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Abstract: Tumors are often polyclonal due to copy number alteration (CNA) events. Through the
CNA profile, we can understand the tumor heterogeneity and consistency. CNA information is
usually obtained through DNA sequencing. However, many existing studies have shown a positive
correlation between the gene expression and gene copy number identified from DNA sequencing.
With the development of spatial transcriptome technologies, it is urgent to develop new tools to
identify genomic variation from the spatial transcriptome. Therefore, in this study, we developed
CVAM, a tool to infer the CNA profile from spatial transcriptome data. Compared with existing
tools, CVAM integrates the spatial information with the spot’s gene expression information together
and the spatial information is indirectly introduced into the CNA inference. By applying CVAM to
simulated and real spatial transcriptome data, we found that CVAM performed better in identifying
CNA events. In addition, we analyzed the potential co-occurrence and mutual exclusion between
CNA events in tumor clusters, which is helpful to analyze the potential interaction between genes in
mutation. Last but not least, Ripley’s K-function is also applied to CNA multi-distance spatial pattern
analysis so that we can figure out the differences of different gene CNA events in spatial distribution,
which is helpful for tumor analysis and implementing more effective treatment measures based on
spatial characteristics of genes.

Keywords: copy number alteration; HMM; variational graph convolutional autoencoder; spatial
transcriptome

1. Introduction

Copy number alteration is one of the important characteristics of tumors. Theoretically,
through the genome and transcriptome in the same cell, we can infer the molecular mecha-
nism leading to the change in cell phenotypes and reconstruct the cell lineage tree to capture
DNA mutation profiles obtained in the cell genome over time. Although many experts
and scholars are committed to the research on the joint paired sequencing technology of
DNA and RNA, it is still challenging to conduct high-throughput sequencing and unbiased
analysis of DNA and RNA samples at the same time. Due to the technical barrier and
sequencing cost, these sequencing technologies have not been widely developed. However,
many existing studies have shown a positive correlation between the gene expression and
gene copy number identified from DNA sequencing, providing a theoretical foundation for
inferring the CNA of tumor cells from transcriptome data [1–3].
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Nowadays, single-cell transcriptome sequencing has been widely used to analyze the
heterogeneity in tumors [4,5]. Many tools based on transcriptome sequencing have also
been developed to identify the changes in genomic copy numbers in cells. For example,
inferCNV [6] identifies somatic large-scale chromosomal copy number alterations based
on tumor scRNA-seq data through Bayesian and Hidden Markov Model (HMM) models.
CaSpER [7] obtains profiles of cell genome copy numbers by combining gene expression
and allele offset information. CopyKAT [8] uses the combination of GMM and chromosome
breakpoint exploration with Markov Chain Monte Carlo to generate cell CNA profiles.

As we all know, traditional transcriptome sequencing will lead to the loss of cellular
spatial information and destruction of the tumor microenvironment. In the molecular level
analysis of genomics, tumor cells of the same clone exhibit local aggregation characteristics
spatially, and the physical location of cells facilitates the analysis of tissue functions and cor-
responding pathological changes. In order to solve the spatial problem in gene sequencing,
spatial transcriptome analysis technology has been developed in recent years [9]. We can
not only analyze the spatial consistency and heterogeneity of tumor cells morphologically
but can also explore the polyclonal characteristics of tumor cells and spatially related genes
at the molecular level [10–13]. At present, there are still few tools for CNA inference for
spatial transcriptome data. Although STARCH [14] integrates spatial information into CNA
inference through HMRF, it can only infer the consistent CNA profile of each clone instead
of each spot in spatial transcriptome data. Therefore, it is urgent to develop new tools to
identify genomic variation as well as integrate genetic and transcriptional variation based
on the spatial transcriptome.

In this study, we propose a machine learning tool, CVAM, to infer CNA profiles from
spatial transcriptome data. This method consists of clustering analysis and CNA inference
stages. For clustering analysis, the spatial information and gene expression information
are fused to realize nonlinear dimensionality reduction by variational graph autoencoder
(VGAE) with multi-tasks. Then, the unsupervised clustering of samples is implemented
by the Louvain algorithm. In the CNA inference stage, the CNA profile of each spot is
inferred by the HMM after multi-level filters based on the cell type information from the
first stage. Compared with other methods, CVAM improves the performance of CNA
inference. We also analyze the CNA event patterns through Ripley’s K-function based on
the CNA profiles. In summary, CVAM applies current popular machine learning algorithms
to the analysis and prediction of spatial transcriptome data, expanding the use of biological
information from spatial transcriptome data. Moreover, it further promotes the widespread
applications of relevant machine-learning algorithms in bioinformatics.

2. Materials and Methods

In this study, we propose a machine learning tool CVAM to infer CNA profiles of
spatial transcriptomic data (Figure 1). First, a simulation graph corresponding to the
spatial transcriptomic data is constructed. Then the hidden layer representations of spots
are learned through multi-task VGAE. Subsequently, the spots are divided into different
clusters based on the learned representation. According to the clusters, HMM is used to
infer the genomic CNA profile of each spot.
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CNA profile of spots is output. 

Figure 1. The overview of CVAM. (1) A graph is constructed according to the similarity and spatial
information between spots. (2) The adjacency matrix and gene expression matrix of the graph are
generated. (3) The CNA profile is inferred. (3a) The low-dimensional representation of spots in the
hidden space is learned through the VGAE with multi-task. (3b) Spots are classified based on the
learned representation. (3c) HMM with multi-level filters is used to infer the CNA profile. (4) The
CNA profile of spots is output.

The generation of the simulation graph is based on the spatial information of each
spot and the similarity between spots (see Modeling). Based on the adjacency matrix and
standardized gene expression matrix, the nonlinear low-dimensional representations of
spots are learned through variational inference with an autoencoder (Figure 2a). First, for
the input simulated graph, the adjacency information and gene expression information are
aggregated through a shared GCN network layer. Then, two GCN neural network modules
are constructed to learn the mean µ and variance σ of multivariate normal distribution sat-
isfied by each spot in the hidden space, respectively. Then, through the reparameterization
trick, the hidden space representation of each spot is obtained. Based on the hidden repre-
sentation Z, two fully connected neural network modules are constructed to reconstruct
the gene expression matrix and adjacency matrix of the graph. The Louvain algorithm is
used to classify spots. Figure 2b shows the CNA inference process. The gene expression
data are re-sorted according to the position of genes in chromosomes. After multi-media
filtering, the spots are grouped based on the clustering results and HMM is applied to the
data. Finally, the output is the genome CNA profile of each spot.
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Figure 2. The architecture of VGAE and HMM. (a) The network structure of VGAE. For the input
graph, the adjacency matrix and the gene expression matrix are aggregated through the single-layer
GCN, and then the parameters of the distribution satisfied by the spots are learned through two GCN
network modules. The hidden representation is generated through the reparameterization trick. Then,
the adjacency matrix and the gene expression matrix are reconstructed through two fully connected
neural networks. (b) Firstly, the gene expression profile is normalized, then multiple filters with
different window sizes are used to smooth the gene expression data in order. Then, the smoothing
results continue to be filtered through a median filter; finally, the results are input into the HMM
model to infer the spots’ CNA profile according to the cluster.

2.1. Modeling
2.1.1. Construction of Graph

In order to introduce the spatial information of spots into the clustering, we construct
the connection graph between spots according to the spatial coordinate information con-
tained in the spatial transcriptome data and the similarity between spots. The graph is
denoted by G. We use V to represent spots. First, we construct the graph through the k-
nearest neighbor algorithm KNN and assign the weight W1 to the edge with the connection
between spots in the graph. Then, we calculate whether the connected spots are adjacent in
spatial positions. If they are adjacent, W2 is added to the weight of the edge. Finally, we
construct the graph that integrates the spatial information and similar information of spots,
and we use the adjacency matrix A, A ∈ R n×n to represent the topology of each spot in
the graph.
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2.1.2. The Architecture of VGAE with Multi-Task

Firstly, for the input reprocessed gene expression data X′′ and the topological correla-
tion adjacency matrix A, we use a k-layer graph convolution neural network(GCN) to fuse
the spatial information and features of spots, namely,

GCN
(
X′′, Ã

)
= ÃReLU

(
ÃX′′W0

)
W1

where Ã = D−1/2 A D−1/2 is the symmetrically normalized adjacency matrix, and D is the
degree matrix, recording the number of neighbor spots connected to each spot. Through
GCNσ

(
X′′, Ã

)
and GCNµ

(
X′′, Ã

)
, the mean µ and variance σ of the normal distribution

satisfied by each dimension of each spot in the hidden layer space were inferred. To
simplify the parameter quantity of the model, the two modules share the first layer network
parameters, and only the second layer network parameters are different. Moreover, to
make each inferred dimension meet the standard normal distribution as much as possible,
we compute the KL divergence between the inferred distribution and the standard normal
distribution and add it to the loss function of the entire model for training and optimization.
With the µ and σ, we can generate the corresponding low-dimension representation of each
spot Z ∈ Rn×d through the reparameterization trick; here, d is the dimension of the hidden
space. The formula can be represented as:

q(Z|X, A) =
n

∑
i=1

q(zi|X, A), with q(zi|X, A) = N(zi|µi, diag
(

σ2
i

)
)

For the hidden representation Z, we construct two fully connected neural network
models respectively to accomplish two tasks (reconstruct the features of the spots and the
spatial topology information):

D1 = W11ReLU(W10Z + b10) + b11

D2 = W21ReLU(W20Z + b20) + b21

On the one hand, it is to make the generated adjacency matrix AG as similar as the
input adjacency matrix Ã if possible, that is, through D1, the original spatial topology of
the spatial transcriptome can be reconstructed as possible. In addition, we measure the
difference between the generated matrix and the original matrix through BCE loss. On
the other hand, with a network D2, the gene expression matrix can be reconstructed, and
we use MSE loss to measure the difference between the generated gene expression matrix
XG and the input gene expression matrix X′′. Compared with the decoder part of the
traditional VGAE model, the reconstruction ability of our generated model is more robust.

2.1.3. Loss Function

In order to balance the training loss of KL divergence and the reconstruction in the
model, make the loss of them is made comparable, and avoid training the over-fitting
model, we add a weight to each loss part to regularize the loss value, respectively. The loss
function can be expressed as:

L = λ1·KL(q(Z|X, A)|N(0, I)) + λ2·BCE
(

Ã, AG
)
+ λ3·MSE

(
X′′, XG

)
namely,

L =
λ1

2

(
− log σ2 + µ2 + σ2 − 1

)
+

λ2

n

n

∑
i=1

n

∑
j=1
−Ãij log AG

ij +
λ3

n×m

n

∑
i=1

m

∑
j=1

(
X′′ij − XG

ij

)2
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Finally, based on the Adam optimizer in Pytorch, the parameters are optimized by
iteratively training the model through the back-propagation algorithm.

2.1.4. Hidden Markov Model

After obtaining the hidden representation of each spot through the VGAE model, we
use the Louvain algorithm to realize the unsupervised clustering of spots. After clustering,
we use the Hidden Markov Model with multi-level filters to infer the CNA profile of each
spot. First, we used a preprocessed gene expression matrix X̂ according to the position
of genes on the chromosome. The p-arm and q-arm of each chromosome is regarded
as an independent sequence, and S = {x0, x1, x2, . . . , xi, . . . , xs} is used to represent the
expression value of genes arranged along the p-arm or q-arm of a chromosome in the
spot. For each sequence, we apply the median filter with window size W to smooth
along the sequence. In order to reduce the dependence of W and improve the stability
and effectiveness of the median filters, we use multi-level median filters to filter the
initial gene expression sequence. Then, a median filter is used on these results after
multi-level filters. Finally, HMM is used to infer the CNA profile by cluster based on
clustering information. In this study, we mainly define three CNA states, including deletion,
neutral, and amplification. Deletion means the gene copy number is 0 or 1. Neutral means
diploid, while amplification means the gene copy number is more than two. We use
C = {c0, c1, c2, . . . , ci, . . . , cs} to denote the gene CNA state along the sequence. T =

[
tij
]

3×3
is the transition probability matrix between the three states. The emission probabilities P
of the three states meet the normal distribution with the mean value µc and variance σc,
namely, p(xi|ci) = N(xi; µc, σc) . In addition, π is the initial probability distribution of each
state. The CNA states follow a first-order Markov chain and the CNA state of the current
gene is only determined by the CNA state of the previous one, that is

P(ci = a|c1, c2, . . . , ci . . . , cs) = P(ci = a|ci−1 = b)
with a, b ∈ {Deletion, Neutral, Amplification}

Therefore, the probability model of S under parameters Φ in the HMM is expressed as:

P(S|Φ) = ∑
C

P(S|C, Φ)P(C|Φ), with Φ = {T, π, µc, σc}

Next, the iterative solution of the model parameters can be realized by the Baum–Welch
algorithm. Based on the estimated model parameters, the CNA profile C, which corresponds
to the input gene expression value sequence S, can be inferred by the Viterbi algorithm.

2.2. Multi-Distance Spatial Pattern Analysis of CNA Event

In order to analyze the relationship between the CNA event and space, for the CNA
profile of a gene in space, Ripley’s K-function is used to analyze the spatial point pattern of
the CNA event from multi-distance. Ripley’s K-function is an index to describe the spatial
structure of point processes under isotropic and mean conditions from multi-distance [15].
For a certain gene, each spot with CNA event of the gene is selected. As for these spots,
the number of spots with the same CNA event in a circle with a radius d can be computed.
Then, the results of all spots are summed up and divided by the total number of spots with
CNA events as well as the density of the CNA event in the whole space. Namely:

K(d) =
1
λ

N

∑
i=1

N

∑
j=1,i 6=j

Id
(
dij
)

N
, Id
(
dij
)
=

{
1, dij ≤ d
0, dij > d

Here, N is the number of spots with CNA events in the space and λ is the point density
of the space.

The patterns of CNA events mainly include aggregation and dispersed and complete
spatial randomness (CSR). To compute the pattern to which the CNA events of genes
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belong, we random samples N spots in the space 1000 times so that the expected value of K-
function from multi-distance can be calculated. Then, two null hypotheses are established
as follows.

H(1)
0 : K(observe) ≥ K(expected)

H(2)
0 : K(observe) ≤ K(expected)

If the first is rejected, the CNA event of genes is a dispersed pattern. If the second one
is rejected, the CNA event of genes is an aggregation pattern. Otherwise, the CNA event of
genes is a complete spatial randomness (CSR) pattern, which indicates that CNA events
occur randomly in the whole space without spatial correlation.

2.3. Proof with Simulation and Actual Data

Two simulated and four real spatial transcriptome data were used in our experiments.
For the simulation datasets, we first selected breast cancer data obtained by G&T-seq [16],
which contains both DNA and transcriptomic data from the breast cancer line HCC38. We
calculated the CNA profiles based on genomic DNA by cyclic binary segmentation (CBS)
analysis [17] and obtained the CNA status of each gene on the chromosome segment based
on the CNA results. We used the CNA results for each gene as our ground truth. The
second simulation dataset is from the bulk data of relevant tumor cells in TCGA. The DNA
and transcriptome of the same tissue sample of the same patient were sequenced separately.
The method used for obtaining ground truth was the same as the previous experiment.
The spatial distribution corresponding to each sample of these datasets is generated by
the novoSpaRc [18] method (Supplementary Note S1). The four real spatial transcriptome
data include human breast cancer, skin squamous cell carcinoma, head and neck square
cell carcinoma and lung cancer based on the mouse genome. The data preprocessing is in
Supplementary Note S2.

3. Results
3.1. Applying CVAM to High-Resolution Simulated Spatial Transcriptomic Data

We applied CVAM to the simulated spatial transcriptome data based on the breast
cancer line HCC38 and the B lymphoblastoid line HCC38-BL from G&T-seq (Figure 3).
Compared with the other three tools, CVAM improves the TPR (61.09% TPR of deletion and
62.51% TPR of amplification) of inferring CNA events (Figure 3b and Table S1). Moreover,
the visual presentation of © profiles (Figure 3a) suggests that the inference results of CVAM
are closer to the ground truth. In addition, we also tested the impact of different clustering
methods on the clustering results (Figure 3c, Supplementary Figure S1). Through the
Adjusted Rand Index (ARI), Normalized Mutual Information (NMI) and Adjusted Mutual
Information (AMI), whose definition and computation are shown in Supplementary Note
S3, we can find that the CVAM with the Louvain algorithm performs better than others.
CVAM utilizes VGAE to perform nonlinear dimensionality reduction on gene expression
matrices. Compared with Seurat’s PCA linear dimensionality reduction, CVAM has a better
generalization ability. In addition, before using the Louvain unsupervised algorithm for
clustering, Seurat only used the KNN algorithm to construct the graph. In contrast, CVAM
further uses the coordinate information of each spot in the actual space to correct the graph
so that the gene expression is similar and the adjacent spots in the space are more closely
connected in the graph, thereby improving the clustering performance.
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Figure 3. The results of CVAM on the high-resolution simulated spatial transcriptome. (a) Copy
number alteration profiles inferred by different tools. The horizontal axis is spot id, the vertical axis
is gene id, orange represents amplifications, grey represents neutral, and blue represents deletion.
(b) Comparison of different tools f©CNA inference. (c) Comparison of different clustering methods.
The specific comparison of different clustering algorithms on ARI, AMI and NMI clustering indicators.

3.2. Applying CVAM to Simulated Spatial Transcriptome Data from Bulk RNA-Seq

We also applied CVAM to the simulated spatial transcriptome data from bulk RNA-seq
(Figure 4). Figure 4a shows the spatial distribution profile of the simulation data and the
clustering results. In this dataset, CVAM achieves 70.75% TPR with 15.24% FPR in gene
deletions and 63.79% TPR with 19.46% FPR in gene amplifications (Figure 4b and Table S2).
In order to explore the influence of spot size on the results. We randomly sampled datasets
with different spot sizes and conducted experiments separately. The results are shown in
Figure 4c. We can see that as the spot size continues to increase, TPR and FPR both show
an upward trend. However, the trend of changes in TPR and FPR of CNA is not significant.
As the spot size increases, HMM’s transfer probability and emission probability become
more accurate. However, due to the high degree of convergence of model parameter
training, it has little impact on the final results. In addition, the increase in spot size also
leads to an increase in outliers. However, the multi-scale median filtering smooths the
abnormal mutation values of gene expression and improves the model robustness so that
the results are not worsened. These experiments have shown that spot size has relatively
little influence on the results, reflecting the universal application of our method under
different spot sizes. In addition, we also compared the performance under the different
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scales of multi-level median filters (Figure 4d). At smaller scales, the model has limited
ability to identify CNA events, while the performance is better at a large scale.
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Figure 4. The results of CVAM on simulated spatial transcriptome data from bulk RNA-seq. (a) The
clustering distribution of spots in space. The simulated spatial transcriptome sample clustered into
eight types. (b) Comparison of different tools for CNA inference in the data. (c) The performance of
CNA events identification under CVAM with different sizes of the spot. (d) The performance of CNA
events identification under CVAM with different window scales.
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3.3. Applying CVAM to the Spatial Transcriptome Data of Breast Cancer

We apply CVAM to analyze the spatial transcriptome data of breast cancer (Figure 5).
The spots in this dataset are mainly divided into five clusters (Figure 5b). Analyzing the
marker genes [19] in each cluster, we find that cluster 3 and cluster 5 are tumor cell clusters.
The CNA profiles show that high-frequency CNA events mainly occur in clusters 3 and
5 (Figure 5a). In the two clusters, S100A4, ERBB2, KRT19 and other genes have occurred
copy number amplification, while ACTA2, FBN1, ID2 and other genes have occurred
copy number deletion. These results have been recorded in detail in the cBioPortal [20]
database related to breast cancer. In addition, CNA distributions also show that the spots
belonging to cluster 3 or cluster 5 are more different from the normal spots (Figure 5c).
By comparing the co-occurrence and mutually exclusive analyses of cluster 3 and cluster
5, we can also find the potential relevance of CNA between genes in different clusters
(Figure 5d). For example, the amplification of S100A4 and the amplification of KRT81
exhibit a co-occurrence relationship in both clusters, indicating that they have a common
impact on tumor development and that there is a potential concomitant occurrence between
the two genes. In the spatial pattern, it can be found that the genes such as S100A4 show
an aggregation pattern (d = 4, p < 1 × 10−38) while ID2 shows a dispersed pattern (d = 4,
p < 1 × 10−5) and FBN1 shows a complete spatial randomness pattern (Figure 5e). This
reflects the differences in CNA spatial patterns among different genes, which can help
implement more effective treatment plans for the spatial characteristics of different genes
in the future.

3.4. Applying CVAM to the Spatial Transcriptome Data of Skin Squamous Cell Carcinoma

We also apply CVAM to a spatial transcriptomic dataset of human skin squamous
cell carcinoma (Figure 6a). Similarly, we found that genes such as CD7, CD1A, and
HLA-DPB1 experienced significant copy number amplification, while genes such as CD3E
experienced significant copy number deletion. These results also can be found in the
cBioPortal. Moreover, the co-occurrence and mutual exclusion of genes CNA states also
can be found. The pairs such as HLA-DRB1-amp/PDGFRB-amp showed co-occurrence
in cluster 1 (p < 1 × 10−5), while pairs such as BRD4-del/KLF2-amp show a mutually
exclusive (p < 1 × 10−5). Finally, we also found genes with CNA event spatial patterns.
Genes such as EIF1AD present CRS patterns on a small scale, indicating that CNA events for
such genes exhibit randomness in local space. As the region expands, the observed K-value
is above the expected K-value, which reflects the CNA events showing that aggregation
patterns occur more intensively (Figure 6c).

3.5. Applying CVAM to the Spatial Transcriptome Data of Head and Neck Square Cell Carcinoma

In order to test the performance of our method on different sequencing platforms,
we also applied CVAM to the spatial transcriptome data of head and neck square cell
carcinoma based on digital spatial profiling (DSP) of Nanostring (Figure 6d). We observed a
large number of CNA amplifications in genes such as S100A11, S100A2, KRT16, and KRT17
in cluster 2 and cluster 3, while genes such as KRT78, IGHG4, and IGHG2 exhibited a large
number of CNA deletion events. They are consistent with the results in the cBioPortal.
Through co-occurrence and mutual exclusion, we found that the two clusters have some
differences in CNAs; for example, S100A12 and S100A16 amplifications significantly co-
occurred in cluster 3 (p < 1 × 10−3, FDR < 0.05), while no correlation was found in cluster 2.
However, in cluster 2, the amplifications of S100A10 and AHNAK genes were significantly
co-occurrence (p < 1 × 10−3, FDR < 1 × 10−2). Both genes participated in the regulation
of cell membrane cytoarchitecture [21], which also reflected the CNA differences between
clusters (Figure 6e).
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Figure 5. Applying CVAM to the spatial transcriptome of breast cancer. (a) CNA profiles inferred
by CVAM. The color blocks on the left show the types of spots. The labels on the right show the
spatial information. (b) The cluster results in space. (c) Differential gene profiles by analyzing the
CNA events in the different clusters. The darker the color, the more significant the CNA difference
of genes in the tumor cluster compared with normal spots. (d) The mutually exclusive and co-
occurring CNA events profile of cluster 3 and cluster 5. The darker the color, the more significant
the mutually exclusive or co-occurring CNA events. Red means co-occurring while green means
mutually exclusive. “-amp” means the amplification event while “-del” means deletion event. (e) The
CNA distribution of genes with different spatial patterns. Left is the S100A4 with aggregation pattern
(d = 4, p < 1 × 10−38) while right is ID2 with dispersed pattern (d = 4, p < 1 × 10−5) and center is
FBN1 with complete spatial randomness (CRS) pattern.



Biomolecules 2023, 13, 767 12 of 16
Biomolecules 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 

Amplification 
Neutral 
Deletion 

Amplification 
Neutral 
Deletion 

Cluster 1 
Cluster 2 
Cluster 3 

mutually exclusive 

co-occurring 

Figure 6. Applying CVAM to the spatial transcriptome of squamous cell carcinoma. (a) CNA profiles
of skin squamous cell carcinoma inferred by CVAM. (b) The cluster results of skin squamous cell
carcinoma in space. (c) The K-function values of gene EIF1AD with the increase in the distance d.
Blue is from observed spots, while orange is from the random sampling expected results under the
complete spatial randomness pattern. (d) CNA profiles of head and neck square cell carcinoma
inferred by CVAM. (e) The mutually exclusive and co-occurring CNA events heatmap of cluster 2
and cluster 3.
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3.6. Applying CVAM to the Spatial Transcriptome Data of Lung Cancer

We also apply CVAM to a spatial transcriptomic dataset of lung cancer based on a mouse
model (Figure 7). The CNA results and clustering results are shown in Figures 7a and 7b,
respectively. It can be found that genes such as S100a6, S100a8, and S100a9 showed
significant amplification in cluster 3. These genes were reported to be highly expressed in
lung cancer in the previous studies [22,23], which may be due to copy number amplification
leading to tumor growth and metastasis in related cancer cells. In addition, through the co-
occurrence and mutual exclusion analysis (Figure 7c), we also found that the amplification
of S100a8 and S100a9 exhibits a co-occurrence relationship (p < 1 × 10−79). The consistent
impact of these two genes on lung cancer metastasis has also been reported in a previous
study [24]. In terms of spatial pattern, we found that the CNAs of S100a8 and S100a9 both
exhibit aggregation patterns locally (d = 50, p < 1 × 10−5) and mainly aggregate in cluster 3
(Figure 7d). From global space, it is more inclined towards a discrete distribution pattern
(d = 150, p < 1 × 10−20). In particular, from the figure below, we can also find some copy
number deletion spots in the tissue, because these spots are mainly located in the cytoplasm
or ST sequencing background region, and the measured gene expression values are much
smaller than that of normal cells.
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Figure 7. Applying CVAM to the spatial transcriptome of lung cancer. (a) CNA profiles inferred by
CVAM. (b) The cluster results in space. (c) The heatmap of mutually exclusive and co-occurring CNA
events. (d) The CNA distribution of genes (S100a8 and S100a9) with the spatial pattern.
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4. Discussion

The CNA profile plays an important role in the analysis of polyclonal characteristics
of tumor cells. We propose a CNA profile inference tool, CVAM, for analyzing genetic
variants from spatial transcriptome data. We first cluster the samples based on the feature
similarity and spatial characteristics through VGAE. Compared with the traditional PCA
linear dimension reduction, the generalization ability of CVAM is higher and the samples
can be divided more correctly. In addition, compared with the simple VAE [25,26], VGAE
integrates spatial information with the spot’s gene expression information together so that
the heterogeneous information of samples can be analyzed, which is conducive to the
unsupervised clustering between adjacent spots.

In CNA inference, multi-level filters can remove the interference of outliers and the
window size of filters. Compared with CaSpER, CVAM performs multi-scale integration
before HMM, which reduces the time cost of model training. Although inferCNV using
Bayesian and HMM performs relatively well, it only performs better on consistent CNA
inference under a large number of samples, and the performance on higher-resolution data
remains to be improved. Compared with these existing tools, our experimental results
demonstrate that CVAM performs better in terms of accuracy and TPR for CNA events. In
addition, although our tool is developed for spatial transcriptome data, after reconstructing
the spatial distribution of samples through an optimal transmission algorithm, this method
is also applicable to single cells or bulk transcriptome sequencing data. Moreover, through
co-occurrence and mutual exclusion analysis, more and more potential connections between
genes will be revealed, which will help us to further explore the molecular mechanism of
tumor development and variation. Last but not least, gene spatial pattern analysis is one of
the most important analysis methods in bioinformatics after the emergence of the spatial
transcriptome. With the continuous development of spatial transcriptome technology, there
will be more and more exploration of the spatial characteristics of tumor development in
the future, which is important for the design of drugs and treatment plans.

There are also some limitations and shortcomings in the CVAM. The results are gene-
level CNA profiles. So, the resolution of CNA can be further improved. Moreover, the
number of states of CNA can increase, making the measurement of CNA events more
detailed. In future works, we will further explore the detailed and effective division of
chromosome sequence so that the resolution and accuracy of this method can be improved.

With the development of slide-DNA-seq [27] that can capture spatially resolved
DNA sequences, it is believed that more research will be devoted to the joint analysis of
spatial transcriptome and genome data in the future. This will help to further understand
the heterogeneity of tumors and provide some auxiliary decision-making for the precise
treatment of related tumor diseases.
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