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Abstract: The dysfunction of astrocytes in response to environmental factors contributes to many
neurological diseases by impacting neuroinflammation responses, glutamate and ion homeostasis,
and cholesterol and sphingolipid metabolism, which calls for comprehensive and high-resolution
analysis. However, single-cell transcriptome analyses of astrocytes have been hampered by the
sparseness of human brain specimens. Here, we demonstrate how large-scale integration of multi-
omics data, including single-cell and spatial transcriptomic and proteomic data, overcomes these
limitations. We created a single-cell transcriptomic dataset of human brains by integration, consensus
annotation, and analyzing 302 publicly available single-cell RNA-sequencing (scRNA-seq) datasets,
highlighting the power to resolve previously unidentifiable astrocyte subpopulations. The resulting
dataset includes nearly one million cells that span a wide variety of diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), epilepsy
(Epi), and chronic traumatic encephalopathy (CTE). We profiled the astrocytes at three levels, subtype
compositions, regulatory modules, and cell–cell communications, and comprehensively depicted
the heterogeneity of pathological astrocytes. We constructed seven transcriptomic modules that are
involved in the onset and progress of disease development, such as the M2 ECM and M4 stress
modules. We validated that the M2 ECM module could furnish potential markers for AD early
diagnosis at both the transcriptome and protein levels. In order to accomplish a high-resolution,
local identification of astrocyte subtypes, we also carried out a spatial transcriptome analysis of
mouse brains using the integrated dataset as a reference. We found that astrocyte subtypes are
regionally heterogeneous. We identified dynamic cell–cell interactions in different disorders and
found that astrocytes participate in key signaling pathways, such as NRG3-ERBB4, in epilepsy. Our
work supports the utility of large-scale integration of single-cell transcriptomic data, which offers
new insights into underlying multiple CNS disease mechanisms where astrocytes are involved.

Keywords: astrocytes; CNS disorder; scRNA-seq; spatial transcriptomics; transcriptomic modules;
cell–cell communications

1. Introduction

Astrocytes, one of the most abundant glia cell types in the central nervous system
(CNS), have been implicated in the pathogenesis of multiple CNS disorders [1]. Accu-
mulating studies suggest that “reactive” astrocytes have a pathogenic role in both acute
and chronic disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), multiple sclerosis (MS), and behavioral neuropsychiatric disor-
ders [1–3]. Their functions include remodeling of regular physiological processes including
metabolism, synapse maintenance, neuroinflammatory regulation, blood–brain barrier
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(BBB) integrity, and structural supports. Many studies link reactive astrocytes to inflamma-
tory reactions to dying cells, immune cell dysfunction, and pathogenic proteins, including
amyloid-β (Aβ), tau aggregation, and alpha-synuclein (αSyn) [3–5]. It is worth emphasiz-
ing that the tripartite synapse concept proposes that the communication between pre- and
post-synaptic neurons is modulated by astrocytes, which constitute the third component
of the synapse [6]. Astrocytes are key players in this process, as they modulate synaptic
transmission and plasticity through various mechanisms, including the uptake and release
of neurotransmitters and the modulation of synaptic signaling pathways [7]. The loss
of astrocytic synaptic regulatory functions has been associated with the development of
numerous neurological disorders, such as AD, PD, and epilepsy (Epi), underscoring the
crucial role of these cells in maintaining proper brain function [7,8]. Therefore, under-
standing the intricate interactions between neurons and astrocytes in the regulation of
synaptic function is crucial for elucidating the underlying mechanisms of brain function
and dysfunction.

Among these investigations, high-throughput single-cell RNA sequencing (scRNA-
seq) has been the leading method to characterize the cellular heterogeneity in neurological
disorders, and its adoption has led to the generation of a plethora of datasets [9–12]. How-
ever, due to the inaccessibility of human brain specimens, most studies focus on a certain
CNS disease from a specific brain region [9,13,14]. Moreover, astrocytes were typically
underestimated in previous studies, accounting for just 3–18% of nuclei [11]. Therefore,
astrocyte heterogeneity and reactivity are not fully demonstrated, leaving many unan-
swered questions. For example, what is the global landscape of astrocytes, what is the
regional specificity of astrocytes, what are their transcriptomic modules, how are these
modules regulated, and what intercellular signaling pathways are disturbed among differ-
ent CNS diseases. We hypothesized that a single study may not be able to provide large
enough samples to definitively characterize physiologically relevant yet lowly abundant
astrocyte subpopulations.

Large-scale data integration can capture the comprehensive phenotypic features at
single-cell resolution to empower the understanding of disease mechanisms [11,15,16]. One
of the major issues in integrating a high-quality reference map from scRNA-seq datasets has
been the reduction of technical bias and batch effects [17,18]. Recent developments in com-
putational methods have addressed these issues and allowed the generation of large-scale
reference atlases [19]. To portray the complete landscape of astrocytes in both physiological
and pathological conditions, we gather and integrate large-scale scRNA-seq datasets from
extensive human CNS disorders. We harmonize in total 302 human samples of 6 diseases
from 15 studies spanning nearly 1 million cells. We identified eight astrocyte subtypes
and explored their distribution specificities among brain regions. Meanwhile, we identi-
fied seven common expression modules from astrocytes, and module analysis exhibited
pronounced heterogeneity across disorders at the transcriptomic level. We also validated
these modules at the protein level by using a mass spectrometry dataset [20]. We further
explored ligand-receptor signaling pathways and identify dynamic cell–cell interactions in
different disorders, thus offering new insights into underlying CNS disease mechanisms.

2. Materials and Methods
2.1. Data Collection

We collected single-cell transcriptomic, spatial transcriptomic, and proteomic datasets
originating from 17 well-generated studies published from June 2019 to March 2022. Some
of these samples were donated by healthy individuals, and some were taken from autopsy
tissues. In single-cell transcriptome data, except for Wheeler2020, which used scRNA-seq,
all others used single-cell nuclear sequencing (snRNA-seq), which ensured the stability
of the sequencing method. Similarly, except for Chancellor2021, which used the inDrops
sequencing platform, the rest of the data were sequenced using the 10x Genomics platform.
The age of the patients we collected ranged from 24 to 102 years old. As our study
covers multiple brain regions, even the cortex alone includes more fine-grained subregions
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such as occipital, occipitotemporal, somatosensory, entorhinal, and dorsolateral cortexes.
However, since some of the papers did not specify the exact brain region, we grouped
them into four categories, cortex (CTX), hippocampus (HIP), white matter (WM), and basal
ganglia (BG), for the analysis. The basal ganglia mainly include the three brain regions of
caudate, putamen, and substantia nigra. We named the original brain region sources as
‘source.tissue’, and the new classification is annotated as ‘current.tissue’ in the paper. See
Table S1 for detailed information and metadata.

2.2. Preprocessing and Quality Control of Single-Cell RNA-Seq Data

We downloaded all raw scRNA-seq matrix data from different sources (Table S1). We
followed Seurat’s guide and processed the unique molecular identifier (UMI) count matrix
using the R package Seurat (version 4.1.0) [21]. Several previous scRNA-seq studies have
shown that dead cells and cell debris are excluded from datasets containing cells with
<300 genes, >50,000 UMIs, or 5% mitochondrial genes [22,23]. We followed these criteria
above. The final filtered matrix contained 990,317 cells and 36,590 genes.

2.3. Normalization and Initial Dimension Reduction of scRNA-Seq Data

After preprocessing and quality control, we merged all datasets using the Seurat::merge
function. The UMI count matrix was log normalized, and the 3000 most variable features
were identified. The linear dimensionality was reduced using the RunPCA function in
Seurat. For graph-based clustering, we used the first 30 principal components determined
by the ElbowPlot function, which displayed the p-value distribution for each principal
component. Our initial results from K-nearest neighbor clustering, using FindNeighbors
and FindClusters with the resolution = 0.2, and UMAP clustering, using RunUMAP with
dim parameter set to 20, were 53 clusters. We found a significant batch effect in the merged
datasets, so we performed a subsequent correction for the batch effect.

2.4. Batch Correction, Clustering, and Annotation of scRNA-Seq Data

To remove batch effects and non-biological technical biases, the Harmony algorithm
in Seurat was used. We have used default values for the other parameters of Harmony [19].
This was followed by dimensional reduction using RunUMAP with dim parameter set to
20. Clustering was identified using the functions FindNeighbors and FindClusters with
resolution 0.1. After integration, the batch effects were satisfactorily removed with no
notable separation across different platforms or conditions. Raw clustering generated a
total of 28 clusters. Major cell types were annotated based on the expression of known
markers, i.e., GFAP and AQP4 for astrocyte; ABCB1 and FLT1 for endothelial cells; RBFOX3
and GRIN1 for neurons; CAMK2A and CBLN2 for excitatory neurons; GAD1 and GAD2 for
inhibitory neurons; DOCK8 and CSF1R for microglias; MBP and PLP1 for oligodendrocytes;
PDGFRA and VCAN for OPCs; and PDGFRB for pericytes.

2.5. Subcluster Analysis of Astrocytes

We re-clustered astrocytes (the analysis procedure is the same as above) and identified
eight transcriptionally unique subpopulations. To identify the enriched genes in each
astrocyte subtype, the FindAllMarkers function (log2FC > 0.25, using a Wilcoxon rank-sum
test, adjusted p-value < 0.05 using the Bonferroni correction) was used to determine unique
and/or highly enriched DEGs in one cluster compared to all other clusters. These cluster-
specific features were used as reference genes of GO pathway analysis with the R package
clusterProfiler (version 4.2.2, accessed on 11 April 2023) [24]. Data were visualized using
Seurat package functions, including DimPlot, FeaturePlot, DotPlot, and DoHeatmap.

2.6. The Signature Scores for General Characteristics of Astrocytes

We assessed signature gene scores of astrocytes using the AddModuleScore func-
tion in Seurat. These genes originate from previously published studies including PR,
pan-reactive astrocytes (ASPG, S1PR3, CXCL10, VIM, GFAP, CD44, CP, OSMR, TGM1,
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FKBP5, TIMP1, HSBP1, and STEAP4); A1, A1-reactive astrocytes (C3, SRGN, GBP2, PSMB8,
AMIGO2, FBLN5, and SERPING1); A2, A2-reactive astrocytes (EMP1, CD14, CD109, PTX3,
STAT3, PTGS2, TM4SF1, CLCF1, SPHK1, B3GNT5, S100A10, and SLC10A6); HM, home-
ostasis (SLC1A2, SLC1A3, GLUL, SLC6A11, NRXN1, CADM2, PTN, and GPC5); and PC,
phagocytosis (MEGF10 and MERTK) [25–27].

2.7. Analysis of Spatial Transcriptomic Data

We downloaded the recently published 10x Visium dataset from whole hemisphere
saline or LPS-injected mice (N = 3 per condition) (data available at the Gene Expres-
sion Omnibus repository: series GSE165098) [10]. Data were analyzed using Seurat
(version 4.1.0) [21]. In short, each section was normalized using SCTransform and merged
based on variable features. Data were visualized using the SpatialFeaturePlot function
in Seurat.

2.8. Regional Annotation of the Mouse Brain

We assessed module scores of classical region-specific genes using the AddModule-
Score function in Seurat. These modules include cortex (CTX; Mef2c, Mef2d), hippocam-
pus (HIP; Cst3, Glul), white matter (WM; Plp1, Mbp, and Mog), and ventricle modules
(Ccdc153, Foxj1, Enkur, and Ttr) [28–32]. The midbrain (MB) module gene list was obtained
from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/, accessed on
11 April 2023).

2.9. Mouse Gene Signatures for Each Astrocyte Cluster

To highlight clusters identified in our single-cell RNA-seq data, we defined gene sig-
natures for each astrocyte cluster using the top 50 marker genes (genes ranked by log2FC)
from our earlier enriched genes in each astrocyte subtype (see Subcluster Analysis of Astro-
cytes and Table S2). To explore the expression of these gene signatures in the mouse dataset
as well, we created mouse gene signatures comprising one-to-one orthologs of the human
module genes, which were identified using the biomaRt R package (version 2.50.3) [33].
Signature scores were calculated using the AddModuleScore function in Seurat.

2.10. Identification of Astrocyte Transcriptomic Modules

The samples with less than 100 astrocytes were excluded. For each of the 294 samples
with at least 100 astrocytes, we used non-negative matrix factorization (NMF) to extract 7
co-expression submodules with the NNLM R package (version 0.4.4) (https://github.com/
linxihui/NNLM, accessed on 11 April 2023). The specific steps are as follows. We first
filtered DEGs of each astrocyte cluster (log2FC > 0.6, adjusted p-value < 0.05). We used these
genes to construct a normalized expression matrix (genes x cells) for each sample. If the
number of astrocytes per sample was greater than 300, we set the number of decomposition
rank to 8, and if it was between 100 and 300 then it was set to 6, which resulted in a total
of 1556 submodules across the 294 samples. The 1556 submodules were compared by
hierarchical clustering using the Pearson correlation coefficient over all gene scores as
a distance metric. Based on the clustering dendrogram and cutree function in R, seven
clusters of modules were identified manually. We used the top 20 genes of each module
to define the module. For a single cell, if it expressed ≥70% of the genes within a given
module, it was considered as a cell expressing the activated module, namely, a module cell.

2.11. Functional Analysis of Gene Modules

To functionally describe the astrocyte expression module and non-module cell sub-
types, we performed the pathway analysis based on the hallmark and gene ontology
gene sets of the MSigDB database and estimated the pathway activity of individual
cells using the gene set variation analysis (GSVA) package (version 1.42.0) with stan-
dard settings [34]. To assess the differential activities of pathways between module cells

https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/linxihui/NNLM
https://github.com/linxihui/NNLM


Biomolecules 2023, 13, 692 5 of 23

and non-module cells, activity scores were contrasted for each cell group using the Limma
package (version 3.50.1) [35].

2.12. The Interaction Network of the M2 and M4 Modular Genes

We used the top 50 M2 and M4 modular genes to construct the interaction networks
by STRING analysis (https://string-db.org, accessed on 11 April 2023) and used Cytoscape
(version 3.9.1) to visualize the networks.

2.13. Differential Expression Analysis and PCA of Different Disorders

To avoid the spatial bias, the DEG analysis was firstly conducted between disease
and controls from the same brain region. The number of unique and overlapping up-
and down-regulated DEGs among different disorders are shown using UpsetR (version
1.4.0) [36]. We used genes shared in at least three out of six disorders to construct interaction
networks by STRING analysis (https://string-db.org, accessed on 11 April 2023) and used
Cytoscape (version 3.9.1) to visualize the networks. PCA was performed based on the top
200 DEGs for each disorder using the scatterplot3d package (version 0.3-41).

2.14. Proteomics Dataset Analysis

We downloaded a recently published TMT-MS dataset, which has been normal-
ized [20]. We performed strict quality control and removed proteins and samples containing
missing values. After data processing and quality control, a total of 8619 proteins were
retained for downstream analysis. We used the top 20 genes of each module to construct
protein co-expression modules. At least more than half genes of each module, except
M7, consisting of five proteins were paired, but the five proteins were highly correlated
with cilium and could greatly represent the M7 module function. We then calculated
the corresponding protein abundance scores for each module and assessed correlations
within modules. Analysis of modular dependency at the protein level was estimated using
Spearman correlations. Correlation coefficients and p-values were indicated by a heatmap.

2.15. Ligand-Receptor Analysis with CellChat

Ligand-receptor analysis and visualization were performed using CellChat (version
1.1.3) [37]. CellChat offers reliable quantitative inference, analysis, and visualization of
the intercellular communication network based on previously identified ligand/receptor
pairings and other signaling cofactors. To dissect this global alteration in different disorders,
we first calculated the relative information flows for each signaling pathway using the
compareInteractions function, which is defined as the total communication probability
among all the pairs of cell groups in the communication network. We also showed key
signaling pathways using the netVisual_bubble function. Default values were used for the
parameterization of each step.

3. Results
3.1. Large-Scale Unbiased Integration of Human scRNA-Seq Dataset

The overall strategy includes collecting human scRNA-seq, spatial transcriptomic, and
proteomic datasets to avoid the limitations by single methodology (Figure 1A–C). Briefly,
we performed quality control and integration for scRNA-seq datasets from human CNS
disease tissues (Figure 1A). To provide a high-resolution reference map for their regional
preferences, a mouse spatial-transcriptomes dataset was included (Figure 1B). To validate
these astrocyte subtypes and modules at the protein level, we used a published tandem
mass tag mass spectrometry (TMT-MS) dataset in AD patient brain tissues (Figure 1C).
In total, we curated 302 publicly available human brain scRNA-seq datasets that were
generated by different platforms (10x v2/3 and inDrops v3) from June 2019 to March
2022 (Figure 1D). They originated from six CNS diseases, known as AD, PD, HD, MS,
epilepsy (Epi), and chronic traumatic encephalopathy (CTE). After removing ambient RNA
signatures and removing cells of low quality (Supplementary Figure S1A), we merged the
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datasets to perform preliminary single-cell transcriptome analysis. The resulting dataset
consisted of 990,317 cells and nuclei (Figure 2A and Table S1). Due to differences in the
specimen sources, experimental conditions, and library preparation methods, substantial
batch effects were evident in dimensionally reduced visualizations of these data (Figure 2A).
After Harmony integration, the batch effects were satisfactorily removed with no notable
separation across different platform or conditions (Figure 2B). For integrated datasets,
network-based clustering analysis revealed 28 cell clusters, which were further manually
categorized into 8 major cell types using canonical marker genes including astrocytes
(Astro), endothelial cells (Endo), excitatory (ExN) and inhibitory (InN) neurons, microglia
(Micro), oligodendrocytes (Oligo), oligodendrocyte progenitor cells (OPCs), and pericytes
(Peri) (Figure 2C,D). Each dataset contained all the cell types (Supplementary Figure S1B,C).
Thus, we have completed the integration of the datasets without bias and identified the
main cell types for downstream analysis.
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Figure 1. Overview outline of astrocyte dataset categories and analysis pipeline. (A) Workflow of
data generation, integration, and annotation for the human brains’ single-cell transcriptome datasets.
(B) Spatial transcriptomics profiling workflow of mouse brains. (C) Processing workflow of the TMT-
MS proteomics dataset on control, asymptomatic AD (AsymAD), and AD brain tissues. (D) Metadata
table for all datasets included in this study. Abbreviations: AD, Alzheimer’s disease; PD, Parkinson’s
disease; HD, Huntington’s disease; MS, multiple sclerosis; Epi, epilepsy; CTE, chronic traumatic
encephalopathy; AsymAD, asymptomatic AD; scRNA-seq, single-cell RNA-sequencing; spatial
RNA-seq, spatial RNA-sequencing; TMT-MS, tag mass tag spectrometry.
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Figure 2. Large-scale integration of 302 single-cell RNA-seq samples reveals astrocyte subtypes
in the human brain. (A) UMAP plot of the combined datasets before batch correction, colored by
dataset source. (B) UMAP plot of integrated dataset after batch correction with Harmony, colored
by dataset source. The corner insets are colored by scRNA-seq platforms (up) and disease types
(down). (C) UMAP plot colored by major cell types in the human brain. (D) Expression of canonical
marker genes of major cell types. Dot plot showing the expression level (color scale) and the percent
of cells expressing (dot size) marker genes across cell types. (E) UMAP plots of all cells colored by
expression levels of four classical astrocyte markers. (F) A total of 169,730 astrocytes were re-clustered
into 8 astrocyte subtypes (cluster 0−7). (G) General characteristics of 8 subtypes using relative
expression strength of 5 known astrocyte programs: phagocytosis (PC); homeostasis (HM); A1−
and A2−reactive astrocytes (A1, A2); and pan-reactive astrocytes (PR). (H) Heatmap showing the
normalized average expression of the top 10 enriched genes for each cluster.
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3.2. Molecularly and Functionally Distinct Astrocyte Subtypes Are Identified

In total, 169,730 astrocytes were identified by showing high expression of markers
such as ADGRV1, AQP4, SLC1A2, and GFAP (Figure 2E). We sought to determine whether
the increased cell numbers enabled us to detect novel subpopulations that had previously
been missed. Subcluster analysis of astrocytes generated eight transcriptionally unique
subpopulations (Figure 2F–H). The biological relevance of each subtype was checked using
several published functional gene signatures including phagocytosis (PC), homeostasis
(HM), and A1-, A2-, and pan-reactive astrocytes (PR) [25–27] (Figure 2G). Their marker
gene sets and functional annotations were listed (Supplementary Figure S3 and Table S2).
We found that clusters 0 and 1 both highly expressed homeostasis signatures involved in
amino acid transport, transportation across the blood–brain barrier, and positive regulation
of synaptic transmission (e.g., SLC1A2, SLC1A3, and GLUL), suggesting their important
putative protective roles in maintaining CNS homeostasis. In addition, cluster 0 was
also involved in transition metal ion homeostasis (e.g., MT3, FTL/FTH1), and expressed
APOE and CLU involved in amyloid metabolism and clearance [38–40]. Interestingly, some
lncRNAs, SNHG14 and MIR100HG, were enriched in cluster 1. SNHG14 has previously
been reported to provide neuroprotection by inhibiting inflammatory responses during
AD progress [41]. In addition, phagocytosis-associated signatures (MEGF10, MERTK) were
significantly enriched in cluster 1, which has previously been reported as a novel role for
astrocytes in mediating synapse elimination to achieve precise neural connectivity [42,43].
Therefore, we hypothesize that there are subtype-specific astrocytes and not all cells perform
this phagocytic function in the adult brain.

Pan-reactive astrocyte signatures (e.g., GFAP and CD44) were enriched in cluster 2
and 7, representing astrocyte activation [44,45]. Cluster 2 highly expressed genes involved
in oxidative stress (FOS, JUN/JUNB, UBC, and ID3) and the extracellular matrix (TNC,
TNR, and VCAN) and associated with proteostasis (e.g., HSP90AA1, HSPA1A, and HSPB1,
known as chaperones). These reactive genes presenting in the same astrocyte cluster suggest
their putative close interaction. Cluster 5 was enriched for inflammation/A1 astrocyte
signatures and highly expressed immune response genes including DOCK8, APBB1IP, C3,
SPP1, RUNX1, and PLXDC2. Previously published studies have reported complement
component 3 (C3) in a specific subtype of reactive astrocytes that respond to inflammation
and mediate microglia–astrocyte crosstalk in a range of neurodegenerative diseases such as
AD, HD, MS, and amyotrophic lateral sclerosis (ALS) [4,26,46]. Cluster 4 expressed many
microtubule-related genes involved in the formation of the cytoskeleton. Interestingly, we
found that cluster 3 expressed oligodendrocyte marker genes (MBP and PLP1) and higher
OLIG2 (oligodendrocyte transcription factor 2) compared with other clusters (p = 0.022,
Table S2). We adopted the expression of MBP in microglia cells as a measurement of
background MBP levels. We compared the total MBP expression level of all astrocyte
cells or astrocyte cluster 3 to that of microglia. We found that MBP was expressed at
much higher levels in astrocytes than in microglia, which indicates that we have ruled
out the possibility of acellular free-RNA cross-contamination affecting the properties of
astrocytes (Supplementary Figure S2C). Therefore, cluster 3 likely represented OLIG2+

astrocyte subtypes involved in ensheathment of neurons [47,48]. Lastly, cluster 6 especially
expressed synapse-associated genes (e.g., SYT1, NLGN1, and GRIN2B) and was involved
in synaptic maintenance. Together, we identified eight transcriptionally distinct astrocyte
subtypes, suggesting that integrated data enabled us to detect novel subpopulations that
had previously been missed.

3.3. Astrocyte Subtypes Are Ogeneous in Human and Mouse Brains

Recent findings showed astrocytes varied across the CNS regions [10,11,49]. We next
aimed to determine whether our diverse astrocyte subgroups are located in various parts
of the brain. We found that some astrocyte cluster modules exhibited significantly region-
specific expression in the mouse brain, in line with the origin of astrocytes in human brain
tissue (Figure 3A). For example, cluster 1 was significantly enriched in the cerebral cortex
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of humans where RORB and TSHD7A were enriched, which have previously been reported
to show cortex-specific expression in astrocytes and neurons [49,50] (Figure 3B).
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Figure 3. Astrocyte subtypes are regionally heterogeneous. (A) UMAP plot of astrocytes, colored by
the human brain regions including basal ganglia (BG), cortex (CTX), hippocampus (HIP), and white
matter (WM). (B) Relative proportions of astrocyte subtypes for samples from different brain regions.
BG, N = 40; CTX, N = 209; HIP, N =16; WM, N = 29. (C) Identification of brain region locations using
module scores of classical region-specific marker genes: CTX, HIP, WM, midbrain (MB), and ventricle
modules. (D) The highlighted spatial distribution of 8 astrocyte subtype signatures in sections
from normal (N = 3) and neuroinflammatory (N = 3) brains using Visium spatial transcriptomics.
(E) Quantification of signature scores of the top 50 enriched genes for each cluster, across all spots
from normal and neuroinflammatory samples. (*** p < 0.001, Kruskal–Wallis test).

In order to examine regional variations in our astrocyte subtypes in the human and
mouse brain, we used available spatial transcriptomics datasets [10] (Figure 3C,D). To
precisely annotate the spatial transcriptomics datasets, we labeled the brain slices with
the expression level of known regional specific markers (Figure 3C) including cortex
(CTX; Mef2c, Mef2d), hippocampus (HIP; Cst3, Glul), white matter (WM; Plp1, Mbp, and
Mog), midbrain (MB, see methods), and ventricle modules (Ccdc153, Foxj1, Enkur, and
Ttr) [28–30,30–32] (Figure 3C). We then generated the spatial expression of assembled
marker genes for each cluster to estimate the likely location of each astrocyte population
(Figure 3D). These cluster signatures have diversified brain region distributions. Cluster
1 signatures are enriched in the cortex (Figure 3D). Notably, we discovered that cluster
6 was considerably enriched in the mouse cortex and hippocampal regions, which is in
line with the involved synapse formation function (Figure 3D). The cluster 4 signature
was exclusively observed in regions surrounding the 3rd and lateral ventricles of the mice,
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suggesting that cluster 4 might interact with some factors carried by the cerebrospinal
fluid [10,51]. Meanwhile, we also validated the expression of tanycyte markers such as
COL23A1 and SLC16A2 in cluster 4, and we did not detect the expression of these two
genes in cluster 4 (Supplementary Figure S2B) [52]. Therefore, we excluded the possibility
that cluster 4 represents tanycytes. Interestingly, we found that cluster 7 from human basal
ganglion (BG) tissues was significantly enriched in MB of the mouse brain. In addition
to expressing genes involved in cell–cell and cell–ECM (extracellular matrix) interaction
(TNC, CD44, and APOE), cluster 7 also highly expressed LUZP2 (log2FC = 2.48) compared
to other clusters (Table S2). This is consistent with the report that an LUZP2+ astrocyte
subset exists in the mouse medial amygdala, part of the BG [53]. These results suggested
that cluster 7 may represent a novel astrocyte subtype unique to the basal ganglion in
human and mouse brains. In addition to the conserved subtypes shared between mouse
and human brains, we also found species-specific differences, such as the large proportion
of cluster 0 distributed in the cortex of the human brain, which we found difficult to detect
in the mouse cortex. This may be due to the lack of interlaminar and varicose projection
astrocytes in rodent animals, which has been reported by many studies [54,55].

In addition, we also explored whether neuroinflammation induced by the endotoxin
lipopolysaccharide (LPS) affects the expression of module signatures. We found that all the
module signatures, except for cluster 4, were significantly upregulated in neuroinflamma-
tory mice compared to normal controls (Figure 3E). Together, we discovered notable and
robust brain area preferences for astrocyte clusters that are shared between the human and
mouse datasets, such as clusters 1 and 7, indicating that the astrocyte subtypes we found
may be preserved between species at the transcriptome level. Meanwhile, we also found
differences in the transcriptional profiles of some astrocyte subtypes between human and
mouse brains, such as cluster 0, which indicates species-specific variation.

3.4. Astrocyte Subtypes Are Partially Associated with CNS Disease

To investigate how astrocytes contribute to disease onset, we preliminarily analyzed
the relationship between astrocyte subtypes and disease (Supplementary Figure S4). We
found clusters 2 and 7 showed an increase in their relative abundance in PD compared
with control groups in the same regional brain. In contrast, clusters 3 and 5 showed a sharp
decrease in PD. Furthermore, we found that multiple astrocyte subtypes were involved
in the development of epilepsy and multiple sclerosis, such as clusters 1, 2, 3, and 5 in
epilepsy and clusters 3 and 4 in MS. Interestingly, we also identified two astrocyte subtypes,
clusters 0 and 6, associated only with HD and CTE, respectively, likely indicating that only
the sole astrocyte subtype, but not all, is involved in disease progression.

Unfortunately, we could not find statistical differences in AD compared with control
groups, which is contrary to previous studies [11,56]. We hypothesized that pathological
stimulus does not always lead to quantitative changes in astrocyte subtype compositions
but could induce functional changes in the form of interference of gene modules. In
addition, we have found that some diseases are associated with multiple astrocyte subtypes,
and it remains unclear whether the common or specific functions of these astrocytes are
responsible for the development of the disease. Therefore, to overcome these problems, we
set out to uncover the prevalent regulatory modules across all subsets of astrocytes.

3.5. Identification of Seven Common Expression Modules of Astrocytes across Control and
Disease Tissues

We used non-negative matrix factorization (NMF) for 294 human brain scRNA-seq
datasets to uncover coherent sets of genes that were preferentially co-expressed by subsets
of astrocytes. We identified seven expression modules (M1–M7) with different functions
and cell statuses (Figure 4A,B; Table S3) and defined cells expressing ≥70% of genes in
each module as module cells (Figure 4C). We selected the most activated pathways in
the module cells by comparison with non-module cells to analyze their functions using
GSVA analysis (Figure 4D). Despite the fact that the number of modules and previously
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identified clusters are similar, they are not directly corresponded, as many modules tend
to span across multiple clusters. Specifically, M1, M2, M6, and M4 modules are widely
expressed with different strengths, suggesting that they are necessary for most astrocyte
subtypes to perform basic functions (Figure 4C). The M1 ion homeostasis module was
characterized by the expression of genes associated with ion transport (e.g., GPC5, RYR3,
SLC4A4, and GABRB1). M1 module cells were involved in calcium ion transport, inorganic
ion transmembrane transport, and regulation of cellular PH pathways (Figure 4D). The
M6 metabolism module consisted of metabolism-associated genes (e.g., CLU, GLUG, GJA1,
APOE, and MT3), which comprise two AD-risk genes (APOE, and CLU). M6 module cells
also displayed small molecule catabolic process, lipid catabolic process, and amyloid beta
clearance (Figure 4D). These results suggest M6 plays a critical role in AD pathogenesis by
metabolically interacting with neurons [57]. The M2 ECM module had increased expression
of ECM-associated genes (e.g., CD44, TNC, and VCAN) and protein kinases (DCLK1/2)
that were involved in radial migration and axon growth of cortical neurons and associated
with neurodevelopmental and neuropsychiatric disorders [58,59]. Additionally, GLIS3 in
the M2 module has been studied to influence the glioma cells’ invasion, migration, and
proliferation and upregulate the NF-κB signaling pathway [60]. The M4 stress module is
a known signature of reactive astrocytes highly expressed in stress/inflammatory genes
such as heat shock proteins (HSPB1, HSP1A1, and HSPBB) and cellular stress (e.g., GFAP,
UBC, FOS, and JUN). M4 stress cells showed activation of the response to oxidative stress,
P53 pathway, apoptosis, and TNFα signaling (Figure 4D).

In contrast, other modules were expressed in different astrocyte clusters in a special-
cluster manner, such as M3 in cluster 3, M5 in cluster 5, and M7 in cluster 4 (Figure 4C). The
M3 synapse module was characterized by high expression of genes involved in synapse
organization (e.g., IL1RAPL1, CTNNA3, PTPRD, and DLG2) and ensheathment of neu-
rons (e.g., MBP, PLP1, and ST18), in line with displaying regulation of axonogenesis and
presynaptic organization pathways (Figure 4B,D). The M5 immunity module consisted
of immune response genes (LRMDA, ELMO1, MEF2A/C, SLC8A1, and APBB1IP) and per-
formed immune activation functions, including positive regulation of phagocytosis and
the antigen receptor-mediated signaling pathway [61,62]. The M7 cilium module had
overexpressed genes related to the cilium and microtubule, such as cilium proteins (e.g.,
CFAP43/54, DNAH7/9, HYDIN, and RFX3) and microtubule proteins (e.g., AGBL4, DCDC1,
and SPAG17). Together, we identified seven co-expression modules of astrocytes from
multiple samples, which perform specific functions.

3.6. Identification of Dependency among the Expression Modules

We next explored how these modules are co-regulated in pairwise using Spearman cor-
relation analysis (Figure 4E). We identified one significant co-occurring module pair as well
as three mutually exclusive module pairs (r ≥ 0.3 or ≤ −0.3, p < 0.05, Figure 4E). The M2
ECM showed the strongest positive correlation with the M4 stress/inflammation (r = 0.36).
We found an intense interaction network among these two modular genes, probably re-
flecting their cooperation and coregulation in multiple processes (Figure 4F). Astrocytes
as a source for ECM and cytokines are well known, and there is growing evidence that
astrocytes communicate through direct cell–cell contacts or via the extracellular matrix to
transmit the activated state to individual ECM-connected cells, which is associated with
various neurological diseases [63–66]. Another study finds that matrix stiffness affects
astrocytic activation and phenotypes in an in vitro injury model [67]. Notably, M1 ion
homeostasis showed the strongest negative correlation with the M4 stress/inflammation
(r = −0.51), which likely reflects that astrocyte reactivity could disrupt ion homeosta-
sis of the brain microenvironment. Together, these results indicate that astrocytes have
function-specific co-expression modules, and these modules are highly heterogeneous
among astrocyte subtypes.
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Figure 4. Identification of astrocyte transcriptomic gene modules. (A) Heatmap showing pairwise
correlations of non-negative matrix factorization (NMF) submodules derived from 294 samples.
The resembled submodules across samples are aggregated into 7 modules (M1−M7). (B) Heatmap
showing expression of marker genes within each module across single cells. Colors above columns
correspond to cell state. (C) The distributions of each expression module. Cells expressing ≥70%
of genes in each module are defined as module cells. (D) Heatmap showing pathway activity
differences between module cells and non-module cells for each module scored by GSVA. Each
column is normalized by z−score to indicate the relative pathway activities. (E) Heatmap showing
Spearman correlation coefficients assessing for each pair of modules (rows, columns) if they are
co-occurrent (≥0.3, red, positive correlation) or exclusive (≤−0.3, blue, negative correlation). (F) The
interaction networks for the M2 ECM and M4 stress modular genes (blue, M2 modular genes; red,
M4 modular genes). Node size is the number of links; edges represent interactions between nodes.

3.7. Brain Region Is a Key Factor for Transcriptome Differences in Astrocytes

To study whether astrocytes have contextual changes across different CNS disorders,
we next analyzed differentially expressed genes (DEGs) and identified both common and
disorder-specific transcriptomic changes across different CNS disorders including HD, PD,
AD, Epi, CTE, and MS. To avoid spatial bias, the DEG analysis was conducted between
disease and controls from the same brain region. In total, we identified 2294 upregulated
DEGs and 3407 down-regulated DEGs across all disorders that were presumably driven by
disorders (Table S4). Principal component analysis (PCA) of reactivity DEGs was performed
to infer the correlation among different diseases (Figure 5A). It was expected that these sam-
ples were separated according to disease types. However, the PCA showed near-orthogonal
differences, and samples from the same brain region had the closest proximity, indicating
that the astrocyte heterogeneity among different brain regions could be stronger than
that of disease states. Several recent studies have demonstrated the existence of astrocyte
spatial heterogeneity, and astrocytes could produce spatial-specific and subtype-specific
responses to inflammatory or pathological stimuli by in situ hybridization and spatial
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transcriptomics [10,32,68]. Meanwhile, we also found that samples of hippocampus and
cortex tissues are closely grouped, suggesting that hippocampus and cortex astrocyte tran-
scriptional levels are similar. However, epilepsy samples of the hippocampus broke away
from clusters of the same tissue (Figure 5A), probably reflecting that epilepsy pathology
causes greater transcriptional alterations in astrocytes compared to regional factors.
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Figure 5. Gene and modular transcriptomic changes across multiple CNS disorders and brain regions.
(A) Three-dimensional PCA plot for different CNS disorder samples based on disease-associated
genes. Samples are grouped by both brain region and disease condition: basal ganglion control (BG-
Ctl, N = 24), basal ganglion Huntington’s disease (BG-HD, N = 11), basal ganglion Parkinson’s disease
(BG-PD, N = 5), cortex Alzheimer’s disease (CTX-AD, N = 120), cortex control (CTX-Ctl, N = 89),
hippocampus control (HIP-Ctl, N = 6), hippocampus epilepsy (HIP-Epi, N = 10), white matter control
(WM-Ctl, N = 13), white matter chronic traumatic encephalopathy (WM-CTE, N = 8); white matter
multiple sclerosis (WM-MS, N = 8). (B) UpSet plot showing unique and overlapping up-regulated
DEGs for each CNS disorder. The inset panel demonstrates interaction networks among collectively
up-regulated genes in at least three out of six disorders. DEGs in at least four out of six disorders are
colored in red. (C) A similar analysis for down-regulated DEGs across CNS disorders. (D) Boxplots
showing the distribution of module scores in all control and disorder groups as described in (A).
p-values are derived from a two-sided Wilcoxon test.
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3.8. Collectively Up- and Down-Regulated Transcriptomic Changes across Multiple CNS Disorders

We further explored transcriptomic differences across different CNS disorders and
found that transcriptional changes associated with astrocyte reactivity are highly hetero-
geneous in a disorder-specific manner. The number of up-regulated DEGs varies greatly
across disorders: MS (1315), epilepsy (1203), PD (1082), HD (639), AD (84), and CTE (76)
(Figure 5B). Their functions are annotated using GO analysis (Supplementary Figure S5A
and Table S4). Among them, 157 genes were up-regulated in at least 3 out of 6 disorders
(Figure 5B and Table S4). They formed an interaction network, indicating their highly
connected regulations, which implied strong codependency of pathogenic processes in
multiple CNS disorders through intercellular communications [69,70]. Reactive and stress
signature genes formed the core of this network, including GFAP, FOS, and heat-shock
genes. This network also suggested that many astrocytic genes are associated with multiple
pathological processes including MAFG, CLU, APP, and ITM2B/C. Specifically, a recent
study identified that MAFG-driven astrocytes promote CNS inflammation and repress
antioxidant and anti-inflammatory transcriptional modules in MS and its preclinical model,
experimental autoimmune encephalomyelitis (EAE) (Wheeler et al., 2020). Here, we fur-
ther revealed that in addition to MS, HD, and PD, astrocytes also highly express MAFG.
Given that comparatively less is known about the role of MAFG in other CNS diseases, we
hypothesize that the same pathological mechanisms may exist in the other two diseases.

For the down-regulated genes, PD, Epi, HD, and MS had more DEGs compared to
AD and CTE disorders (Figure 5C). A total of 178 genes were down-regulated in at least
3 out of 6 disorders. Some of these shared genes include EPHB1, PTN, NRP1, NRXN1,
and GABRA2, which are involved in synapse organization, axonogenesis, and positive
regulation of glial cell differentiation (Supplementary Figure S3 and Table S4). The lowered
expression levels of some of these transcripts, which have significant potential protec-
tive functions in neurodegenerative diseases, might be worrisome. For example, ephrin
type-B receptor 1 (EphB1) in a mouse ALS model and pleiotrophin (PTN) in MS could
reduce pro-inflammatory signaling in astrocytes and promote neuronal survival following
inflammatory challenge [71,72]. We found that astrocytes in multiple disorders also down-
regulated pathways associated with calcium channel regulator activity and blood vessel
endothelial cell migration, suggesting that astrocytes may be losing important homeostatic
and protective functions in disease conditions. Together, we identified both disorder-
specific and collective transcriptomic changes across different CNS disorders in astrocytes
and further revealed the similarities and differences among CNS disorders. These findings
provide a meaningful approach and results for studying associations among diseases.

3.9. Gene Module Alterations across Different CNS Disorders

To explore whether there are some associations between the previously constructed
modules and the diseases, we firstly calculated co-expressed module scores for the top
20 genes of each module by case status. Then, we compared the module scores between
disease and control groups in the same brain region (Figure 5D). Notably, we identified
both shared and disorder-specific module changes in different CNS disorders. For instance,
the M2 ECM module was significantly increased in PD and AD, suggesting that the ECM
performs a general function in both disease processes. Similarly, we found that the M3
synapse module of PD and Epi and the M7 cilium module of PD and MS were also elevated
(Figure 5D). In addition to shared modules in multiple disorders, we identified disease-
specific modules as well, such as the M4 stress module up-regulated in AD and the M5
immunity module up-regulated in epilepsy (Figure 5D). These results agree with and
promote the awareness that glial cells play an important role in epilepsy, which involves
inflammation, oxidative stress, and maladaptive myelination [73,74]. Compared to other
diseases, we found that AD is most susceptible to the M4 stress/inflammation module.
PD in the basal ganglion and AD in the cortex are both more highly expressed in the M2
ECM module, indicating that ECM is significantly associated with pathological processes of
them. In summary, we further assessed the association between diseases and co-expressed
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modules in astrocytes and found some functional modules played an important role in the
development of the disease.

3.10. Validation of Astrocyte Modules in AD Proteomic Dataset

To confirm our transcriptome-based results at the protein level, we re-analyzed the
tandem mass tag mass spectrometry (TMT-MS) dataset in AD [20]. We included a total
of 488 dorsolateral prefrontal cortex tissues including control (N = 106), asymptomatic
AD (AsymAD, N = 220), and AD (N = 182) groups (Figure 6A). We then calculated the
corresponding protein abundance scores for each module and assessed correlations within
modules (Figure 6B). Surprisingly, there was a stronger correlation between some modules
at the protein level compared to the RNA level, such as M2/M4 (r = 0.44) and M1/M6
modules pairs (r = 0.4). These results again demonstrated that ECM and inflammation
indeed are functionally linked. Interestingly, we found some modules showed an opposite
relationship, such as M2/M5, M2/M7, and M5/M6, suggesting that significant differences
between protein and RNA co-expression exist [20,75].
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Figure 6. Astrocyte transcriptomic modules were validated at the protein level. (A) Workflow of
TMT-MS-based proteomics on dorsolateral prefrontal cortex (DLPFC) tissues from control (N = 106),
asymptomatic AD (AsymAD, N = 200), and AD human brains (N = 182). (B) Heatmap shows module
relatedness, and modules were correlated with neuropathological and cognitive traits. Correlation
coefficients were asserted based on Spearman correlation (red, positive correlation; blue, negative
correlation). * p < 0.05, ** p < 0.01, and *** p < 0.001. Amyloid plaque load (CERAD score), tau
neurofibrillary tangle burden (Braak stage), cognitive function (Mini-Mental Status Examination,
MMSE), and mass spectrometry molecular measurements (Aβ; tau, the tau microtubule-binding
region; αSyn). (C) Boxplots showing module score levels by case status. p-values are derived from a
two-sided Wilcoxon test. (D) Boxplots showing Aβ and tau levels by case status. p-values are derived
from a two-sided Wilcoxon test. (E) Aβ levels were correlated with M2 and M4 module scores by case
status. Correlation coefficients were asserted based on Spearman correlation, colored by case status.

The module scores were correlated with amyloid plaque load (CERAD score), tau
neurofibrillary tangle burden (Braak stage), cognitive function (Mini-Mental Status Ex-
amination, MMSE), and mass spectrometry molecular measurements (Aβ; tau, the tau
microtubule-binding region; αSyn) (Figure 6B). We observed that the M2 and M4 modules
showed the strongest AD trait correlations (CERAD score and Aβ r > 0.2, MMSE r < −0.2).
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We also found some pathology-specific modules. For example, the M1 ion homeostasis and
M7 cilium modules showed a passive correlation with tau and αSyn proteins. However,
the correlation between M7 and Aβ was opposed.

We associated our astrocyte modules with diagnostic classifications of AD (Figure 6C).
In general, most modules were increased or decreased consistently with AD progressions in
the AsymAD group, indicating that these modules could reflect pathophysiologic processes
that begin early in the preclinical phase of AD. Notably, the M2 ECM module was more
significantly increased in AsymAD compared to control. The accumulation of β-amyloid
occurred in early stages of AD (Figure 6D), which was consistent with previous reports [76].
To further investigate susceptibility to the early stages of AD, we correlated each module
score to neuropathological traits by case status (Figure 6E). We found that M2 and M4
showed the positive correlation with Aβ only in AsymAD, which suggested that the two
network modules could sensitively perceive the pathological changes of the disease in the
early stages of AD (Figure 6E). Overall, we again validated these co-expression modules
here at the protein level and screened for key modules, such as the astrocytic M2 ECM
module, that may have early diagnostic value for AD.

3.11. Integrated scRNA-Seq Data Show Alterations in Cell–Cell Communications in
Different Disorders

Astrocytes intensively interact with surrounding cell types through signaling crosstalks,
which are significantly perturbed in diseases. We explored the changes in intercellular
signaling in different diseases with CellChat [37]. We first calculated the number of inferred
interactions and interaction strength among all cell subpopulations and found significant
differences in cellular communication among different disorders (Figure 7A). We used
eight common cell populations among different disorders to perform functional similarity
analysis. As the result, the signaling pathways associated with inferred networks from
different disorders were mapped onto a shared two-dimensional manifold and clustered
into groups. We identified four pathway groups (Figure 7B). Groups 1, 2, and 4 were domi-
nated by growth factor pathways such as PDGF, NEGT, NRG, VEGF, and ANGPTL, while
group 3 dominantly contained immune-related pathways such as ncWNT, CD45, ICAM,
and MHC-II. We then compared relative information flows for each signaling pathway
among different disorders and found significant disease-specific cellular communications
(Figure 7C). For example, three signaling pathways were highly active in HD, which were
involved in inflammatory and immune responses, such as OPIOID, CD226, and TAC. Ten
pathways were specifically active in PD, including known immune signals such as TRAIL,
ITGB2, ncWNT, MHC-II, ICAM, and COMPLEMENT. Interestingly, the neurotrophin (NT)
signaling pathway was especially enriched in epilepsy, which includes signal molecules
such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). Previous
studies have reported that BDNF is increased in animal models and humans with epilepsy
and involved in epileptogenesis [77,78]. Additionally, some pathways were shared in
controls and many disorders, such as NGL, CNTN, and CADM, suggesting that these
pathways are essential for the maintenance of normal physiological functions and likely do
not critically contribute to disease pathogenesis.

To further investigate the critical disease-related cellular communication in which
astrocytes are involved, we compared the significant changed ligand-receptor pairs among
different disorders and target cell types (Figure 7D). Specific to NRG and NRXN signaling,
we identified two ligand-receptor pairs, NRG3-ERBB4 and NRXN1-NLGN1, as the most
significant signaling in epilepsy, contributing to the communication from astrocytes to
OPC, Oligo, InN, and ExN. Previous studies reported that NRG3 by non-neuronal cells
interacts with ERBB4 in PV interneurons and can promote the formation and maturation
of excitatory synapses in the hippocampus [79,80]. We found that NRG3-ERBB4 signaling
from astrocytes to OPC, Oligo, and InN widely participated in epilepsy (Figure 7D). In
contrast, this pathway had a relatively weak interaction with other diseases, suggesting
significant differences in cellular communication among diseases. Together, we found most
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alterations in cell–cell communications are specific to disorders, identified key signaling
changes in epilepsy, and uncovered that astrocytes might actively participate in disease
pathogenesis through the perturbation of cellular interactions.
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Figure 7. Identification of CNS disorder-specific cellular signaling changes. (A) Barplot of the
number of inferred interactions and interaction strength among all cell subpopulations in different
disorders. (B) Jointly projecting and clustering signaling pathways from different disorders into a
shared two-dimensional manifold according to their functional similarity. Different symbols represent
the signaling networks from different disorders. Each symbol represents the communication network
of one signaling pathway. The symbol size is proportional to the total communication probability.
Different colors represent different groups of signaling pathways. (C) Barplot of all significant
signaling pathways showing their relative information flow across disorders. (D) Dotplot comparing
the significant ligand-receptor pairs among different CNS disorders, which contribute to the signaling
from astrocytes to other cell types. Dot color reflects communication probabilities and dot size
represents computed p-values. Empty space means the communication probability is zero. p-values
are computed from a one-sided permutation test.
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4. Discussion

Widespread molecular and functional diversity are recognized to exist in astrocytes
across different brain regions and CNS disorders. The development of scRNA-seq enables
a high-resolution view of astrocyte heterogeneity, and many studies demonstrated the
molecular features of astrocytes in various diseases [1,81–83]. For example, Burda et al. and
Endo et al. mainly explored astrocyte reactivity in multiple disorders and astrocyte regional
diversity based on a large number of mouse models, respectively [82,83]. Especially, Endo
et al. identified genes and pathways related to astrocyte morphological complexity that
have a significant association with common CNS disorders [83]. Those studies have dra-
matically changed our previous superficial perception of astrocyte diversity. However, the
comprehensive landscape of context-dependent astrocyte reactivity on the human brain is
lacking, mainly due to specimen issues, which limit our general understanding of astrocyte
transcriptional changes [11]. Here, we integrate the largest human brain scRNA-seq dataset
to date, which includes six main neurological diseases. We profiled the astrocytes from
three levels, subtype compositions, regulatory modules, and cell–cell communications,
which comprehensively reveals the heterogeneity of pathological astrocytes.

We leverage the integrated dataset to better detect novel subpopulations and regula-
tory modules that could originally not be discovered in small datasets. For example, we
identified cluster 3, OLIGO2+ astrocyte subpopulations located mainly in white matter. The
new subtype highly expressed oligodendrocyte-associated genes. Although the existence
of this subtype is controversial in many studies, we have confirmed the possibility of
its expression of oligodendrocyte-associated genes from our aspect [5,11]. Through joint
analysis with the spatial transcriptomics datasets, we hypothesized that this astrocyte
subtype may play an important role in the formation of myelin [47,48]. We also identified
an astrocyte subtype, cluster 4, specifically located around the ventricles. This astrocyte
subtype may have complex interactions with molecules in the cerebrospinal fluid [10,51].
Single-cell transcriptomics combined with spatial transcriptomics can better complement
the spatial information of astrocytes, which can help us further understand the function of
astrocytes. We have revealed the spatial specificity of astrocytes, therefore, incorporating
the brain region as a key intervention factor of astrocytes is expected to be a promising
research direction for treating CNS disorders in the future.

Since we found that the conventional astrocyte composition analysis did not fully ex-
plain the occurrence of some diseases, we believe that explaining disease occurrence solely
from the perspective of cell subtype abundance or functional modules is insufficient, and a
combination of both is necessary. Some diseases may be related to multiple subpopulations,
and it is unclear whether these subpopulations collectively contribute to disease occurrence.
These factors cannot be explained by a single subpopulation alone, and we must exam-
ine them from the perspective of multi-subpopulation functional co-clustering modules.
Therefore, we applied NMF analysis to construct seven functional specific co-expression
gene modules. The M2 ECM and M4 stress modules showed evident signs of co-regulation,
which generated a complex network of interactions. Furthermore, we validated that these
two modules were significantly elevated in AD at both the transcriptome and protein levels.
Notably, the M2 module was significantly elevated in the early stages of AD onset, which
could furnish potential markers for AD early diagnosis. For example, M2 hub protein CD44
has been reported to have the potential as a fluid biomarker for the early diagnosis of AD
by a recent proteomic study [84].

These astrocyte transcriptomic modules recapitulate the core astrocyte features, which
facilitate elucidating diseases mechanisms from a biological perspective. We identified
aberration of the M3 synapse and M5 immunity in epilepsy, which are consistent with
recent studies [85,86]. The M3 synapse module, which represents the main function of
astrocytes, maintains the basic activity of neurons and is also involved in the development
of various diseases. A deeper understanding of this pathological process would be very
helpful for future research and development of treatments. We also identified the M4
module, which was differentially expressed only in AD. Most importantly, we found, in
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addition to AD, the M2 ECM module was also elevated in PD. Moreover, our distillation of
collectively up- and down-regulated genes among multiple disorders suggests that some
critical genes are widely involved in many diseases, such as MAFG, CD44, and DCLK1.

Finally, we performed cellular communication analysis using integrated data and
identified disease-specific signaling pathways that could contribute to disease pathogenesis.
HD, PD, and Epi disorders correspond to highly disease-specific pathways. Particularly,
the NRG3-ERBB4 signaling pathway from astrocytes to InN was significantly elevated in
epilepsy. Therefore, we speculate that this signaling pathway of astrocytes may act as a
protective function in epileptic pathology and NRG3 may be a new target for anticonvulsant
drugs in epilepsy [79,80]. Future studies on the NRG3-ERBB4 pathway in astrocytes and
InN could provide richer information on the mechanism of epileptogenesis, which would
be an interesting line of research.

In summary, we integrated published datasets and identified novel and putative
functional populations of astrocytes. Future functional studies are needed to evaluate
these subpopulations and their potential effectiveness for modulation by therapies. How
heterogeneity of astrocytes arises when subjected to different pathogenic stimuli is still an
open question. We also hope that continued integration of our current data with future
scRNA-seq and spatial datasets will add greater insights into solving these problems and
making new discoveries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040692/s1, Supplementary Figure S1: Single-cell RNA-
seq dataset quality assessment. (A) Violin plots of gene counts (left panel) and UMI counts (right
panel) after quality control filtering. (B) UMAP of integrated data, by dataset of origin. (C) Bar chart
summarizing the fraction of different cell types in each dataset source. Supplementary Figure S2:
Single-cell RNA-seq dataset quality assessment of astrocytes. (A) Violin plots of gene counts (left
panel) and UMI counts (right panel) of astrocyte subtypes. (B) The expression of oligodendrocyte-
associated gene (MBP and PLP1) and tanycyte markers (COL23A1 and SLC16A2) in astrocytes. (C) The
correlation analysis between the total MBP expression of each sample’s astrocytes (left panel) and the
total MBP expression of astrocyte cluster 3 (right panel) and microglia. Each point represents a sample.
Correlation coefficients were asserted based on Pearson correlation. Supplementary Figure S3: The
unique GO terms of each astrocyte subpopulation. Barplot of the unique GO terms of each astrocyte
subtype with the total number of genes involved in each pathway labeled. Supplementary Figure S4:
Relative abundance of astrocyte subpopulations across different CNS disorders. Boxplots showing
the relative abundance of astrocyte subpopulations in all control and disorder groups as described
in (Figure 5A). p-values are derived from a two-sided Wilcoxon test. Supplementary Figure S5:
Collective and disorder-specific Go terms across different CNS disorders. (A) Boxplots showing
the top 10 up-regulated GO terms per disorder. (B) Boxplots showing the top 10 down-regulated
GO terms per disorder. (C) GO terms of genes shared by at least three out of six diseases. Red, up-
regulated pathways; blue, down-regulated pathways; The dotted line represents p < 0.05. Numbers
on top of the barplots represent the total number of genes in each pathway. Table S1: Metadata of
published datasets used in this study. Table S2: Astrocyte cluster-specific DEGs and GO annotations.
Table S3: Gene lists for seven astrocyte expression modules. Table S4: Common and disorder-specific
DEGs and Go terms across different CNS disorders.
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