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Abstract: Ovarian cancer (OC) is the leading cause of death from gynecological malignancies world-
wide. Fortunately, recent advances in OC biology and the discovery of novel therapeutic targets have
led to the development of novel therapeutic agents that may improve the outcome of OC patients.
The glucocorticoid receptor (GR) is a ligand-dependent transcriptional factor known for its role in
body stress reactions, energy homeostasis and immune regulation. Notably, evidence suggests that
GR may play a relevant role in tumor progression and may affect treatment response. In cell culture
models, administration of low levels of glucocorticoids (GCs) suppresses OC growth and metastasis.
Conversely, high GR expression has been associated with poor prognostic features and long-term
outcomes in patients with OC. Moreover, both preclinical and clinical data have shown that GR
activation impairs the effectiveness of chemotherapy by inducing the apoptotic pathways and cell
differentiation. In this narrative review, we summarize data related to the function and role of GR in
OC. To this aim, we reorganized the controversial and fragmented data regarding GR activity in OC
and herein describe its potential use as a prognostic and predictive biomarker. Moreover, we explored
the interplay between GR and BRCA expression and reviewed the latest therapeutic strategies such
as non-selective GR antagonists and selective GR modulators to enhance chemotherapy sensitivity,
and to finally provide new treatment options in OC patients.

Keywords: ovarian cancer; glucocorticoid receptor; glucocorticoids; chemotherapy resistance

1. Introduction

Ovarian cancer (OC) is the third most common gynecological malignancy worldwide
with nearly 314,000 new cases diagnosed in 2020 [1]. Over recent years, the treatment land-
scape of OC has changed drastically due to advances in the field of tumor biology. However,
OC remains the most lethal gynecological tumor with 207,252 deaths recorded globally
in 2020 [1]. Notably, high-grade serous ovarian carcinoma (HGSOC), which accounts for
nearly 85% of epithelial ovarian carcinomas (EOC), is the most aggressive subtype and is
typically diagnosed in the late stages. Surgery and platinum-based chemotherapy have
represented the backbone of HGSOC treatment. However, almost 75% of patients develop
chemotherapy resistance and eventually relapse [2–4]. New therapeutic strategies have
been explored, and the introduction of a maintenance regimen with poly-adenosine diphos-
phate ribose polymerase inhibitors (PARPi) has represented a paradigmatic shift in OC
treatment [5–8]. PARPi has paved the way for a novel targeted-based therapeutic approach,
and new potential players driving OC progression and treatment response have rapidly
emerged. GR is a nuclear hormone receptor that is mainly known for its role in metabolic
homeostasis and stress response [9]. Nevertheless, several studies have highlighted the link
between GR activity and tumorigenesis in solid malignancies [10]. In particular, emerging
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evidence suggests that GR signaling may affect tumor progression and chemotherapy
response in patients diagnosed with HGSOC. In this narrative review, we examine the role
of GR in OC biology and describe prognostic and predictive values and the therapeutic
strategies currently adopted or under development to interfere with GR signaling in OC.

2. GR Structure and Function

The glucocorticoid receptor is a ligand-activated transcriptional factor that belongs
to the superfamily of nuclear receptors (Figure 1). Nuclear receptors (NRs) are transcrip-
tional factors that, upon ligand-binding, directly interact with DNA responsive regions
and promote the recruitment of co-regulator proteins and chromatin remodelers [11,12].
GR is encoded by the nuclear receptor subfamily 3 group C member 1 (NR3C1) gene
located on chromosome 5 (5q31.3). NR3C1 consists of ten exons, from 1 to 9β. Exon
1 is an untranslated region. Exon 2 encodes the N-terminal domain (NTD), which is a
transactivation domain that is independent of ligand activation. The NTD contains the
activation function 1 (AF1) binding site that directly interacts with co-regulator molecules
and chromatin-modifiers such as the activator protein 1 (AP1) [13]. Exons 3 and 4 encode
the DNA-binding domain (DBD), which contains two zinc finger motifs that are responsible
for the recognition of glucocorticoid-responsive elements (GREs) and for GR homodimer-
ization, respectively. Furthermore, exons 5 to 9 encode for the ligand-binding domain (LBD)
that directly interacts with glucocorticoids (GCs) and, via the activation function two (AF-2)
region, binds coactivator or corepressor proteins [13]. Notably, some GR isoforms are
generated through NR3C1 mRNA alternative splicing, each presenting different structure
and transcriptional activities. Among the latter, GRα is the longest isoform and is char-
acterized by an NTD, independent of ligand activation, and is associated with increased
sensitivity to GC signaling [14]. Differently, the LBD of GRβ is 35 amino acids shorter
than that of GRα, thereby resulting in impaired GC binding [13–15]. In particular, GRβ
forms transcriptionally inactive heterodimers with GRα and exerts a dominant negative
effect on GRα-mediated transactivation. Furthermore, GRβ-mediated signaling can di-
rectly ensure or repress the transcription of several genes independent of GRα antagonism.
Notably, GRβ activity has been associated with reduced GCs sensitivity, enhanced cancer
cell growth and, an induced inflammatory state [16]. In addition, GRγ differs from GRα in
terms of a single arginine insertion that occurs in the DBD and that has distinct binding
properties. Structural changes decrease GR binding affinity, thus resulting in fluctuating
GR activity [13,17]. Moreover, alternative mRNA splicing eventually results in seven NTDs
and two C-terminal truncated isoforms with still unclear biological activity [18,19].

The effects of GCs are principally mediated by the GRα isoform. Notably, GRα is
physiologically located in the cytoplasm and is complexed with chaperone proteins, such
as heat-shock protein (Hsp) 90, Hsp70, p23, and immunophilins FK506 binding protein
51 (FKBP51) and FKBP52 that prevent its degradation and ensure its maturation [20]. Upon
GC binding, glycogen synthase kinase 3 (GSK3) and cyclin-dependent kinases phospho-
rylate the LBD and induce a conformational change to ultimately enhance the interaction
with the ATP-dependent motor proteins dyneins, which promote the translocation of GR
to the nucleus [10]. Thus, upon nuclear dimerization, GR-DBD binds to specific GREs to
promote gene transcription. Alternatively, GR can eventually bind DNA as a monomer,
either to GREs or to negative GREs (nGRE), in order to ensure or repress gene transcription,
respectively [21]. In addition, GR may indirectly exert its activity by interacting with DNA-
binding factors such as AP-1 and the nuclear factor kappa-light-chain-enhancer of activated
B cells (NFKB), thereby negatively modulating their transcriptional programs [22].
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Figure 1. (A) The glucocorticoid receptor (GR) linear domain structure. NTD: amino-terminal do-
main. DBD: DNA-binding domain. LBD: ligand-binding domain. AF-1: activation function domain 
1. AF-2: activation function domain 2. (B) In the absence of ligand, GR associates with chaperones 
in the cytosol. Upon GCs binding, GR translocates into the nucleus and interacts as a dimer with 
both DNA response elements and co-regulators to enhance gene expression. Hsp 90: heat-shock 
protein 90, Hsp70: heat-shock protein 90, FKBP51: FK506-binding protein 51. GRE: glucocorticoid 
responsive elements. Created with BioRender.com. 
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is known to drive the stress response by accelerating glucose metabolism and to exert an 
anti-inflammatory and immune-suppressive function by shaping the adaptive and innate 
immune responses [26,27]. GR-mediated signaling promotes transrepression of the in-
flammatory genes NF-kB and AP-1. Notably, GR decreases NF-kB activity by enhancing 
the expression of the enzyme complex inhibitor of the nuclear factor kappa (IkB) and by 
repressing the mitogen-activated protein kinase (MAPK)-mediated AP-1 activity [28]. 

Figure 1. (A) The glucocorticoid receptor (GR) linear domain structure. NTD: amino-terminal domain.
DBD: DNA-binding domain. LBD: ligand-binding domain. AF-1: activation function domain 1. AF-2:
activation function domain 2. (B) In the absence of ligand, GR associates with chaperones in the
cytosol. Upon GCs binding, GR translocates into the nucleus and interacts as a dimer with both DNA
response elements and co-regulators to enhance gene expression. Hsp 90: heat-shock protein 90,
Hsp70: heat-shock protein 90, FKBP51: FK506-binding protein 51. GRE: glucocorticoid responsive
elements. Created with BioRender.com.

3. GR Physiological and Pathological Functions

NRs physiologically modulate gene expression associated with reproduction, metabolism
and inflammatory response [23]. Conversely, aberrant NR-mediated signaling may eventu-
ally enhance multiple pathological processes such as carcinogenesis, metabolic disorders
and reactive oxygen species production [23–25]. Notably GR, upon binding to GCs, is
known to drive the stress response by accelerating glucose metabolism and to exert an
anti-inflammatory and immune-suppressive function by shaping the adaptive and innate
immune responses [26,27]. GR-mediated signaling promotes transrepression of the in-
flammatory genes NF-kB and AP-1. Notably, GR decreases NF-kB activity by enhancing
the expression of the enzyme complex inhibitor of the nuclear factor kappa (IkB) and by
repressing the mitogen-activated protein kinase (MAPK)-mediated AP-1 activity [28].

Furthermore, GR-mediated signaling decreases the extravasation of neutrophils to-
ward inflamed tissue by downregulating the expression of cell adhesion molecules on both
endothelial cells (e.g., intercellular adhesion molecule 1) and leukocytes (e.g., P-selectin)
and reduces chemotactic signaling driven by interleukin-8 (IL-8) secretion [29]. Moreover,
GR guides macrophage polarization toward an M2-like phenotype by inhibiting NFkB and
AP-1 that synergistically promote an M1-like macrophage status [30]. GR signaling has also
been shown to promote T-cell apoptosis by enhancing the activity of proapoptotic family
members such as B-cell lymphoma 2 (Bcl-2), interacting mediator of cell death (BIM), and
Bcl modifying factor (BMF), as well as by downregulating the antiapoptotic activity of the
Bcl-2 protein [10,31]. However, GR can directly modulate T-cell activity regardless of its ef-
fects on T-cell apoptosis. Preclinical evidence showed that GR-mediated signaling induced
by dexamethasone (DEX) administration increased the expression of programmed death-1
(PD-1) on T-cell and NK-cell surfaces. The increased expression of PD-1 attenuates the
T-cell response and promotes cancer immune escape by the interaction between PD-1 and
its ligand proteins, namely programmed death ligand-1 (PD-L1) and programmed death
ligand-2 (PD-L2) that are expressed on cancer cell surfaces [32]. Similarly, DEX enhances the
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expression of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) receptor on activated CD4+
and CD8+ T-lymphocytes, thereby promoting T-cell inactivation and immune evasion upon
binding of CTLA-4 to its ligands (B7-1 and B7-2) expressed on antigen-presenting cells
(APCs) [32].

Increasing evidence suggests that GR plays a role in tumorigenesis beyond the effects
it exerts on the immune system. It has also been shown to act either as an oncogene or an
oncosuppressor depending on the tumor histotype, and its activity has been explored in
several solid tumors [10]. Notably, GR expression has been associated with a favorable
prognosis in estrogen-receptor positive (ER+) breast cancer (BC) [33–35]. GR signaling
interferes with ERα proliferative programs by (i) displacing ERα from DNA-responsive
elements, (ii) inhibiting wingless/integrated (Wnt) oncogene proliferative activity, and
(iii) reducing the transcription of genes associated with epithelial–mesenchymal transition
(EMT) [36,37]. Conversely, GR expression has been associated with poor prognosis, resis-
tance to chemotherapy and increased metastatic potential via activation of phosphatidyli-
nositol 3-kinases (PI3K) signaling in triple negative breast cancer (TNBC) [38,39]. In TNBC
preclinical models, increased levels of reactive oxygen species (ROS) and hypoxia-inducible
factor (HIF) induce GR phosphorylation that, in turn, promotes the expression of breast
tumor kinase (BRK), which is a downstream mediator of multiple growth factor receptors
associated with an aggressive and resistant phenotype [40]. Moreover, in patient-derived
xenograft (PDX) models, GR activation resulted in increased expression of the transmem-
brane receptor tyrosine protein kinase (ROR1), which promotes metastatic colonization and
reduces cells survival via the activation of the Wnt and hippo pathways [41]. Similarly to
BC, the GR duality of action has also been observed in prostate cancer (PC) [10,42–44]. In
primary hormone-sensitive prostate cancer cell lines, GR activation reduces tumor growth
and proliferation by inducing p21 and p27 expression and by downregulating the activity
of cyclin D1 and c-myc [42]. On the other hand, GR signaling is strongly involved in
the onset of resistance to anti-androgen therapies in advanced PC [43]. In particular, GR
enhanced cell proliferation via activation of the signal transducer and activator of tran-
scription 5 (STAT5), regardless of androgen receptor (AR) signaling, in castration-resistant
prostate cancer (CRPC) cell lines treated with dihydrotestosterone (DHT) [44]. Conversely,
in non-small cell lung cancer (NSCLC) and pancreatic cancer (PaC) preclinical models,
GR has been found to act primarily as a tumor suppressor gene. In particular, in NSCLC
cell lines treated with DEX, GR activation acted synergistically with p53 to promote cell
cycle arrest [10]. Similarly, DEX administration resulted in PaC cells growth and EMT
inhibition by suppressing NF-kB, IL-6 and vascular-endothelial growth factor (VEGF) [45].
From a clinical perspective, GR clinical activity should be considered in light of the wide
spectrum of immunotherapy indications because GR signaling may exert a deleterious
effect on the immune response [46]. Nevertheless, understanding the real impact of GCs
on immunotherapy is challenging, in light of several factors, such as dose, timing, and
therapeutic indications that may impact immunotherapy efficacy [46].

4. The Role of GR in Ovarian Cancer

The role of GR-mediated signaling in OC carcinogenesis and its impact on treatment
response are controversial (Figure 2). An association between GR expression and clinical
outcome in patients diagnosed with OC has been reported, which suggests that GR activity
negatively affects tumor progression [47]. A study of 481 OC patients investigated the
relationship between GR protein expression, evaluated by immunohistochemistry (IHC)
on tumor samples, and clinical outcomes such as progression-free survival (PFS) and over-
all survival (OS) [47]. Notably, median PFS was significantly shorter in patients with a
higher protein expression of GR (IHC 2+ or 3+) versus those with a low GR expression
(IHC 0 or 1+), 20.4 versus 36 months, respectively. No significant correlation between
GR expression levels and OS was observed [47]. In addition, the magnitude of benefit
appeared to be strictly dependent on OC histotype since there was a substantial correlation
between GR expression and PFS in low-grade and non-serous OC but not in HGSOC
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histology on the main results [47]. The association between GR activity and poor outcomes
in OC could be partially explained by GC impairment of chemotherapy efficacy. GCs
are widely prescribed to mitigate the most common side effects of chemotherapy such
as chemotherapy-induced nausea and vomiting (CINV) and hypersensitivity reactions
(HSRs) [48,49]. Additionally, GCs are largely prescribed in advanced stages since they are
recommended by several international guidelines for the management of pain, asthenia,
and cachexia [50–52]. Remarkably, platinum-based drugs and taxanes, which represent the
backbone of the chemotherapy regimen adopted during OC treatment, are usually associ-
ated with emesis and HSRs and frequently require GCs administration. Notably, GC axis
signaling has been shown to interfere with chemotherapy efficacy by reducing the apoptotic
pathways enhanced by cytotoxic agents in both clinical and preclinical studies [53,54]. Of
note, DEX administration induces chemoresistance in OC cell lines (OVM, M130, OAW-42,
SKOV-3) treated either with cisplatin or gemcitabine. In particular, the administration
of DEX 48 h prior to chemotherapy, resembling peak and basal plasma levels commonly
found in vivo, prevented apoptosis induced by chemotherapy [53]. In addition, DEX
treatment promoted OC cell proliferation and increased the expression of MKP-1 and
SGK-1 proteins [54]. In nude mice injected with primary OC cells, the addition of DEX to
chemotherapy increased the rate of tumor growth compared with chemotherapy alone [55].
GR activation has been found to inhibit the programmed cell death cascade by directly
activating the transcription of several genes such as SGK1 and MKP1/DUSP1 [55]. SGK1 is
a serine/threonine kinase that shares highly homologous sequences with AKT and that is
activated by the PI3K signaling cascade. SGK1 has been suggested to prevent the expression
of genes involved in apoptotic processes by phosphorylating Forkhead transcription factors
such as Forkhead1 (FKHRL1) [56]. The inhibition of SGK1 counteracts the development
of paclitaxel resistance and restores chemotherapy sensitivity in xenografted OC cell lines
(A2780) by modulating the expression of Ran-specific binding protein-1 (RANBP1), which
is an enzyme required for mitotic spindle-assembly and mitosis progression [57]. On the
other hand, MKP1/DUSP1 gene encodes for a MAPK phosphate that prevents apoptosis by
inhibiting the p38MAPK and c-Jun N-terminal kinase (JNK) transduction pathways [58,59].
Apoptosis impairment upon GR axis activation has been found in clinical samples as
well. IHC MKP1 expression has been investigated in OC patients and is correlated with
survival outcomes [60]. Strong to moderate MKP1 expression levels were found to be
significantly associated with shorter PFS. In detail, mPFS was 18.3 vs. 40.6 months in OC
patients with MKP1-positive and MKP1-negative tumors, respectively [60]. Furthermore, a
randomized, placebo-controlled trial evaluated the expression of antiapoptotic genes in
tumor specimens positive to GR expression (GR+) derived from patients with OC random-
ized to receive DEX or normal saline (NS) administration [60]. SGK1 and MKP1 mRNA
levels were determined by reverse transcription polymerase chain reaction (RT-PCR) in
OC tumor samples collected during exploratory laparotomy. The average expression of
SKG1 and MKP1 mRNA was higher in patients receiving DEX than placebo [61] (Table 1).
In addition, in preclinical models, DEX has been shown to induce chemoresistance by
promoting ROR1 expression [62]. ROR1 activation induced by DEX promoted a stemness
phenotype and resistance to platinum and taxane chemotherapy agents via the upregula-
tion of diverse components of intracellular signaling pathways, including Ras homolog
family member A (RhoA) and yes-associated protein 1/transcriptional coactivator with
PDZ-binding motif (YAP/TAZ) [62]. In addition, a marked expression of ROR2 has been
observed in platinum-resistant OC cell lines and is associated with upregulation of Wnt
family member 5Aa (Wnt5a), signal transducer and activator of transcription 3 (STAT3) and
NF-kB levels [63]. Furthermore, GR-mediated signaling interferes with OC cell adhesion
and dissemination. DEX significantly increased the expression of α4β1, α5β1, integrin,
and fibronectin, thereby resulting in increased cell adhesion to the extracellular matrix
(ECM) and resistance to chemotherapy in SKOV-3 and HO-8910 OC cell lines [64]. DEX
has been shown to promote the expression of transforming growth factor-β (TGF-β) type
II receptor and to synergistically act with TGF-β1 secreted by ovarian epithelial cells to
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enhance OC cell adhesion and resistance to chemotherapy [64]. Moreover, in OC cell
lines (PEO-14, SKOV-3), GR-mediated signaling has been shown to negatively regulate the
expression of secreted Slit glycoproteins (SLITs)/roundabout receptors (ROBOs) that have
been described as candidate tumor suppressor genes in OC [65]. In contrast, GR signaling
has been reported to hamper OC metastasis by inducing microRNA (miRNA) expression.
In SKOV-3 OC cells, low-dose DEX treatment induced the expression of miR-708 [66] that
has been suggested to act as a tumor suppressor by significantly inhibiting cell invasion
and dissemination. MiR-708 interferes with the GTPase Ras-proximity-1B (Rap1B) protein,
whose activity has been shown to specifically promote epidermal growth factor receptor
(EGFR)-dependent cancer cell migration [67,68]. In addition, the biological role of miR-708
has been described in mice bearing ID-8 cell-derived ovarian tumors treated with low-
dose DEX [69]. Consistent with previous findings, DEX administration reduced primary
tumor growth and abdominal metastasis via miR-708 upregulation and tumor microen-
vironment reprogramming [66]. Notably, a statistically significant association between
higher miR-708 expression and improved survival rates, in terms of OS and RFS, has been
observed in patients with advanced OC [66]. DEX decreased the expression of proinflam-
matory cytokines such as IL-1β and IL-18 and suppressed the recruitment of immune
suppressive tumor-associated-macrophages (TAMs) and myeloid-derived suppressor cells
(MDSCs) [70,71]. TAMs promote OC cells invasion and infiltration by activating NF-kB and
c-Jun NH2-terminal kinase II (JNKII) and by inducing a chemokine gradient that eventually
favors regulatory T-cell (T-regs) recruitment in the OC microenvironment [72,73]. Moreover,
MDSCs have been shown to promote tumor immune escape by enhancing OC cell stemness
through activation of the CSF2/p-STAT3 signaling pathway [74], and high MDSC levels
have been independently associated with poor outcomes in OC patients [75].
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Figure 2. Upon cortisol binding, the glucocorticoid receptor enhances SGK-1 and MKP-1 expression
to suppress ovarian cancer cell apoptosis. SGK1 has been hypothesized to phosphorylate FKHRL1,
leading to its cytoplasm translocation, thereby preventing BID and BIM genes expression. The
MKP1/DUSP1 gene encodes for a MAPK phosphate that preferentially inhibits p38MAPK and
JNK transduction pathways, thereby resulting in decreased anti-apoptotic protein BCL-2 levels.
Moreover, glucocorticoid-mediated signaling induces ROR1 expression, which in turn promotes a
cancer stemness phenotype via RhoA, YAP/TAZ, and BMI-1 downstream upregulation. Additionally,
GR eventually facilitates cancer immune evasion by enhancing the expression of both PD-1 on T-cells
and NK-cells and CTLA-4 on activated CD4+ and CD8+ T-cells. Conversely, GR signaling increases
miR-708 levels, thus resulting in impaired OC cell dissemination through targeting EGFR downstream
effector Rap1B. Created with BioRender.com.
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Table 1. Retrospective trials exploring GR activity.

Study Objective Study Type # of Pts Results References

Association between GR IHC expression
and outcome of OC patients Retrospective 481

mPFS = 20.4 months (GR IHC 2+, 3+)
vs. 36 months (0 or 1+) HR = 1.66, 95%
CI 1.29–2.14, p = 0.001

[47]

Association between NR3C1 gene
expression and overall survival of
OC patients

Retrospective 222

Trend toward decreased OS in pts
with high NR3C1 expression
compared with low NR3C1 expression
(p = 0.06) independently from BRCA
mutational status

[76]

MKP1 expression in primary human
ovarian carcinoma Retrospective 101 mPFS = 18.3 (MPK1+) vs. 40.6 months

(MKP1-) (95% CI 13.11–23.5, p = 0.019) [60]

Association between MiRNA-708
expression and OC patients’ survival Retrospective 82

Pts with high miR-708 expression had
a significantly better OS (p = 0.04) and
RFS (p = 0.026) than those with low
miR-708 expression

[66]

Expression of the anti-apoptotic genes
SGK1 and MKP1/DUSP1 in ovarian
tissues upon DEX or NS administration

Prospective
randomized 10

The average SKG1 and MKP1 mRNA
expression was increased 6.1-fold vs.
1.5 and 8.2-fold vs. 1.1, in the DEX and
NS arms respectively compared with
baseline pretreatment levels

[61]

CI, confidence interval; DEX, dexamethasone; GR, glucocorticoid Receptor; HR, hazard ratio; IHC, immunochem-
istry; mPFS, median progression-free survival; NS, normal saline; OC, ovarian cancer; OS, overall survival; pts,
patients; RFS, recurrence-free survival.

5. GR and BRCA

GR activity appears to be strictly dependent on the mutation status of the breast cancer
gene (BRCA) as functional crosstalk occurs. BRCA1/2 proteins act as crucial interactors
in the homologous recombination (HR) mechanism, which is one of two major pathways
of the DNA double-strand break (DSB) repair system during the S and G2 cell cycle
phases [77,78]. BRCA pathogenic variants occur in up to 20% of HGSOCs [79] and have
been associated with increased sensitivity to platinum-based chemotherapy [80] and PARP
inhibition [81]. Remarkably, BRCA1 has been shown to interact directly with nuclear
steroid receptors in BC models, thereby acting as a repressor and a co-activator of ERα
and AR transcriptional activity, respectively [82,83]. In addition, loss of GC activation
has been shown to be dependent on BRCA mutation in TNBC tissues and in HR+ BC
cell lines [84]. In particular, BRCA1 loss of function was associated with reduced GR IHC
expression in TNBC samples, whereas in HR+ MCF-7 cells, genetic inhibition of BRCA1
decreased GR mRNA levels [84]. Moreover, BRCA1 seems to enhance GR activity by
modulating MAPK signaling. BRCA1 appeared to induce the phosphorylation of various
kinases, including p38, which promotes GR auto-transcription and GR-dependent gene
expression [84]. Similarly, GR, in the absence of its ligand, positively regulates BRCA1
expression in BC cells by directly interacting with the β-subunit of the transcription factor
GA-binding protein (GABP) and the BRCA1 promoter region [83]. Conversely, upon GC
binding, GR loses its positive regulatory effect, thereby supporting a potential link between
GR-mediated stress response and cancer development [83]. A BRCA1-GR interaction has
also been observed in OC patients as well [84]. The effect of BRCA1 on GR expression has
been evaluated on 146 serous OC samples collected between 2010 and 2012 [85]. BRCA1
mutated OC exhibited dramatically reduced GR protein expression versus BRCA1 wild-
type tumors, whereas a positive correlation between GR and BRCA1 was observed in
BRCA1 wild-type samples.

BRCA1 knockdown in OC cells (SKOV3) resulted in decreased GR mRNA levels in
TNBC specimens [84,85]. Although transcriptional crosstalk may exist between GR and
BRCA1, the impact on the clinical outcome of OC patients remains unclear. An analysis of



Biomolecules 2023, 13, 653 8 of 16

222 serous OC specimens selected from the Cancer Genome Atlas, collected from newly
diagnosed OC patients, showed that high NR3C1 gene expression appeared to be inde-
pendently associated with decreased OS, regardless of BRCA mutation status [76]. The
poorer outcomes were observed among BRCA1 wild-type patients with higher NR3C1
levels, thus suggesting that GR-mediated signaling may affect chemotherapy response in-
dependently of DNA-damage repair system defects [76]. However, although controversial,
the bidirectional interplay between GR and BRCA may represent a new synthetic lethal
interaction that may be explored to identify novel therapeutic targets and biomarkers for
patient selection.

6. Glucocorticoid Receptor as a Potential Target for a Therapeutic Intervention in
Ovarian Cancer

Since GR signaling plays a key role in resistance to chemotherapy, GR has emerged as
a potential therapeutic target to improve chemotherapy efficacy in OC patients. However,
current data regarding the major therapeutic options available may appear controversial
and contradictory. Treatment activity and patient selection should be analyzed in light
of multiple variables, such as GR and BRCA mutational status. Primarily, great research
efforts have focused on the development of selective and non-selective GR antagonists that
can antagonize cortisol activity and restore sensitivity to chemotherapy (Figure 3). The syn-
thetic steroid mifepristone (MF) that acts as a progesterone receptor (PR) and GR antagonist
effectively inhibits OC cell proliferation in preclinical models [86]. MF significantly reduced
tumor growth regardless of PR expression by promoting nuclear localization of p21 and
p27, inhibition of cdk2 activity and G1 phase arrest in OC preclinical models [86,87]. In
addition, OC cell lines (SKOV-3) treated with MF exhibited a considerable impairment of
adhesion, invasion, and metastatic potential [86,88]. In particular, MF administration in-
duces cytoskeletal remodeling and nuclear distribution of fibrillar actin, thereby impairing
adhesion capacity and reducing OC cell invasiveness [88]. Moreover, in an organotypic
model system, MF inhibited HGSOC cell adhesion and promoted dissociation from the
mesothelial cell monolayer [89].
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Figure 3. (A) Relacorilant is a selective GR modulator that restores the programmed cell death cascade
that is suppressed by cortisol. Relacorilant acts by targeting MKP-1 and SGK-1 gene transcription.
SGK1 has been hypothesized to phosphorylate FKHRL1, thereby leading to its cytoplasm transloca-
tion and preventing BID and BIM gene expression. The MKP1/DUSP1 gene encodes for a MAPK
phosphate, which preferentially inhibits p38MAPK and the c-Jun N-terminal kinase (JNK) transduc-
tion pathways, thereby resulting in decreased anti-apoptotic protein BCL-2 levels. (B) Mifepristone is
a synthetic steroid that acts as a GR antagonist. It reduces OC cell growth by promoting the nuclear
localization of p21 and p27 and by decreasing cdk2 activity, thus resulting in OC cell G1 phase arrest.
In addition, in preclinical models, MF promoted cytoskeletal rearrangements such as membrane
ruffling, lacking adhesion capacity and nuclear distribution of fibrillar actin, reducing OC cell invasive
capacity. Moreover, MF administration resulted in decreased PD-1 and CTLA-4 expression, which
suggests that GR plays a role in tumor immune evasion. Nab-Paclitaxel is a cell cycle specific agent
that prevents microtubule depolymerization and inhibits BCL-2 protein-enhancing cell apoptosis.
Created with BioRender.com.

Despite its promising preclinical activity, the efficacy of MF showed controversial
results in OC clinical trials. In a single-arm phase II trial conducted in 44 OC platinum-
resistant patients, daily oral MF exerted significant activity with an overall response
rate (ORR) of 26.5%: three complete responses (CR) (9%) and six partial responses (PR)
(17.5%) [90]. On the contrary, a subsequent multi-institutional phase II trial evaluating MF
in platinum-resistant HGSOC patients reported a response rate of only 4.5% [91]. Patients in
both trials were not stratified according to GR expression, which partially justifies the con-
tradictory results. Furthermore, preclinical studies conducted on OC transgenic mice and
cultured human HGSOC cells have shed light on the potential biphasic role of MF in OC
progression [92]. The growth inhibitory effect on OC cell proliferation, largely described in
in vitro models, has rarely been detected in vivo, probably because of the rapid metabolism
and the high plasma protein binding rate of MF [92]. In OC human and murine cell lines,
MF administration resulted in promoting cell proliferation by stimulating progesterone
receptor membrane component 1 (PGRMC1) independently from GR signaling [92].

A new promising compound is overcoming the limitations and controversies associ-
ated with nonselective GR antagonists. Relacorilant (RELA) is a selective GR modulator
(SGRM) that, unlike MF, does not bind PGR. SGRMs are novel emerging molecules that
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can act as both agonist as well as antagonist factors. Consequently, they target selected
downstream signaling pathways, depending on the recruitment of specific coregulators [21].
SGRM activity depends on the levels of tissue-specific GR coactivators or corepressors
similarly to the selective estrogen receptor modulator, Tamoxifen [93,94]. Moreover, SGRMs
promote GR transrepression, which directs the anti-inflammatory effects of GCs, thereby
reducing those adverse effects associated with GR transactivation, such as osteoporosis,
hyperglycemia, and myopathies [95]. Several compounds belonging to this pharmaco-
logical class have been identified, both synthetic and natural, as described elsewhere [96].
RELA increased the potency and the cytotoxic activity of microtubule-targeted agents
such as paclitaxel and gemcitabine by restoring apoptotic pathways suppressed by cortisol
in OC cell lines (OVCAR5) and in xenograft models [97]. RELA combined with cyto-
toxic agents enhanced cancer cell viability, thereby increasing drug potency and efficacy,
whereas no significant effect on tumor growth was observed with RELA monotherapy.
The efficacy and safety of RELA was also evaluated in a phase II trial (NCT05257408)
that enrolled patients diagnosed with recurrent platinum resistant or refractory HGSOC,
endometrioid OC or ovarian carcinosarcoma who had received up to four chemothera-
peutic regimens [98]. These patients were randomized to intermittent or continuous oral
RELA plus nab-paclitaxel versus nab-paclitaxel monotherapy. The primary PFS analy-
sis, after 11.1 months of median follow-up, confirmed a statistically significant benefit
of 1.8 months for intermittent RELA plus nab-paclitaxel arm versus nab-paclitaxel alone
(5.6 vs. 3.8 months) [98]. In addition, an updated survival analysis at 22.5 months of
median follow-up showed a median OS of 13.9 months in the intermittent RELA arm
compared with 12.2 months in the nab-paclitaxel arm, with low TGF-β1 levels found to
be predictive of longer OS [99]. Treatment benefit was mainly observed among patients
with high tumor GR expression who most benefited from adding RELA to nab-paclitaxel
treatment (ORR = 40.4% vs. 18.8%). In addition, continuous or intermittent RELA ad-
ministration resulted in significant suppression of canonical GR target genes expression
such as SGK1, phosphatidylinositol-4,5-Bisphosphate 3-Kinase catalytic subunit gamma
(PIK3CG), and glycogen synthase kinase 3 beta (GSK3B) compared to the nab-paclitaxel
arm treatment, thus suggesting pleiotropic activity of GR antagonist [98,99]. Regarding the
safety profile, the most frequent grade ≥ 3 adverse events were neutropenia and anemia
peripheral sensory neuropathy in the intermittent RELA arm [98,99]. A phase III random-
ized trial (ROSELLA, NCT05257408) is currently evaluating the intermittent RELA plus
nab-paclitaxel schedule vs. investigator’s choice of chemotherapy in platinum-resistant or
refractory HGSOC who had received up to 1–3 prior lines of chemotherapy and at least
one platinum-based regimen [100] (Table 2).

GR pharmacological inhibition is a promising therapeutic strategy for OC treatment.
However, the activation of GR signaling induced by DEX may also positively influence
treatment efficacy. DEX-induced GR activation has been shown to increase sensitivity to
several AKT/PI3K targeted kinase inhibitors by enhancing AKT phosphorylation in OC
cell lines [62]. Conversely, DEX-mediated signaling, which upregulates ROR1 expression
and directly affects tumor cell apoptosis, appeared to reduce the efficacy of secondary
mitochondria-derived activator of caspase (SMAC) mimetics that counteract inhibitors
of apoptosis that are highly expressed and dysregulated in OC [62,101]. However, the
growing interest in GR inhibition collides with GCs’ broad therapeutic indications in cancer
patients such as treatment of cancer-related fatigue (CRF), cachexia, and CINV. Nevertheless,
alternative therapeutic options are available to treat these clinical conditions. Among these,
physical exercise reduces CRF, thereby ensuring treatment adherence, and progestins
stimulate appetite and reduce the release of cytokines associated with cachexia [52,102]. In
addition, neurokinin-1 (NK-1) receptor antagonists and second-generation 5-HT3 receptor
antagonists are efficacious options to CINV prophylaxis and treatment as an alternative
or combined with GCs in order to safely reduce the minimum effective dose of GCs
needed [48].
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Table 2. Results from selected phase II/III trials of systemic treatment targeting GR.

Study Objective Phase # of Patients Results References

Oral MF activity in
refractory EOC II 44

ORR = 26.5%,
CR = 9%,
PR = 17.5%

[90]

MF activity in recurrent or
persistent HGSOC II 24 Only 1 patient had a partial

response (4.5%) [91]

RELA efficacy and safety in
combination with chemotherapy
in Platinum-Resistant HGSOC

II

60 (intermittent RELA
plus Nab-P) vs.
58 (continuous RELA
plus Nab-P) vs.
60 (Nab-P)

mPFS = 5.6 months vs. 3.8 months, HR
0.66, 95% CI 0.44–0.98, p = 0.038);
ORR High GR expression = 40.4% vs.
18.8% χ p 0.037; ORR low GR
expression= 32.0% vs. 47.1% χ p > 0.05,
OS = 13.9 months vs. 12.2 months
HR 0.63, p = 0.045.

[98,99]

Intermittent RELA plus
nab-paclitaxel efficacy vs. TPC in
in platinum resistant pre-treated
HGSOC (ROSELLA,
NCT05257408)

III 360 (estimated) Ongoing /

Abbreviations: CI, confidence interval; CR, complete response; EOC, epithelial ovarian cancer; GR, glucocorti-
coid receptor; HGSOC, high-grade serous ovarian cancer; HR, hazard ratio; MF, mifepristone; mPFS, median
progression-free survival; Nab-P, nab-paclitaxel; ORR, overall response rate; PR, partial response; pts, patients;
RELA, relacorilant; TPC, treatment of physician’s choice.

7. Conclusions

GR is a ligand-dependent transcription factor that plays a controversial role in OC
biology. Several molecular mechanisms have been proposed to explain the impact of GR-
mediated signaling on tumor development and progression, but uncertainties remain. GR
is an independent prognostic factor in patients with OC since higher expression of GR in
OC tissues correlates with resistance to chemotherapy and poor outcomes. Conversely, low
doses of GCs significantly suppress OC growth and metastases in preclinical models by
enhancing immune microenvironment remodeling, thereby directly reducing cancer cell
migration. In addition, transcriptional crosstalk between BRCA1 and GR exists, although
its impact on tumor phenotypes and clinical outcomes has not yet been completely clarified.
Novel promising therapeutic strategies such as RELA have emerged to modulate GR
signaling, to enhance chemotherapy sensitivity, and finally to provide novel effective
treatment options for heavily pre-treated chemotherapy-resistant OC patients.
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