its physiological role by co-
translationally incorporating many proteins as components of the amino acid selenocysteine
(Sec) [4]. Notably, selenium provides selenoprotein molecules with a range of redox
properties that maintain redox homeostasis [5,6].

2. Selenium Intake

The total amount of selenium in humans is approximately 3–20 mg. As an essential
mineral micronutrient, selenium is mainly obtained from foods, such as cereals, meat, fish,
and eggs [7]. Generally, selenium concentrations vary from food to food, and animal-based
foods > vegetables > cereals > fruits. Cereals are the main source of selenium; however,
their selenium content is relatively low, ranging from 0.01 to 0.55 µg/g. The selenium
content is between 0.08 and 0.7 µg/g in animal-based foods and less than 0.1 µg/g in
vegetables and fruits. Brazil nuts are the most abundant source of dietary selenium, with
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selenium levels up to 512 g/g [8]. Soil is the main source of selenium in plants. Soil
total selenium content below 0.1 mg/kg is considered selenium deficient, 0.2–0.3 mg/kg
is generally selenium deficient, and more than 0.4 mg/kg is selenium enriched [9]. The
bioavailability of plants to different forms of selenium in soil varies, and selenate > organic
selenium > selenite > selenium > selenide. In addition, the uptake of selenium by plants
is also influenced by soil pH, redox conditions, microbial activity, and organic matter, but
these aspects will not be covered in detail here. The World Health Organization (WHO)
recommends a selenium intake level of 55 µg/day for adults, with the tolerable upper limit
set at 400 µg/day. Moderate selenium intake and a balanced diet are critical to maintain.

The form of selenium in food affects its absorption by humans. Generally, dietary sele-
nium exists as organic selenium compounds, selenate, and selenite, with a bioavailability
of 70–95% [10,11]. Selenoamino acids often have higher bioavailability than inorganic sele-
nium [12], and selenium in plant foods is more bioavailable than that in animal foods [11].
Selenomethionine (SeMet), the chief nutritional form of selenium, cannot be synthesised
by higher organisms. The synthesis of SeMet relies on plants and fungi [13]. Approxi-
mately 90% of the selenium in plants is present as SeMet. The bioavailability can reach
95–98% [14,15]. Selenocysteine (Sec) is another organic selenium compound derived mainly
from animal foods. Inorganic selenium mainly accumulates in plants via the sulphur assim-
ilation pathway but is also present in water. Selenates and selenites ingested by humans
are eventually converted to SeMet.

3. Selenoproteins

Selenium from food is taken up and present in humans in the natural organic forms
of selenocysteine and selenoprotein. They are stored in different organs and tissues: 30%
in liver, 30% in muscle, 15% in kidney, 10% in plasma, and 15% in other organs [16]. The
selenium concentration in liver reflects intestinal absorption levels. The liver synthesises
selenoprotein P (SELENOP), which enters the bloodstream and supplies selenium to other
tissues and organs [17–19]. The biological effects of selenium are primarily mediated by
selenoproteins [20]. Almost all selenoproteins contain single Sec residues at their enzyme
active sites [21], which are essential for their activity. Sec, the 21st naturally occurring,
genetically coded amino acid, is a sulphur-to-selenium substituted variant of cysteine
(Cys) [22]. Selenium and sulphur belong to the same group. Therefore, Sec and Cys exhibit
similar chemical properties and participate in similar chemical reactions [23]. However,
compared with Cys, Sec has higher nucleophilicity [24], oxidation susceptibility, and acidity,
which is mainly reflected in its relatively lower pKa (5.2) [25,26]. Therefore, most side-chain
selenols can be deprotonated at biological pH, and Sec is reactively superior to Cys [27,28].

In humans, Sec is the only naturally occurring amino acid that lacks a cognate
aminoacyl-tRNA synthetase. Thus, Sec requires a specific biosynthetic pathway [29]
(Figure 1). First, under the catalysis of seryl-tRNA synthetase (SerRS), selenocysteine-
specific tRNA (tRNASec) binds with Ser to form Seryl-tRNASec, which is subsequently
converted to Sec-tRNASec by O-phosphoseryl-tRNASec kinase (PSTK) and selenocysteine
synthase [30,31]. Sec-tRNASec can ligate to Sec insertion sequence-binding protein 2 (SBP2),
which specifically recognises the stop codon UGA [32,33]. This process requires the partici-
pation of the Sec insertion sequence (SECIS) element in the 3’ untranslated region of the
mRNA to decode the UGA codon as Sec [34,35]. Finally, under the interaction of SECIS
and SBP2, Sec is delivered to the ribosome and co-translationally inserted into nascent
polypeptide chains [20].
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recognised by the UGA codon under the decoding action of SECIS. 

A total of 25 selenoprotein genes have been described in humans, and most of these 
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glutathione peroxidase (GPX) and thioredoxin reductase (TxnRd) families are involved in 
cellular antioxidative defense systems and the maintenance of intracellular redox states to 
maintain cell viability [38,39] (though see below). These families often function in parallel 
in humans. The three iodothyronine deiodinases (Dio1,2,3) are selenoproteins with 
developmental-, cell-, and pathology-related expression patterns. Dio1 and Dio2 
participate in the production of the active thyroid hormone T3 [40], while Dio3 contributes 
to the generation of the inactive rT3 and T2. Human SELENOP is a monomeric 
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distinguishes it from other selenoproteins. Therefore, SELENOP, a selenium transport 
protein, accounts for approximately 40% of the total selenium concentration in human 
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properties and is associated with the protection of endothelial function. SELENOP binds 
heparin and participates in insulin resistance. Selenoprotein S is associated with 
inflammatory responses and endoplasmic reticulum stress [42,43]. Selenoproteins W 
(SELENOW) and N participate in muscle development and maintenance [44,45]. 
However, the functions of many selenoproteins have not been fully elucidated and require 
further investigation. Selenium functions as a redox centre in these selenoproteins. 
Therefore, a deficiency in the trace element selenium can cause several disorders. 

  

Figure 1. Selenium from food is transformed in the liver and inserted into polypeptide chains, and the
liver synthesises SELENOP to supply selenium to the whole body. Selenide is first phosphorylated,
then transferred to the ribosomal A site under the recognition of SBP2, and finally recognised by the
UGA codon under the decoding action of SECIS.

A total of 25 selenoprotein genes have been described in humans, and most of these
genes encode redox enzymes [36,37]. Selenoproteins are distributed in different organs and
tissues, and have different substrate specificities and functions (Table 1). The glutathione
peroxidase (GPX) and thioredoxin reductase (TxnRd) families are involved in cellular
antioxidative defense systems and the maintenance of intracellular redox states to maintain
cell viability [38,39] (though see below). These families often function in parallel in humans.
The three iodothyronine deiodinases (Dio1,2,3) are selenoproteins with developmental-,
cell-, and pathology-related expression patterns. Dio1 and Dio2 participate in the pro-
duction of the active thyroid hormone T3 [40], while Dio3 contributes to the generation
of the inactive rT3 and T2. Human SELENOP is a monomeric glycoprotein containing
10 selenocysteine residues, an important feature that distinguishes it from other seleno-
proteins. Therefore, SELENOP, a selenium transport protein, accounts for approximately
40% of the total selenium concentration in human plasma and can bind to specific recep-
tors on cell membranes to deliver selenium to other cells, such as low-density lipoprotein
receptor-related protein 8 (LRP8) and megalin receptors on kidney proximal tubule epithe-
lial cells [17,41]. SELENOP also has redox properties and is associated with the protection
of endothelial function. SELENOP binds heparin and participates in insulin resistance.
Selenoprotein S is associated with inflammatory responses and endoplasmic reticulum
stress [42,43]. Selenoproteins W (SELENOW) and N participate in muscle development
and maintenance [44,45]. However, the functions of many selenoproteins have not been
fully elucidated and require further investigation. Selenium functions as a redox centre
in these selenoproteins. Therefore, a deficiency in the trace element selenium can cause
several disorders.
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Table 1. The functions of 25 selenoproteins and their health effects.

Function Health Effects

GPX1 Antioxidant activity; reduce
cellular H2O2.

Cancers [46]; chondrogenic
differentiation [47]; T2DM [48];
depression [49]; Keshan disease [50];
cataracts [51]; macular degeneration [52].

GPX2

Antioxidant activity, protect the
mucosa of the gastrointestinal
tract and various endothelial cells
from oxidative damage.

Cancers [53]; intestinal inflammation [54].

GPX3 Reduce lipid hydro peroxides and
H2O2.

Cancers [55]; myocardial fibrosis [56];
ventricular remodeling [57].

GPX4

Antioxidant activity; decrease
phosphatidylcholine
hydroperoxide; suppress cellular
ferroptosis.

Osteoarthritis [58]; cancers [59];
cardiomyopathy [60];
ischemia-reperfusion injury [61]; brain
function [62].

GPX6 Not known. Huntington’s disease [63].

TXNRD1
Antioxidant activity; regenerate
thioredoxin; suppress cell
ferroptosis.

Idiopathic pulmonary arterial
hypertension [64] hepatocellular
carcinoma [65]; osteoarthritis [66]; genetic
generalized epilepsy [67]; Keshan
disease [50].

TXNRD2 Regenerate thioredoxin; regulate
cell proliferation and apoptosis.

Primary open-angle glaucoma [68]; CVDs
[69,70]; cancers [71]; glaucoma [72].

TXNRD3 Antioxidant activity; suppress
pyroptosis.

Male reproduction [73]; colitis and
carcinogenesis [74].

DIO1 Activate T3.
Thyroid hormone metabolism [75];
inhibit hepatosteatosis [76]; renal
cancer [77].

DIO2 Activate T3. Osteoarthritis [78]; obesity [79]; mental
retardation [80].

DIO3 Inactivate T3. Osteoarthritis [81]; brain development
[82]; sepsis and septic shock [83].

MSRB1
Antioxidant activity;
anti-inflammatory effect; regulate
immune responses.

Hepatocellular carcinoma [84];
inflammatory response [85].

SEPHS2 Sec synthesis. Cancers [86].

SELENOF

Immunomodulation; regulate
glycogenolysis and lipogenesis;
participate in vitamin A
metabolism.

Cancers [87]; glucose metabolism
disorder [88].

SELENOH Regulate cell cycle progression
and proliferation. Colorectal cancer [89].

SELENOI

Critical enzyme in the central
nervous system; T cell activation;
neural development; plasmalogen
maintenance.

Hereditary spastic paraplegia 81 [90].

SELENOK

Oxidation resistance; Ca2+ flux
regulation; immune regulation;
apoptosis regulation; suppress
cellular ferroptosis.

AD [91]; cervical cancer [92].
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Table 1. Cont.

Function Health Effects

SELENOM Glucose metabolism; Ca2+ flux
regulation; apoptosis regulation.

Glioblastoma [93]; non-alcoholic fatty
liver disease [94]; synaptic deficits and
cognitive dysfunction [95].

SELENON Muscle development; calcium
haemostasis. Myopathies [96].

SELENOO Not known. Thyroid cancer [97].

SELENOP

Antioxidant activity; maintain
neuronal activity; transport
selenium to tissues; regulate
pancreatic β cell function.

Cancers [98–100]; seizures and ataxia
[101]; CVDs [102].

SELENOS
Regulate inflammation; induce ER
stress apoptosis; immune
regulation.

Hashimoto’s thyroiditis [103];
CVDs [104].

SELENOT

Promote nerve regeneration; Ca2+
flux regulation; apoptosis
regulation; maintain endoplasmic
reticulum homeostasis; regulate
glucose and lipid metabolism.

Glioblastoma [105]; AD [106]; CVDs
[107].

SELENOV

Regulate glucose and lipid
metabolism; prevent endoplasmic
reticulum stress and oxidative
injury; maintain male
reproduction.

Not known.

SELENOW

Oxidation resistance; regulate
bone metabolism; support
erythroblast development; muscle
development.

Osteoporosis [108]; anemia [109].

4. Health Effects of Selenium and Selenoproteins

The unique biological characteristics of the trace mineral selenium make it indis-
pensable for health. Although selenium is present at very low levels in the human body,
selenium deficiency can cause dysfunction in various systems. Selenium cannot be synthe-
sised in the human body and is mainly obtained from food. The physiological function of
selenium is mainly reflected in selenoproteins, which have excellent efficacy in resisting
oxidative stress, inflammation, and other adverse factors. Appropriate supplementation of
selenium can not only activate the immune system but also affect brain function, cardio-
vascular diseases (CVDs), cancer, and heavy metal-based illness. Although studies have
suggested that high selenium levels have negative effects on some specific diseases such as
type 2 diabetes mellitus (T2DM), further exploration of selenium is still beneficial and may
provide new ideas for the treatment of various diseases.

4.1. Oxidative Stress

Redox homeostasis is the basis for maintaining life activities. Oxidative stress mani-
fests as an imbalance between the cellular oxidative and antioxidant systems. This imbal-
ance is mainly reflected in the production of large amounts of reactive oxygen species (ROS)
that exceed the scavenging capacity of antioxidant defense systems, ultimately leading
to structural and functional damage to DNA, lipids, and proteins. The mitochondria are
considered a major source of ROS, and excessive ROS can cause structural damage to the
mitochondria. Hydroperoxides, especially hydrogen peroxide (H2O2), serve as the major
ROS in redox regulation, and are responsible for cell signaling, enzymatic reactions, energy
metabolism, and cell cycle. However, superabundant hydroperoxides result in unspecific
proteins oxidation and biomolecules damage. The removal of hydroperoxides relies on
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efficient reducing systems. Selenium acts as a critical antioxidant in affecting various tissues
and cells and contributes to the removal of ROS, especially the removal of hydroperoxides.
This effect has been reported in the heart [110], liver [111], kidneys [112], thyroid [113],
and brain [114] (the mechanism is described later). In addition, the antioxidant effect of
selenium may be responsible for its resistance to inflammation, apoptosis, and autophagy.

The defense of selenium on ROS is primarily mediated by selenoproteins, which
have redox activity and can catalyse the reduction of hydroperoxides by thiols; however,
some differences exist in their substrate specificity. The best known are the GPXs and the
thioredoxin (Trx) system, which are the main members of the antioxidant system. Five of
the eight human GPXs are selenoproteins, and their active site contains a Sec, while the
active site of other three is cysteine. However, the catalytic efficiency of GPXs is conspicuous
irrespective of their substrate or active site. The active site of GPXs contains a conserved
tetrad formed by peroxidatic Sec, glutamine, tryptophan, and asparagine [115]. The Sec
residue can be oxidised by hydroperoxides and forms selenenic acid or a selenenylamide
intermediate. These intermediates will be reduced back to selenate soon by thiol [116].
Due to the high reactivity of Sec residues, GPXs react on H2O2 with high second-order
rate constants, which helps to reduce the cellular H2O2 concentration. GPX1 was the first
mammalian selenoprotein to be identified and is the most abundantly expressed GPX.
GPX1 is present in the mitochondria and cytoplasm. GPX1 utilizes glutathione (GSH)
to reduce hydroperoxides and is highly sensitive to selenium levels. GPX2 has similar
substrate specificities to GPX1 and is mainly found in the mucosa of the gastrointestinal tract
and various endothelial cells [117]. GPX2 maintains mucosal homeostasis and regulates
intestinal regeneration. The expression of GPX2 was only found to be downregulated in
patients with severe selenium deficiency [118]. GPX3 is an extracellular glycoprotein that
accepts the oxidation of GSH, Trx, and glutaredoxin and is present at high levels in white
and brown adipose tissues [119]. GPX4 is found to be the only isoform which can decrease
phosphatidylcholine hydroperoxide [120]. It is present in the mitochondria and cytoplasm;
however, only the mitochondrial form of GPX4 protects cells from oxidative stress. GPX6
is a close homologue of plasma GPX3 and is expressed in the embryonic and olfactory
systems. Not enough is known about GPX6 yet.

The thioredoxin system is composed of nicotinamide adenine dinucleotide phosphate
(NADPH), Trx, and thioredoxin reductase (TXNRD). Trx and TXNRD provide a coupled
redox system required for redox reactions. The thioredoxin system prevents oxidative
damage to cells and maintains redox homeostasis. Trx exerts its antioxidant activity by
transferring electrons to thioredoxin peroxidases and reducing oxidised Cys disulphide
or Cys-SOH in proteins to thiols. Trx can also participate in shaping intracellular H2O2
gradients. TXNRD belongs to the pyridine nucleotide disulphide oxidoreductase family of
enzymes and can reduce the oxidised form of Trx using NADPH as a co-substrate. Three
TXNRD isoforms have been identified in mammals: cytosolic (TXNRD1), mitochondrial
(TXNRD2), and thioredoxin glutathione reductase (TXNRD3). The Trx system performs
its antioxidant functions by reducing methionine sulfoxide reductases and ribonucleotide
reductases. This system also regulates the activity of redox-sensitive transcription factors
(especially AP-1 and NF-κB). The antioxidant properties of the Trx system indicate its vital
contribution to the antioxidant defense system and the maintenance of cell homeostasis.

4.2. Immune System

Numerous studies have suggested that selenium supplementation enhances the im-
mune response to various harmful conditions. Selenium supplementation is involved in
both innate and adaptive immunity [121–124]. Based on existing research, the selenium
supplement is mainly considered as an immunomodulator as it has regulatory effects on
various immune cells [125–127] (Figure 2). Prior results provide important insights into the
mechanisms by which selenium affects immunity.
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Figure 2. The role of selenium in the immune system. Selenium regulates the viability of NK cells,
macrophages, DCs, granulocytes, mast cells, and microglia in innate immunity. Selenium affects
the proliferation and differentiation of T cells, and regulates B cell differentiation and viability by
affecting Tfh cells and 5-lipoxygenase activity.

4.2.1. Innate Immunity

The immunostimulatory effect of selenium is applicable even in individuals with
sufficient selenium. A daily supplement of 200 µg selenium to selenium-replete US patients
for 8 weeks increased the lytic activity of NK cells, as selenium could regulate the expres-
sion of NK cell inhibitory receptor CD94/Natural Killer G2A (NKG2A) [128]. Compared
with baseline, individuals replenished with selenium showed an 82.3% increase in NK
cell activity [127,129]. Selenium exhibits special regulation on macrophages. Mice fed
with both selenium-enriched and selenium-deficient diets were found to have a faster
resolution of inflammation in the Se-enriched group. Macrophages can be activated and
eventually differentiate into the classical M1 and the alternative M2. Selenium regulates
the polarization of macrophages towards the anti-inflammatory M2 phenotype, and reduce
the pro-inflammatory M1 phenotype. Selenium can also decrease the secretion levels of
pro-inflammatory cytokines such as iNOS, IL-1β, IL-10, PTGe, and NF-Kb [130]. The effects
of selenium on dendritic cells (DCs) are multifaceted. A mediate selenium supplement
contributes to keeping balance between phagocytic ability and migration capacity of im-
mature DCs. It also contributes to the chemotactic migration of mature DCs. Selenium
regulates the subsets of DCs. It is reported that a selenium supplement is able to reduce the
proportion of activated DCs while increasing tolerogenic DCs [126,131]. As a constituent of
selenoproteins, selenium is integral for the proper functioning of neutrophils. Their effects
depend to a great extent on their ability to activate membrane-associated nicotinamide
adenine dinucleotide phosphate oxidase 2 (NOX2), which is essential for the microbicidal
activity of neutrophils [132]. Selenoproteins, especially GPX1, are probably involved in
the regulation of ROS-dependent neutrophil extracellular traps (NETs) through affecting
cytoplasmic and mitochondrial ROS accumulation [122]. Selenium deficiency was reported
to impair the bacterial killing ability of mouse neutrophils during in vitro tests [133]. These
things considered, selenium could protect mast cells, eosinophils, and basophils from
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ROS [125], thus regulating their proliferation, differentiation, and recruitment [134]. It was
found to reduce mast cell infiltration in ischemia-reperfusion injury [135,136]. Mast cells
pre-treated with selenium selenite are related to less mediator release [137]. Regression of
eosinophilic enteritis and eosinophilia was reported in selenium-deficient rats when fed a
selenium-supplemented diet for 4–5 weeks [138]. Basophils in selenium-deficient rats have
35% of control of phospholipid hydroperoxide GPXs activity and <1% of control of GPXs
activity. A selenium supplement helps to reverse these changes [139]. Selenium eliminates
the ROS-induced microglial cells migration [140]. It increases the GPXs and TXNRD levels
to prevent the transcription of pro-inflammatory cytokines such as IL-1ß and iNOS [141].

4.2.2. Adaptive Immunity

T cell selenoprotein-deficient mice displayed moderate to severe atrophy of the lymph
nodes, thymus, and spleen, with a 50–80% reduction in cellularity [142]. Generally, TCRs
are coupled to multiple intracellular signaling molecules, and T cells are stimulated by
TCR/CD3 complexes [143,144]. This process is accompanied by the rapid production of
ROS and increased expression of IL-2, which exert a feedforward and autocrine effect on
the proliferation of T cells [145,146]. The function of selenium is related to the capacity of
the selenium to enhance the expression of the alpha (p55) and/or beta (p70/75) subunits of
the growth regulatory lymphokine interleukin-2 receptor (IL-2R), thereby promoting their
interaction with interleukin-2 and ultimately increasing the rate at which cells proliferate
and differentiate into cytotoxic cells [147,148]. Selenium can enhance the stimulation of Ca2+

mobilization in T cells and inhibit the ROS-mediated inhibition of T cell activation [149,150].
Selenium may also eliminate age-related defects in lymphocytes from elderly hosts in
response to stimulation via proliferation and differentiation into cytotoxic effector cells [151].
A previous study found that a daily dose of 100 µg of yeast selenium to elderly patients
in institutions increased their lymphocyte response to pokeweed mitogen [152,153]. In a
case-control study of 32 patients with Crohn’s disease and low concentrations (<80 µg/L)
of serum selenium, excessive Th1-cell-mediated immune responses in the colon were
significantly inhibited when sodium selenite was administered orally at a dose of 360 µg/d
for 8–10 weeks [126]. Such findings suggest that a selenium supplementation enhances T
cell viability by promoting the differentiation of CD4+ T cells into T-helper-1 (Th1) cells,
leading to higher interferon-gamma and CD40 ligand levels [154,155]. Th1 cells drive
the type-1 pathway, effectively defending against intracellular pathogens and stimulating
delayed-type hypersensitivity (DTH) skin reactions [156,157]. In a 48 week randomised
controlled trial of healthy North American men, volunteers who took 300 µg of high-
selenium yeast daily increased their blood selenium concentration by 50% and had a
normal DTH skin response, while those who took low-selenium yeast exhibited anergy
in DTH skin responses [157]. The same results were found when patients with intrinsic
asthma were supplemented with selenium [158].

T follicular helper (Tfh) cells are a specialized subset of CD4 + T cells. They play an
essential role in the formation of germinal centres (GCs), which are the site where B cells can
differentiate into memory B cells and antibody-secreting plasma cells. GPX4 was confirmed
to protect Tfh cells from ferroptosis [159], thus enhancing GC reaction. This explains part of
the effect of selenium on B cells. Selenoenzymes are also reported to suppress the activity
of cellular 5-lipoxygenase in B cells to protect them from oxidative stress [160]. Insufficient
or excessive selenium reduces the number of peripheral B cells and B cells in the spleens of
mice [161,162].

4.3. Brain Function

Brain metabolism is highly dependent on selenium levels. The selenium content of the
human brain is approximately 90–110 ng/mg wet weight, which is lower than that of the
liver. However, when selenium is depleted, brain selenium levels are maintained. These
findings demonstrate the significance of selenium in brain function. SELENOP, glutathione
peroxidase 4 (GPX4), and SELENOW are the three most highly expressed selenoproteins in
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the brain, implying that they probably play important roles in brain function (Figure 3).
Selenium deficiency can cause irreversible brain injury.
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Selenium deficiency can lead to neurological and motor disorders. Plasma selenium
levels and erythrocyte GPXs activity are significantly reduced in patients with Alzheimer’s
disease (AD) [163,164]. Accordingly, exogenous selenium supplementation has been found
to mitigate neurodegeneration and reverse memory deficits in an AD model [165,166].
Parkinson’s disease (PD), a neurodegenerative disease characterised by the dysregulation
of motor control, has been found to correlate with selenium levels [167,168]. Selenium
reduces bradykinesia in a rat model of PD [169]. Patients with epilepsy usually have lower
serum selenium levels than healthy individuals [170–172].

4.3.1. Selenoprotein P

The brain can ingest SELENOP from the plasma to acquire selenium. Selenoproteins
do not enter the blood–brain barrier and individual cells directly, but are transmembrane
via endocytosis of the LRP family receptors, especially LRP8 [173,174]. However, the
administration of a selenium-supernutritional diet to Sepp1 knockout mice was found to
prevent brain dysfunction, suggesting that plasma SELENOP is not the only route for the
brain to obtain selenium, and selenite can be a direct or indirect source of selenium in the
brain. Plasma SELENOP levels were almost undetectable in hepatic SELENOP conditional
knockout mice, indicating that almost all plasma SELENOP was secreted by the liver.
Interestingly, selenium was still incorporated into the brain, and no significant impairment
of brain function was observed in SELENOP conditional knockout mice [175]. In contrast,
the brain failed to maintain normal function when SELENOP was completely knocked out
in mice [176], and the protein levels of two other selenoproteins, GPX4 and SELENOW,
were decreased in SELENOP knockout mice. These results confirm that local SELENOP,
but not plasma SELENOP, is essential for maintaining brain function, and SELENOP can
be stored and recycled in the brain, forming the SELENOP cycle. In addition to being
obtained from the blood plasma, astrocytes in the brain may also produce and secrete
SELENOP [177].

SELENOP deficiency is associated with neurological deficits and impaired motor
functions. It is expressed in over 90% of the brain region at high levels. SELENOP
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was the first selenoprotein associated with synaptic signaling. Numerous studies have
demonstrated that SELENOP promotes neuronal activity and the thalamus, brainstem, and
hippocampal neurogenesis are adversely affected when it is under-expressed [17,178,179].
Notably, ataxic manifestations were observed in SELENOP knockout mice [101].

4.3.2. Glutathione Peroxidase 4

GPX4 is a selenoprotein essential for neuronal activity and is found in the nucleus,
mitochondria, and cytoplasm. GPX4 is a key molecule in the inhibition of cellular ferrop-
tosis [180,181], and its redox properties contribute to the maintenance of mitochondrial
function and inhibition of apoptosis. GPX4 has shown great importance in the brain and in
life. Neuronal GPX4-specific knockout was found to be lethal in newborn mice, and was
associated with a very high protein abundance during perinatal brain development, which
decreased after birth [182]. Neuron-specific inactivation of GPX4 in adult mice leads to
massive neurodegeneration, as inhibitory interneurons expressing parvalbumin (PV) are
extremely GPX4-sensitive, and PV+ neurons account for 60% of all GABAergic neurons in
the somatosensory cortex [183,184]. GPX4 deficiency will make neural activity maintenance
difficult and can lead to cerebellar atrophy [185,186]. PD and AD have been found to
correlate with GPX4 levels [187–189].

4.3.3. Selenoprotein W

Among all selenoproteins, SELENOW was found to be expressed at the highest level in
the brain and exhibit representative redox activity. SELENOW is expressed at significantly
higher levels in the brain of postnatal mice [190,191], suggesting that it may be strongly
linked to neuronal development. Although the exact biological function of SELENOW
has not been explored, its high protein levels imply that it may play an important role in
the brain.

4.4. Cardiovascular System

Selenium is associated with the incidence of CVDs. The earliest evidence of this
association is due to Keshan disease, an endemic adolescent disease characterised by car-
diomyopathy, which is prevalent in some parts of China with low-selenium soils [192].
Subnormal whole-blood and serum selenium concentrations have been reported in pa-
tients with Keshan disease, and selenium supplementation is beneficial for improving this
condition [193]. Since then, more cardiovascular effects of selenium have been reported
(Figure 4).
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In a prior report, plasma selenium concentrations were measured using fluorimetry in
91 hospitalised patients. Based on the results, a significant negative association was found
between plasma selenium levels and the severity of coronary atherosclerosis [194]. Animal
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experiments have also revealed that oral selenium supplementation can reduce the area
and degree of atherosclerotic plaques and alleviate vascular inflammation and vascular
endothelial dysfunction [195–197]; this may be because selenium levels are associated
with plasma cholesterol levels. In a double-blind evaluation, selenium supplementation
increased serum selenium levels and GPXs activity [198]. GPX4 reduces phospholipids and
cholesterol-ester-derived hydroperoxides through GSH, an activator of lipoxygenases and
cyclooxygenases, and is necessary for the synthesis of hydroperoxides [199,200]. Therefore,
increasing the serum selenium content can reduce lipid oxidation. Similar results were
obtained in clinical trials. Plasma lipid peroxidation was reduced by 50% in patients
receiving dietary supplementation of 200 g/day selenium compared with the placebo [201].
Increased lipid peroxide concentration due to selenium deficiency may alter prostaglandin
synthesis from prostacyclin to thromboxane, resulting in platelet aggregation [202]. Serum
selenium levels were found to be positively correlated with the concentration of the high-
density lipoprotein cholesterol, which has anti-atherosclerotic effects [198,203].

As a component of selenoproteins, selenium is involved in the regulation of the redox
status of cells and participates in the scavenging of ROS and the reduction of hydrogen
and lipid hydroperoxides [204]. Therefore, selenium can delay the progression of CVDs
and maintain normal cell growth and proliferation, protein folding, and mitochondrial
function [181,197]. Selenium can increase the expression and phosphorylation of endothelial
nitric oxide synthase to maintain the balance of superoxide anion/nitric oxide and regulate
cell adhesion by controlling the expression of cell adhesion molecules, thereby protecting
the structural and functional integrity of endothelial cells [205,206]. Selenium can also
relieve CVDs by affecting apoptosis and autophagy; increasing the expression of the
anti-apoptotic protein BCL-2; reversing the increased expression of the pro-apoptotic
proteins Bax and Caspase-3; and regulating the PI3K/AKT/mTOR pathway [207–209]. In
addition, GPX4 is a key molecule in ferroptosis, and selenium supplementation inhibits
ferroptosis [180,210].

In a multinational, prospective, observational cohort study, selenium deficiency was
found to be associated with impaired exercise tolerance and a 50% increase in mortality in
patients with HF. Researchers have found that selenium is independently associated with
impaired mitochondrial function in human cardiomyocytes in vitro [211]. When the case of
a patient who died due to cardiomyopathy and ventricular fibrillation was analysed, fatal
cardiomyopathy was found to be caused by selenium deficiency. In particular, replacement
fibrosis and widespread myocytolysis were observed in the heart [212].

Although few studies found no significant association between selenium and car-
diovascular disease [213,214] (for example, an analysis of American physicians found no
significant association between plasma levels of the antioxidant selenium and the risk of
myocardial infarction [215]), the mainstream notion is that selenium can protect against
CVDs and maintain normal cardiovascular function.

4.5. Cancer

Based on increasing studies, selenium affects the incidence of cancer. Many cancer
cells are selenophilic; however, the selenide, an intermediate product of Sec synthesis,
is poisonous. Selenide in cancer cells must be detoxed by selenophosphate synthetase
2 (SEPHS2) [216]. Of note, this process is not required in normal cells. Therefore, when
selenium supplementation exceeds a certain dose, selenide accumulates in cancer cells and
impairs their growth.

Clinical trials have supported the above conclusion. Early observational studies
revealed that individuals with adequate selenium levels in their diet or body tissues
have a lower risk of cancer, and plasma selenium levels can decline before some cancers
develop [217,218]. However, in a 1973 clinical trial, selenium levels in serum samples
collected from 111 patients who developed cancer within the following five years were
compared with those from 210 cancer-free individuals matched based on sex, age, and
living environment. The findings revealed that the risk of cancer for individuals in the
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highest quintile of serum selenium was half that of individuals in the lowest quintile [219].
However, some clinical trials have concluded that selenium supplementation does not
reduce the overall incidence of cancers, such as lung, bladder, and prostate cancers, with
liver cancer as the exception [220–222].

We speculate that selenium may confer resistance against cancers when the dosage
is appropriate. An eight-year intervention trial was conducted in a general population of
130,471. The incidence of primary liver cancer (PLC) was 35.1% lower in the selenium-
supplemented salt group (15 mg sodium selenite per kg) than in the non-supplemented
population. After selenium was removed from the treatment group, PLC incidence began
to rebound [223]. Selenium protects against breast cancer [224], which has the highest
incidence worldwide. A total of 974 men with a history of basal cell carcinoma or squamous
cell carcinoma were enrolled in a randomised, double-blind, placebo-controlled trial, receiv-
ing 200 µg per day of selenium supplementation or placebo for an average of 4.5 years. At
the 6.5 years follow-up, a significant reduction (63%) in the secondary endpoint of prostate
cancer incidence was found for men treated with selenium [225]. Similarly, selenium was
found to be inversely associated with adenoma and colorectal cancer [226].

The chemical form and bioavailability of selenium, and the stage and type of cancer
influence the above results. Most studies on the relationship between selenium and cancer
are currently observational studies. As there are still many conflicting conclusions in related
studies, further studies are needed to clarify the relevance of selenium in cancer.

4.6. Type 2 Diabetes

Insulin resistance is a characteristic of type 2 diabetes [227]. The relationship between
serum selenium levels and type 2 diabetes mellitus has long been a topic of discussion.
Selenium has been shown to affect T2DM through multiple pathways (Figure 5). Most
experimental results support a positive correlation between serum selenium levels and
T2DM. For example, in a randomised, double-blind, placebo-controlled trial averaging
7.7 years, individuals who took 200 µg/d selenium orally had a higher incidence of T2DM
than those who took the placebo [228]. Another dose-response meta-analysis revealed that
selenium exposure increased the risk of T2DM as supplementation increased the hepatic
production of Sepp1, which is a proven inducer of insulin resistance [229–231]. Sepp1
can reduce tyrosine phosphorylation of insulin receptors in hepatocytes, and decrease
serine phosphorylation in myocytes, thus impairing their insulin signaling and glucose
metabolism [230].

Primary hyperinsulinemia is another pathogenesis of T2DM. Under physiological
conditions, the islet β-cells express particularly low amounts of some antioxidant enzymes
such as GPXs, catalase and superoxide dismutases; while express moderate to high levels
of Sepp1 which exhibits low reactivity with H2O2; this results in the susceptibility of islet
β-cells to ROS. Selenium intake enhances the expression and activity of GPX1. Based on
the antioxidant effect of selenium, the upregulation of GPX1 could reduce intracellular
H2O2 production and inhibit islet inflammation and oxidative stress, thereby playing
a protective role in islet β-cells [232–234]. The formation of insulin is accompanied by
the constant formation of disulphide bonds, a process that is susceptible to the redox
state. In addition, GPX1 upregulates the transcription factors involved in insulin synthesis,
such as MAFA and NKX-6.1. However, these changes are not necessarily beneficial. The
overexpression of GPX1 caused by a high selenium status causes the dysregulation of PDX1
and UCP2, and can easily develop into hyperinsulinaemia, decrease insulin sensitivity, and
induce the development of a T2DM-like phenotype. Insulin-like effects of high doses of
sodium selenomethionine and sodium selenite have been observed in diabetic animals, as
in [235,236]. The symptoms of type 2 diabetes were found to be relieved in GPX1 knockout
and dietary selenium-deficient mice.
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Early studies found that inorganic selenium can act as an insulin mimetic. Selenate
was efficient in stimulating glucose ingestion both in vitro and in vivo [237,238] it mimics
insulin in glycolysis, gluconeogenesis, fatty acid synthesis, and the pentose phosphate
pathway. The expression of glucose-6-phosphate dehydrogenase (G6PDH) and fatty acid
synthase (FAS) in rats’ hepatocytes or diabetic animals was restored under the treatment
of selenate, suggesting that selenate can stimulate adipogenesis in the liver [239,240]. In
1990, high doses of selenate were found to enhance insulin-stimulated phosphorylation of
tyrosine phosphoprotein and insulin receptor kinase activity in rat adipocytes [237].

A meta-analysis of 13,460 individuals revealed that people with relatively lower serum
selenium levels (<97.5 µg/L) and relatively higher serum selenium levels (>132.5 µg/L) had
a higher prevalence of T2DM. However, the increase in incidence was more obvious in in-
dividuals with high selenium levels. In a few other studies, plasma selenium concentration
was found to be significantly lower in patients with diabetes than in controls. Such findings
suggest that a simple linear relationship does not exist between T2DM and selenium levels,
and both high and low selenium levels are potential risk factors for T2DM [241].

4.7. Heavy Metal-Based Illness

Selenium has been shown to impact oxidation resistance and chelation to inhibit heavy
metal toxicity (Figure 6) such as mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr),
thallium (Tl), lead (Pb), and silver (Ag). Metal ions exist in numerous proteins and are
required for electron transfer, oxygen transport, catalysis, and other biological processes.
However, the accumulation of heavy metals in organisms will induce multiple adverse
effects in vivo such as hepatorenal and renal toxicity, neurotoxicity, reproductive toxicity,
and immunotoxicity and lead to serious health problems [242,243]. Oxidative stress is the
primary toxic mechanism of heavy metals. It is reported that H2O2 and superoxide anion
were dose-dependently increased in mercury-treated erythrocytes [244]. ROS induced
by mercury results in both cell necrosis and apoptosis [245]. The liver and kidneys are
extremely sensitive to the toxic effects of cadmium. Cadmium is unable to generate ROS by
itself; however, it can replace the iron and copper from cytoplasmic and membrane proteins,
contributing to the increasing concentration of unbound iron and free copper [246]. They
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participate in causing oxidative stress via Fenton reactions and impair the mitochondrial
electron transport chain and the function of NADPH oxidase [247]. Cadmium atoms can
also combine with selenium atoms and lead to a decrease in the synthesis of selenoenzymes.
ROS generation and DNA damage induced by arsenic cause a shift in the cell cycle [248].
Chromium causes oxidative damage and a wide range of DNA lesions in the presence of
cellular reductants. Mitochondrial dysfunction and cellular deregulation were reported in
hippocampal neurons treated with thallium [249]. The results of a meta-analysis manifested
that lead treatment causes severe oxidative stress and testicular tissue was more sensitive to
lead than other tissues [250]. Silver-mediated dysfunction of the respiratory chain increases
the production of ROS [251].
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primary toxic mechanism of heavy metals. Selenium detoxifies heavy metal ions by reducing the
production of ROS; it can also compete directly with protein sulfhydryl groups for heavy metal ions
and excrete them out of the body.

As previously mentioned, selenium functions in the form of selenoproteins, which con-
tribute for antioxidant defense. Both the GPXs and Trx system, which are most important
to oxidative defense, are the targets of heavy metal compounds. Selenium supplementation
diminished ROS generation, protein oxidation, and lipid peroxidation induced by heavy
metals through maintaining the activities of selenoenzymes. Furthermore, it also protects
cells from immune suppression, cytotoxicity, and intrinsic apoptosis [150,252–254]. The
latter probably much relies on its scavenging effect on ROS.

Chelation therapy remains a main treatment for heavy metal poisoning in clinic.
Selenium can also interact directly with heavy metals, especially mercury, cadmium, and
arsenic, which are usually highly affiliative for sulfhydryl groups and can result in the
structural distortion of proteins. However, selenium seems to have higher affinity with
heavy metals and can sequester metal ions to reduce their biological availability. It is
confirmed that the affinity of mercury for selenium is up to one million times higher
than that for sulphur in analogous forms. Selenium was found to form a complex with
cadmium or arsenic and escort them out of the body through the bile system [255]. However,
cadmium can also undermine the anticarcinogenic effects of selenium (such as liver cancer,
renal carcinoma, and prostate cancer) at higher exposures [256–258].

5. Discussion

The effects of selenium on health are complex. While many novel selenoproteins
been identified, their associations with diseases need to be defined. However, to date, no
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fully unified conclusions have been reached. In this review, we focus on the functions and
mechanisms of selenium and selenoproteins as well as their roles in systemic diseases. By
summarizing the effects of selenium and selenoproteins on a variety of different diseases, it
is not difficult to conclude that selenium supplementation may play a dual role as it exerts
anti-inflammatory and antioxidant effects at nutritional doses but reverses these effects at
supernutritional doses.

In the future, more specific studies are needed to clarify the mechanisms underlying
the effects of selenium on various systemic diseases to determine the appropriate level of
supplementation. As the baseline selenium levels of individuals in different populations
are not the same, separate studies are required for different populations, in addition to
different diseases. The specific molecular mechanisms underlying the effect of selenium
supplementation on a particular disease should also be clarified considering the differences
between different forms of selenium supplementation. More relevant basic and clinical
studies are expected to maximise the benefits and reduce the potential risks of the trace
element selenium.
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