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Abstract: Stroke causes varying degrees of neurological deficits, leading to corresponding dys-
functions. There are different therapeutic principles for each stage of pathological development.
Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary
in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration
and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic
spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal
development affects the spontaneous rewiring of neural circuits and brain networks. Microglia
are resident immune cells in the brain that contribute to homeostasis under physiological condi-
tions. Microglia are activated immediately after stroke, and phenotypic polarization changes and
phagocytic function are crucial for regulating focal and global brain inflammation and neurological
recovery. We have previously shown that the development of neuroplasticity is spatiotemporally
consistent with microglial activation, suggesting that microglia may have a profound impact on
neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this
review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions
and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a sum-
mary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote
stroke recovery.
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1. Introduction

Stroke is a major cause of death and long-term disability, worldwide. Despite constant
incidence and declining mortality rates over the past 20 years, the number of stroke
survivors continues to decrease [1–3]. They are unable to live independently and are
more likely to experience subsequent neurological sequelae [4,5]. Stroke can cause focal
and global neurological deficits. Different therapeutic principles are adopted in different
periods. In the acute stage of stroke, neuroprotection is the main treatment [6]; reducing
cerebral ischemia-reperfusion injury (IRI) is also crucial. In the subacute and chronic
stages, functional recovery becomes the primary objective. Neuroplasticity is recognized as
the basis of functional restoration and neurological rehabilitation after stroke, including
remodeling of dendrites and dendritic spines, axonal sprouting, synapse shaping, and
neurogenesis. Spontaneous neuroplasticity begins immediately after stroke, reaches a
plateau in three to four weeks, and can be sustained in the chronic phase [7]. Spatiotemporal
development profoundly affects the reconstruction of neural circuits and brain networks.

Microglia, the resident immune cells of the central nervous system (CNS), play a key
role in brain development, homeostasis maintenance, and the disease response of the CNS
through phenotypic polarization, morphological changes, and functional transformation.
They participate in a variety of pathophysiological processes in the brain, including the
promotion of neuronal survival, induction of programmed cell death, immune monitor-
ing and antigen presentation, inflammation regulation, modulation of synaptic activity,
synaptic pruning, remodeling, etc. [8–12].
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After stroke, the activation, polarization, and phagocytosis of microglia are crucial for
regulating the neuroinflammatory microenvironment and enhancing neuroplasticity. Our
previous study presented that the development of neuroplasticity overlaps both temporally
and spatially with microglial activation [7], suggesting that microglia may have a profound
impact on neuroplasticity following stroke and that they may be key therapeutic targets
for stroke rehabilitation. In this review, we explore therapeutic targeting at different stages
after stroke and the impact of neuroplasticity during this process. We then discuss the
functions and mechanisms of microglial activation, polarization, and phagocytosis under
physiological and pathological conditions. Finally, we provide a summary of microglia-
targeted therapeutic interventions for promoting stroke recovery.

2. Pathophysiology and Therapeutic Target of Stroke Recovery
2.1. Pathophysiology of Stroke in Different Phases

Stroke commonly comprises two pathological subtypes. Hemorrhagic stroke accounts
for approximately 10–15% of stroke cases. During this process, stress in the brain and
internal injury cause the rupture of blood vessel [13]. Hematomas compressing brain
tissue form for blood leakage into the brain parenchyma. The mass effect of the hematoma
combined with neurotoxic effects further causes increased intracranial pressure, cerebral
herniation, or death [14,15].

Ischemic stroke is caused by abrupt occlusion of the cerebral artery. The consequent
interruption of blood flow and obstruction of the supply of oxygen lead to glutamate excito-
toxicity, calcium overload, oxidative and nitrosative stress, and the release of inflammatory
mediators, thereby activating a series of detrimental signaling cascades that induce neu-
ronal injury or death [1,2,16,17]. Reversible neuronal impairment occurs after an ischemic
attack, leading not only to relevant symptoms but also functional deficits corresponding to
the location of the ischemia [18]. The progression of brain damage involves irreversibly
injured necrotic tissue in the ischemic core, followed by injury development in the penum-
bral area, and then expanding to the entire ischemic territory [1,19]. Due to focal and global
brain neurological damage following stroke, patients have different degrees of neurological
deficits after stroke, such as dyskinesia, sensory dysfunction, swallowing dysfunction,
dysarthria, aphasia, cognitive impairment, impaired cardiopulmonary function, mental
disorders, and many complications, which further leads to a decline in quality of life and
social participation [3,20].

Aside from revascularization therapy(thrombolysis and thrombectomy) and neuropro-
tective therapies (non-pharmaceutical and pharmaceutical therapies) for managing stroke
in different phases [21], rehabilitative therapy helps to alleviate disability by promoting the
recovery of impairment, activity, or participation after stroke [22] and is formally associated
with a “time frame”, which coincides with the development of stroke and the period of
maximal spontaneous recovery [23]. Thus, although rehabilitation plays a key role after
stroke, not all stages are suitable for rehabilitative interventions [24]. According to both
animal models and human trials, intensive rehabilitation within 24 h is potentially harm-
ful [23]. In a clinical trial, a four-week intervention of physical fitness training did not result
in an improvement in activities during the subacute period (days 5–45 after stroke) [25].

The therapeutic targets of stroke recovery vary according to the developmental patho-
physiological process (Table 1). In the acute phase (minutes to days), a series of detrimental
events occur after acute ischemic injury, including infiltration of peripheral immune cells,
activation of resident glial cells, disturbance of ionic homeostasis, oxidative stress, mito-
chondrial dysfunction, and DNA damage. These processes involve cell necrosis within the
lesion core and peri-infarct area. Therapeutic strategies have focused on neuroprotection
to prevent neuronal injury and death, reduce infarct volume, and limit the decrease in
neuronal density in the penumbra [16,26–31]. In addition, reducing IRI is critical. During
the restoration of blood perfusion, IRI can lead to cerebral edema and even hemorrhage,
thereby exacerbating the detrimental biological cascade response and causing irreversible
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tissue damage [21,32]. Therefore, besides neuroprotection, effective reduction of IRI is also
a key target in the treatment of the acute phase of ischemic stroke [33].

Table 1. Pathophysiology and therapeutic targets of ischemic stroke in the acute, subacute, and
chronic phases. BBB, blood-brain barrier; ROS, reactive oxygen species.

Acute Phase of Stroke Subacute Phase of Stroke Chronic Phase of Stroke

Time course Minutes to days Days to weeks Weeks to mouths

Pathophysiological
mechanisms

Infiltration of peripheral immune cells;
activation of resident glial cells;

disturbance of ionic homeostasis;
oxidative stress;
BBB destruction;

mitochondrial dysfunction;
DNA damage

Amplification of
immune responses;

increased ROS production;
cell edema and ion imbalances

Decrease in excitotoxicity;
protective inflammatory

response

Axonal sprouting, dendrite remodeling;
neurogenesis, angiogenesis;

increased levels of growth factors

Consequences Cell injury or death Onset of neuroplasticity Tissue repair

Therapeutic targets Neuroprotection;
reducing reperfusion injury Functional rehabilitation

In the subacute phase (days to weeks), the mechanisms are more complicated than
in the acute phase and include amplification of local and systemic immune responses,
increased cytokine and reactive oxygen species (ROS) production, cell edema, and ion im-
balances [28,34]. The activation of several protective mechanisms triggers beneficial repair
processes, including neurogenesis and angiogenesis [27]. In addition, many endogenous
processes are active, including axonal sprouting, dendrite remodeling, increased levels of
growth factors, and altered synaptic and cortical excitability. Some of these processes have
been demonstrated to mediate behavioral changes [35].

In the chronic phase (weeks to months), the end of spontaneous structural recovery
is marked by stabilization of the post-stroke neurological deficits [35]. The therapeutic
priorities should shift from neuroprotection to functional rehabilitation. Post-ischemic
inflammatory responses appear to exacerbate tissue damage at an early stage, whereas
they are assumed to promote tissue repair and functional restoration during the chronic
phase [36]. During this stage, excitotoxicity decreases and the brain milieu becomes
primarily inhibitory, and neural repair and excitability enhancement come to the forefront
of post-stroke intervention [22,35].

2.2. The Basis of Functional Recovery: Neuroplasticity

Neuroplasticity underlies the intrinsic reorganization of brain structure and function
during the entire lifespan of an individual. Stroke injury causes significant alterations in the
neural network within the affected area [37]. Neuroplasticity contributes to spontaneous
brain rewiring during post-stroke recovery. This mechanism is closely related to the
remodeling of dendrites and dendritic spines, axonal sprouting, synapsis shaping, and
synaptogenesis (Figure 1).
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Figure 1. Microglial activation and polarization affect neuroplasticity and functional recovery. Un-
der pathological conditions, microglia can be activated by specific cytokines that upregulate tran-
scription factors of downstream signaling pathways, thereby resulting in pro-inflammatory and 
anti-inflammatory phenotypic polarization. Non-coding RNA (ncRNA) expression also contributes 
to direct microglial polarization. Pro-inflammatory microglia tend to release pro-inflammatory fac-
tors and toxic molecules, which leads to increased neurotoxicity, neurological deficits, and tissue 
damage, ultimately leading to attenuated neuroplasticity and functional recovery. Conversely, anti-
inflammatory microglia release anti-inflammatory factors and neurotrophins, resulting in increased 
neurotrophy and neuroprotection, thereby enhancing neuroplasticity and functional recovery. LPS, 
lipopolysaccharide; IFN-γ, interferon-γ; GM-CSF, granulocyte-macrophage colony-stimulating fac-
tor; IL-4, interleukin-4; IL-10, interleukin-10; IL-13, interleukin-13; STAT1, signal transducer and ac-
tivator of transcription 1; STAT3, signal transducer and activator of transcription 3; IRF5, interferon 
regulatory factor 5; PPARγ, peroxisome proliferator-activated receptor γ; STAT6, signal transducer 
and activator of transcription 6; Nrf2, nuclear factor erythroid 2-related factor 2 ; IRF4, interferon 
regulatory factor 4; IL-6, interleukin-6; IL-12, interleukin-12; IL-1β, interleukin-1β; TNF-α, tumor 
necrosis factor-α; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase; MMP3, ma-
trix metalloproteinase 3; MMP9, matrix metalloproteinase 9; TGF-β, transforming growth factor-β; 
IGF-1, insulin-like growth factor-1; CSF-1, colony-stimulating factor-1; VEGF, vascular endothelial 
growth factor; BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic 

Figure 1. Microglial activation and polarization affect neuroplasticity and functional recovery. Un-
der pathological conditions, microglia can be activated by specific cytokines that upregulate tran-
scription factors of downstream signaling pathways, thereby resulting in pro-inflammatory and
anti-inflammatory phenotypic polarization. Non-coding RNA (ncRNA) expression also contributes
to direct microglial polarization. Pro-inflammatory microglia tend to release pro-inflammatory fac-
tors and toxic molecules, which leads to increased neurotoxicity, neurological deficits, and tissue
damage, ultimately leading to attenuated neuroplasticity and functional recovery. Conversely, anti-
inflammatory microglia release anti-inflammatory factors and neurotrophins, resulting in increased
neurotrophy and neuroprotection, thereby enhancing neuroplasticity and functional recovery. LPS,
lipopolysaccharide; IFN-γ, interferon-γ; GM-CSF, granulocyte-macrophage colony-stimulating factor;
IL-4, interleukin-4; IL-10, interleukin-10; IL-13, interleukin-13; STAT1, signal transducer and activator
of transcription 1; STAT3, signal transducer and activator of transcription 3; IRF5, interferon regulatory
factor 5; PPARγ, peroxisome proliferator-activated receptor γ; STAT6, signal transducer and activator
of transcription 6; Nrf2, nuclear factor erythroid 2-related factor 2 ; IRF4, interferon regulatory factor 4;
IL-6, interleukin-6; IL-12, interleukin-12; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; ROS,
reactive oxygen species; iNOS, inducible nitric oxide synthase; MMP3, matrix metalloproteinase 3;
MMP9, matrix metalloproteinase 9; TGF-β, transforming growth factor-β; IGF-1, insulin-like growth
factor-1; CSF-1, colony-stimulating factor-1; VEGF, vascular endothelial growth factor; BDNF, brain-
derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; Meg3, maternally
expressed gene 3; Usp10, ubiquitin specific peptidase 10. Created with BioRender.com (accessed on
1 March 2023).
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2.2.1. Remodeling of Dendrites and Dendritic Spines

The brain must undergo significant modifications to adapt to new challenges caused by
the damage after stroke; a key mechanism is the rearrangement of existing dendritic arbors
that are associated with new synaptic contacts [38]. Since increased dendritic branching
can provide more surface for synaptogenesis and re-establish axonal-dendritic connections,
its increase is a key component of neuroplasticity [39]. Dendritic spines, the protrusions on
dendrites, are the termination of most excitatory synapses and are relatively stable entities in
the brain [40–42], but they can undergo changes in the brain microenvironment. Following
stroke, a series of structural changes occur around peri-infarct regions to compensate for
the injury caused by stroke, including the organization of dendrites and an increase in
dendritic spine turnover and spine density. Dendritic spines may be malleable, which
makes them a crucial substrate for neuroplasticity that underpins brain remodeling and
damage recovery [43–45]. Regarding quantity, in the infarct areas, spine density has been
reported to return to normal levels, while in areas far away from the infarct with preserved
blood flow, spine density was restored faster by adding more spines, eventually surpassing
the baseline by 15% [46]. The integrity of the brain network is highly dependent on focal
blood flow. Dendrites and spines, as energy-consuming structures of neurons, exhibit
the most vulnerable traits following blood supply disruption. Within minutes, dendrites
become beaded and spines become distorted; however, these do not represent a loss of
synapses, and most dendritic spines still have synaptic contacts. In an animal model, when
occluded cerebral vessels are perfused within 20 min, injured dendrites and most spines
can restore rapidly [44]. In addition, rehabilitative training plays a key role in dendrites and
dendritic spine remodeling; for example, brain stimulation has been reported to optimize
synaptic reorganization and facilitate functional recovery after stroke [38].

2.2.2. Axonal Sprouting

As postsynaptic partners with dendritic spines, axonal sprouting has been suggested
to take place [47]. After stroke, axons are damaged mainly by disruption of the connection
pathways that emanate from the cortex. In a rat model, loss of skilled food retrieval oc-
curred following damage to either the dorsal corticospinal tract (comprising approximately
95% of descending axons) or the ventral corticospinal tract (comprising only approximately
2% of the axons), but it could recover within four weeks [48]. In addition, in spontaneous
recovery after stroke, new connections are induced both in the ipsilateral and contralateral
hemispheres to the lesion. Axonal sprouting initiates in peri-infarct within the first week,
which can be clearly detected through anatomical mapping of cortical circuits one month af-
ter stroke [49–51] as well as several months after stroke [52]. Contralateral axonal sprouting
has been reported in other cortical lesions, including contralateral projections to the stria-
tum, brainstem, and spinal cord [53,54]. Axonal sprouting can be divided into three forms:
stroke-reactive, reparative, and bounded axonal sprouting. Reactive axonal sprouting,
which is related to tissue repair and scar formation, occurs around and contralateral to
the lesion after stroke. If this ability is limited, reparative axonal sprouting can be en-
hanced by stimulating neuronal growth or by blocking glial growth inhibitors. These are
longer axonal protrusions that connect functionally relevant brain regions. On this basis,
through manipulating rehabilitative activity such as constraint-induced movement therapy
(CIMT) or skilled reaching training, these connections can extend into largely different
functional areas. This process is called unbounded axonal sprouting [55]. According to
Wahl et al., sequential axonal therapy and rehabilitation training resulted in functional
recovery [56] therefore, the principle of axonal protrusion can be used as a therapeutic
target for neurorehabilitation after stroke, but the timing is also important. It should be
noted that early (within the first week of stroke) delivery of increased behavioral training
and axonal sprouting therapy leads to behavioral deterioration [55].
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2.2.3. Myelin Regeneration

Cerebral ischemic injury also leads to demyelination, also known as disruption of the
myelin sheath, leading to oligodendrocyte (OL) damage [57] and myelin loss [58], resulting
in functional deficits after stroke [59], such as long-term sensorimotor and cognitive im-
pairment [60]. Myelin regeneration begins when oligodendrocyte precursor cells (OPCs)
change from a quiescent state to a regenerative phenotype in response to injury around the
lesion area [61]. OPCs accumulate and expand within injured areas through proliferation
and migration. They then undergo differentiation to promote the growth of new myelin
sheaths [62]. Microglia are activated and can remove myelin debris following myelin loss
and neuronal injury. This process sets the stage for OPC recruitment and differentiation.
In addition, microglia can release soluble factors that play beneficial roles in myelin re-
generation and rehabilitation of demyelinating diseases [62–64]. Remyelination limits
axonal degeneration caused by demyelination and has a neuroprotective effect; therefore,
promoting remyelination after cerebral ischemia may be a promising therapeutic strategy
to improve functional restoration [65].

2.2.4. Neurogenesis

Neurogenesis comprises endogenous and exogenous regeneration.
Endogenous neurogenesis is closely related to synaptic formation or synaptogene-

sis, which involves the formation of neurotransmitter-secreted sites in the presynaptic
neuron, a receptive field at the postsynaptic partners, and the exact alignment of pre-
and post-synapses [66,67]. New synapses are formed throughout the life of an organism
and they are especially prominent in the early development of the nervous system [68].
Synapse formation is fundamental for precise wiring of the CNS, which also takes place
following stroke. After cerebral ischemic injury in a rodent model, surviving neurons
in peri-infarct sites have been shown to undergo spontaneous synaptic remodeling [69].
Growth-associated protein (GAP)-43 and synaptophysin are two proteins involved in
neurite outgrowth. GAP-43 is a marker of axon sprouting, and synaptophysin can be
used to assess changes in synaptic terminal size or the number of infarctions. An ani-
mal study found that after neocortical infarction, axonal sprouting and synaptogenesis
occurred in both the peri-infarct and contralateral cortices by observing increased GAP-43
and synaptophysin immunoreactivity [39,70].

Exogenous neurogenesis involves the proliferation and differentiation of progenitor
and neural stem cells, as well as the migration and maturation of neuroblasts. In rodent
models of stroke, neurogenesis increases after local cerebral ischemia in the ipsilateral
subventricular zone (SVZ). Neuroblasts tend to migrate from the SVZ to the ischemic lesion
border, where they acquire the characteristics of mature neurons and integrate into local
neuronal circuits. This has also been shown to take place in the adult human brain [70,71].
In terms of application, in preclinical studies, neural progenitor cells (NPCs) transplants
have shown efficacy in stroke treatment, leading to reduced glial scarring, a lower degree
of injury, and better functional performance [72,73]. In many clinical trials, neural stem cell
(NSC) replacement has resulted in positive therapeutic effects [74].

3. Activation and Polarization of Microglia following Stroke
3.1. Microglia in CNS

Neuroplasticity is crucial for the recovery of stroke patients. During this process,
as resident immune cells in the CNS, microglia are the first cells to be activated [75,76].
Originating from primitive myeloid progenitor cells in the yolk sac of the embryo, microglia
start to appear in the brain on day E9.5. They proliferate via local cell division and are not
affected by the hematopoietic system [77,78].

During brain development, microglia can trigger formulated pruning of neurons and
selective elimination of deficient synapses, which facilitates the construction of functionally
mature neural circuits [79]. This is closely related to the acquisition of learning ability and
memory during human growth and development [80].
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Under normal physiological conditions, resting microglia exhibit a branched morphol-
ogy and high motility, which are beneficial for immune monitoring and maintenance of
homeostasis. Their branched processes constantly scan the surrounding extracellular space,
and their large surface area is conducive to direct communication with neurons, vascular
endothelial cells, and other glial cells [76,81,82]. In addition, microglia exhibit high levels of
plasticity and adaptability to the environment [82]. In pathological states of the brain, such
as stroke, brain tumors, degenerative diseases, and brain injury, microglia detect antigens
through pattern recognition receptors. With ameboid morphological changes, activated
microglia proliferate and migrate in a tropistic manner [83,84]. Microglia then damage or
repair the brain tissue and regulate the microenvironment of the CNS by participating in
the secretion of inflammatory cytokines, complement, free radicals, trophic factors, etc. [85].

Under pathological conditions, resting microglia are activated and can be polarized
into two extreme states: M1 and M2 [85] (Figure 1). M1 activation, known as the classically
activated phenotype, is induced by lipopolysaccharide (LPS), granulocyte-macrophage
colony-stimulating factor (GM-CSF), and interferon-γ (IFN-γ), and is thought to be a pro-
inflammatory and neurotoxic state. It is characterized by the secretion of pro-inflammatory
cytokines and chemokines such as interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-
α (TNF-α) as well as the production of neurotoxic substances, including ROS, inducible
nitric oxide synthase (iNOS), and proteolytic enzymes including matrix metalloproteinase
(MMP)3 and MMP9 [9,86–88]. Double-negative T cells (DNTs) have been found to secrete
large amounts of TNF-α, promoting the activation of NOD-like receptor thermal protein
domain associated protein 3 (NLRP3) and inducing microglia pro-inflammatory polariza-
tion [89]. DNT-intrinsic Fas ligand (FasL) and protein tyrosine phosphatase non-receptor
type 2 (PTPN2) can collaboratively regulate microglial polarization via TNF-α production.
FasL enhances TNF-α production and promotes microglia-mediated neuroinflammation
and cerebral ischemic injury, whereas PTPN2 negatively regulates TNF-α production [90].

M2 activation, also known as alternatively activated, is induced by IL-4, IL-13, and
IL-10 to secrete anti-inflammatory cytokines, such as IL-10 and transforming growth factor-
β (TGF-β). They also release growth factors such as insulin-like growth factor-1 (IGF-1),
colony-stimulating factor-1 (CSF-1), vascular endothelial growth factor (VEGF), and neu-
rotrophins such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived
neurotrophic factor (GDNF), and their markers such as arginase-1 (Arg-1), chitinase-like
protein 3 (also known as Ym1), cluster of differentiation (CD)163, and CD206, which are in-
volved in tissue regeneration and repair, removal of cell debris, provision of trophic factors,
and preservation of tissue dynamics following infection or damage [9,75,86,87,91,92]. The
M2 phenotype can be further divided into three subclasses: M2a, M2b, and M2c [93]. M2a
microglia can prevent inflammation and promote tissue repair and regeneration [94], M2b
microglia are considered an intermediate state of microglia with an immunomodulatory
phenotype [95], and M2c microglia are involved in tissue remodeling after inflammation
resolves [96]. Indeed, microglia can rapidly migrate between states and express both M1-
and M2-like markers [97]. The classification of M1 and M2 phenotypes is clear under
in vitro conditions, but it is unclear how this classification applies in vivo. Additionally,
many researchers have proposed that the use of M1 and M2 to describe the polarization
phenotype of microglia is not rigorous and lacks accuracy [82,98].

The common phenotypes of microglia include pro-inflammatory and anti-inflammatory
types; however, single-cell sequencing can successfully identify various specific microglial
subsets at different developmental stages and pathological states. As an effective and
unbiased high-throughput detection technique, single-cell sequencing greatly promotes the
understanding of microglial heterogeneity [99,100]. An animal study demonstrated large
differences in microglial gene expression that maintain CNS homeostasis during embryonic
and postnatal development [101]. Two new subtypes have been identified in the brains of
aged mice [102]. In a disease state, in a mouse model of Alzheimer’s disease (AD), the mi-
croglial subtype was found to be associated with neurodegenerative diseases (DAM) [103].
In human brain tissue sections of idiopathic Parkinson’s disease (PD), a special microglial
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cluster involving an inflammatory response has been identified [104] (Table 2). While
single-cell sequencing has a great impact on the classification and exploration of microglia
subpopulations, how to regulate and maintain microglia in a beneficial state remains to be
elucidated by further studies.

Table 2. Single-cell profiles of specific microglia subsets at different developmental stages and
pathological states. Ctsb, cathepsin B; Ctsd, cathepsin D; Lamp1, lysosomal associated membrane
protein 1; Apoe, apolipoprotein E; Tmsb4x, thymosin beta 4 X-linked; Eef1a1, eukaryotic translation
elongation factor 1 alpha 1; Rpl4, ribosomal protein L4; Cst3, cystatin 3; Tmem119, transmembrane
protein 119; Selplg, selectin P ligand; Slc2a5, solute carrier family 2 member 5; Malat1, metastasis
associated lung adenocarcinoma transcript 1; Lgals3, galectin-3; Cst7, cystatin F; Ccl4, C-C motif
chemokine ligand 4; Ccl3, C-C motif chemokine ligand 3; Il1b, interleukin 1 beta; Id2, inhibitor of
DNA binding 2; Atf3, activating transcription factor 3; Ifitm3, interferon induced transmembrane
protein 3; Rtp4, receptor transporter protein 4; Oasl2, 2′–5′ oligoadenylate synthetase-like 2; Lpl,
lipoprotein lipase; P2ry12, purinergic receptor P2Y12; Cx3cr1, C-X3-C motif chemokine receptor 1;
GPNMB, glycoprotein nmb; HSP90AA1, heat shock protein 90 alpha family class A member 1; AD,
Alzheimer’s disease; PD, Parkinson’s disease.

Species Model Microglia Subset Gene Protocol Reference

CD-1 mice
In embryonic
development

The subsets during
CNS development and

homeostasis in the
adult brain

Ctsb, Ctsd, Lamp1,
Apoe, Tmsb4x,

Eef1a1, Rpl4, Cst3
SMART-seq2 [101]

In postnatal
development

Tmem119, Selplg,
Slc2a5, Malat1

C57BL/6J mice Aging brain (P540) Aging clusters (OA) 2
Lgals3, Cst7,

chemokines Ccl4,
Ccl3, Il1b, Id2, Atf3 10 × Genomics [102]

Aging clusters (OA) 3 Ifitm3, Rtp4, Oasl2

Heterozygous 5XFAD
transgenic mice AD

Microglia type
associated with

neurodegenerative
diseases (DAM)

Apoe, Lpl, Cst7 ↑
P2ry12, Cx3cr1,

Tmem119 ↓
MARS-seq [103]

Frozen human
post-mortem midbrain

tissue sections
Idiopathic PD

Microglia cluster
involving

inflammatory
response

IL1B, GPNMB,
HSP90AA1 10 × Genomics [104]

3.2. Spatiotemporal Distribution of Microglia and Colocalization between Microglia Activation and
Neuroplasticity after Stroke

Stroke can trigger a strong inflammatory response, leading to neuronal damage or
death in the infarct area, thereby destroying the connection between neural circuits and
the integrity of brain networks and leading to more extensive structural damage and fur-
ther corresponding dysfunction. Neuroplasticity, however, can promote the post-stroke
recovery. As mentioned above, neuroplasticity begins immediately after brain injury and
primarily occurs in the injured core area. Over time, it gradually appears away from the
lesion and the contralateral brain. As the basis of neurological rehabilitation after stroke,
the spatiotemporal development of neuroplasticity affects the reconstruction of neural
circuits and brain network systems. In addition, following stroke, microglia respond to
damage-associated molecular patterns (DAMPs) released by injured cells and participate in
the immune response together with other glial cells, blood-derived immune cells, and en-
dothelial cells. In the acute stage of brain ischemia, microglia mainly appear in the infarcted
areas. They then gradually spread to the surrounding and remote areas, continuing to the
chronic phase after stroke, which is closely related to functional recovery [105]. According
to clinical studies, microglial activation can be detected in the acute, subacute, and chronic
stages of ischemic stroke [93]. Experimental animal models of ischemic stroke have shown
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that state changes of microglial activation at different phases depend on the severity of
the ischemia [87,106]. Thus, the occurrence of neuroplasticity after stroke is relatively
consistent with the distribution and development of microglial activation in time and space,
which was also mentioned in our previous review, called spatiotemporal colocalization [7].
The precise temporal and spatial changes in microglia after stroke and the corresponding
morphological changes are summarized in detail below.

In the acute and subacute phases, as early as 30 min after the onset of middle cerebral
artery occlusion (MCAO), activated microglia could be detected in the periphery of the
ischemic lesion [107]. Other animal studies have shown that microglia activated after
ischemia are present in the infarct core and border zones at 24 h, continuously increase up
to 72 h, and persist for weeks after the initial injury [108]. Both in vitro and in vivo, M2-like
microglia appear primarily at the site of injury. They have been reported to be detectable
within 12 h and to transiently increase 1–3 days after ischemia. From day 5 to day 7 after
injury, microglia mainly expressed the M1 gene and continued to increase within 14 days
after injury [75]. During the chronic phase, activated microglia are mostly located in the
peri-infarct and distal regions of the human brain. Sustained activation can be maintained
for weeks or even years [93].

The number of activated microglia in mouse brain has been reported to peak at approx-
imately one week after ischemia and to decrease at approximately one month after ischemia.
In animal models, activated microglia distant from the infarct can be observed over time,
which is also thought to be associated with delayed progressive neurodegenerative dis-
eases [109]. Two weeks after injury, microglia were present in the thalamus ipsilateral to
the infarct zone and in the distal brainstem corticospinal tract [110]. Six months after stroke,
microglial activation declined in the peri-infarct region but remained in remote areas along
the corticospinal tract [111].

Although the mechanism of injury after hemorrhagic stroke is different, the inflamma-
tory trigger mechanisms are similar. There have, however, been few studies on microglial
polarization. In mice with intracerebral hemorrhage (ICH), M1-like microglia increased
dramatically as early as 6 h after intracerebral hemorrhage and underwent a gradual decline
within 14 days. M2-like microglia started to increase on the first day, and they exhibited a
rising trend during the first 14 days. The shift from the M1 to the M2 phenotype occurs
during the first seven days after hemorrhage [15,112].

It is currently thought that the four morphological changes in microglia following
stroke are branching, intermediate, ameboid, and globular states [113]. In the adult rat
subventricular zone, farther away from the ischemic lesion, the branches were longer and
thinner and the cell soma was smaller, which were considered resting microglia. At the
border of the ischemic lesion, the cells exhibited an ameboid morphology, with a larger cell
soma and shorter protrusion, and intermediate microglia. In the ischemic core area, the
microglia exhibited globular cell soma and thick branches, which are highly active, and
their morphology is related to the phagocytic function of microglia [113,114]. It has been
suggested in an animal study that microglial deramification occurs in the ischemic core
due to less capillary blood flow. When blood flow is blocked, a complete loss of blood flow
entirely stalls all microglia processes without structural changes. Thus, in the center of the
ischemic focus, activated microglia may also were less, and demonstrated a discontinuous
and destructive appearance presenting dystrophic morphology, with small cell bodies and
only a few long branches [115,116]. These differences in the morphology and number of
microglia should be related to the time of injury development and the accumulation of
neutrophils first in perivascular spaces and later in the parenchyma [115].

In summary, microglia exhibit distinct activation profiles depending on the different
brain microenvironments and undergo temporal and spatial adaptations to switch their
phenotypes depending on the site and severity of the brain injury [7]. As immune cells
in the CNS, microglial activation is involved in various aspects of neuroplasticity, such as
neuronal connection, axonogenesis, dendritic spine reorganization, and endogenous neuro-
genesis [9,117]. It plays a key role in regulating local and global brain inflammation and in
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promoting neurological recovery. After stroke, the development of neuroinflammation, the
occurrence of neuroplasticity, and the activation of microglia overlap spatially and tempo-
rally. It can be seen that the activation of microglia is consistent with the neuroplasticity
after stroke and plays a crucial role in the regulation of the inflammatory response and the
recovery of brain function.

3.3. Molecular Mechanism of Microglial Activation and Polarization Following Stroke

Microglial activation and polarization are crucial in the pathogenesis of ischemic
stroke. Therefore, understanding the molecular switch of microglial activation provides
a targeted basis for post-stroke treatment. The key factors of microglial activation are
discussed according to the following three aspects: surface receptors, transcription factors,
and ncRNAs.

3.3.1. Surface Receptor

Toll-like receptor 4 (TLR4) is a key regulator of the inflammatory response and is
mainly expressed by microglia [118]. After binding to endogenous ligand, it can induce
microglial activation and initiate the signaling cascade of the immune response regulated
by microglia. This cascade activates Toll/IL-1 receptor (TIR) domain-containing adaptor
proteins such as myeloid differentiation factor 88 (MyD88), IκB kinase (IKK), and nuclear
factor kappa-B (NF-κB)-induced kinase (NIK). Activated NF-κB then translocates into the
nucleus and induces the release of pro-inflammatory cytokines, such as IL-1, IL-6, IL-12,
and TNF-α [119,120] (Figure 2). Studies have reported that stimulation of TLR4 can induce
activation of hypothalamic microglia in vitro [121]. Increased TLR4 expression is associated
with a poor prognosis in mice with ischemic stroke [122]. According to a study using
a rat model, inhibition of the TLR4/NF-κB pathway or promotion of TLR4 degradation
could prevent microglia-induced neuroinflammation and alleviate post-ischemic stroke or
reperfusion injury [123].

Sphingosine-1-phosphate (S1P) is an important bioactive lysophosphatidylcholine. It
regulates various biological functions through its five specific G protein-coupled receptors
(S1PR1-5) [124,125], which are broadly expressed in microglia [126]. S1P transporters are
involved in pro-inflammatory microglial activation [127]. In an ischemia rat model, the
addition of S1P to primary microglia increased the level of cytokine IL-17 [128]. S1P receptor
2 (S1PR2) affects M1 polarization through extracellular signal-regulated kinases (ERK)1/2
and c-Jun N-terminal kinase (JNK) pathways in ischemic stroke. Inhibition of S1PR2
can attenuate microglial M1 polarization in post-ischemic brain after transient MCAO
(tMCAO) challenge [129]. S1PR3 can also promote pro-inflammatory M1 polarization and
activate the p38 mitogen-activated protein kinase (p38 MAPK) pathway after ischemic
stroke (Figure 2). In addition, the levels of S1PR3 and its ligand S1P were significantly
increased after ICH. Administration of the S1PR3 antagonist CAY10444 to rats attenuated
microglia M1 polarization, improved blood-brain barrier (BBB) integrity, and ameliorated
behavioral deficits [130].

TREM1 and TREM2 are members of the triggering receptors expressed on myeloid
cells (TREM) family. Both receptor types are present in microglia. TREM1 amplifies innate
immune responses and is an important inflammatory regulator [120,131]. TREM1 can
activate the downstream caspase recruitment domain family member 9 (CARD9)/NF-κB
and NLRP3/Caspase-1 signaling pathways both in vitro and in vivo by interacting with
spleen tyrosine kinase (SYK) to promote the release of inflammatory factors. Blocking
TREM1 can attenuate M1 polarization of microglia and the recruitment of neutrophils,
thereby improving the outcome of stroke [131]. TREM2 maintains immune homeostasis
and induces anti-inflammatory responses after stroke [132]. TREM2-DNAX activation
protein 12 (DAP12) interaction activates the phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT) signaling pathway, which subsequently blocks the MAPK cascade and
finally inhibits the TLR4-driven microglial inflammatory response [133–135] (Figure 2).
TREM2 also mediates microglial phagocytosis of apoptotic neurons and cellular debris in
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various neurological diseases. In a mouse model, TREM2 knockdown in microglia resulted
in the ameboid phenotype and reduced phagocytosis of injured neurons [136].
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Figure 2. Surface receptors and the signaling pathways associated with microglia activation fol-
lowing stroke. After binding to endogenous ligand, TLR4 and IL-1R activate the MyD88/ NF-κB
pathway to increase the release of pro-inflammatory cytokines and induce a pro-inflammatory re-
sponse. S1PR2 and S1PR3 affect microglial M1 polarization through the ERK1/2 and JNK pathways
and p38 MAPK pathway, respectively. TREM1 can activate the downstream CARD9/NF-κB and
NLRP3/Caspase-1 signaling pathway to promote the release of inflammatory factors. TREM2-
DAP12 interaction activates the PI3K/AKT signaling pathway, which can inhibit TLR4 signaling
by blocking MAPK cascade. CB2R exerts anti-inflammatory effects after stroke. This mechanism
may be related to inhibition of the TLR4/NF-κB signaling pathway. TLR4, toll-like receptor 4; IL-1R,
interleukin-1 receptor; MyD88, myeloid differentiation factor 88; NF-κB, nuclear factor kappa-B;
S1PR2, sphingosine-1-phosphate receptor 2; S1PR3, sphingosine-1-phosphate receptor 3; ERK1/2,
extracellular signal-regulated kinases 1/2; JNK, c-Jun N-terminal kinase; p38 MAPK, p38 mitogen-
activated protein kinase; TREM1, triggering receptor expressed on myeloid cells 1; CARD9, caspase
recruitment domain family member 9; NLRP3, NOD-like receptor thermal protein domain associated
protein 3; TREM2, triggering receptor expressed on myeloid cells 2; DAP12, DNAX activation protein
12; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; MAPK, mitogen-activated protein
kinase; MKK3/6, mitogen-activated protein kinase kinase 3/6; MKK4/7, mitogen-activated protein
kinase kinase 4/7; MEK1/2, mitogen-activated protein kinase kinase 1/2; SYK, spleen tyrosine kinase;
TRAF6, tumor necrosis factor receptor-associated factor 6; IL-1β, interleukin-1β; IL-18, interleukin-18;
GSDMD, Gasdermin D. Created with BioRender.com.

The endocannabinoid (eCB) system, which consists of cannabinoid receptors, ligands,
and their metabolic or biosynthetic enzymes, has been reported to trigger anti-inflammatory
signaling pathways that regulate immune function [137]. Cannabinoid receptor 2 (CB2R) is
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significantly expressed in microglia and is closely related to microglial activation and cell
migration in resting microglia [138]. Treatment with the CB2R agonist JWH133 decreased
the expression of both pro- and anti-inflammatory mediators and led to a lower abundance
of Iba1+ microglia. This result indicates a neuroprotective effect and improvement in
functional outcomes [139–141]. This mechanism may be associated with TLR4/MyD88/NF-
κB signaling (Figure 2), but it requires further exploration.

3.3.2. Transcription Factor

The signal transducer and activator of transcription (STAT) family contribute to cy-
tokine release and immune regulation [142]. STAT1 can be activated by Janus kinases (JAKs)
and receptor-associated tyrosine kinase proteins [143]. STAT1 is a key transcription factor
that modulates the microglial phenotypic transition. In the inflammatory response, after
the binding of cytokines to their cognate receptors, JAKs trigger phosphorylation of STAT1,
which can increase M1 marker expression in microglia [144]. STAT3 has been implicated in
the bidirectional role in regulating microglial polarization [145]. An animal study found
that inhibition of JAK2/STAT3 signaling in ischemic stroke promotes the transition of
resting microglia to an M2 phenotype and exert a protective role [146]. In addition, a
study suggested that activated STAT3 can inhibit the M1 phenotype and promote the M2
phenotype both in vitro and in vivo [147]. STAT6 signaling induces an anti-inflammatory
phenotype in microglia. In stroke mice, STAT6 depletion resulted in an increased microglial
inflammatory gene signature, reduced clearance of dead and dying neurons, and increased
infarction volume [148] (Figure 1).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to maintain redox home-
ostasis and regulate anti-inflammatory signaling pathways (Figure 1). Nrf2 and its related
signaling pathways have been shown to play a protective role after stroke [149]. In re-
sponse to a stimulus, activated Nrf2 moves into the nucleus to enhance the transcription of
genes involved in the antioxidant response, including NAD(P)H: quinone oxidoreductase
1 (NQO1), heme oxygenase-1 (HO-1), and other antioxidant proteins [150]. Some studies
have shown that in BV2 cells, tanshinol borneol ester (DBZ) exerts antioxidant activity by
increasing the transcriptional activity of Nrf2, thereby enhancing HO-1 and NQO1 expres-
sion and inhibiting ROS production [151]. Nrf2 is a key regulator of microglial activation
during brain inflammation. Nrf2 competes with NF-κB p65 for its common transcrip-
tional co-activator p300/CREB-binding protein (CBP), which counteracts NF-κB-driven
inflammation in many animal models [152].

In mammals, interferon regulatory factors (IRFs) comprise nine family members, and
the C-terminal variable domain determines the functional specificity of each member [120].
The expression of IRF5 and IRF4 in microglia exhibited a “seesaw” pattern [153] (Figure 1).
Downregulation of IRF5 signaling by interfering RNA (siRNA) in cultured primary mi-
croglia or conditional knockout (CKO) in a mouse model caused increased IRF4 expression
and reduced pro-inflammatory responses, thereby leading to enhanced M2 activation and
improved functional recovery, whereas downregulation of IRF4 resulted in increased IRF5
expression, enhanced pro-inflammatory responses, and worse stroke outcomes [154,155].
IRF8 has also been identified as a key transcriptional regulator that transforms microglia
into a reactive phenotype [156]. Microglia in IRF8-deficient mice exhibited reduced mor-
phological complexity, Iba1 expression, proliferation, and phagocytosis [157].

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcrip-
tion factor thought to be a major mediator of inflammatory responses [158] (Figure 1).
PPARγ induces the release of TNF-α, IL-1β, intercellular adhesion molecule-1 (ICAM-1),
and vascular cell adhesion molecules, which drive the aggregation of macrophages and
activation of microglia in the ischemic region [159]. The PPARγ antagonist T0070907
enhanced the expression of M2 markers and decreased the expression of M1 markers in
BV2 microglial cells, thus inhibiting NF-κB-IKKβ activation. This suggests that PPARγ
inhibition triggers anti-inflammatory responses and alters microglial polarization to
the M2 phenotype [160].
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3.3.3. Non-Coding RNA

Non-coding RNAs (ncRNAs) are functional RNAs that modulate gene expression post-
transcriptionally, and their gene diversity is considered to be closely related to biological
complexity. Such ncRNAs include microRNAs (miRNAs), circular RNAs (circRNAs), and
long non-coding RNAs (lncRNAs). They are highly expressed in the brain and participate
in the regulation of pathophysiological processes, including neural development and
plasticity, cerebral ischemic injury, neurodegeneration, and other neurological diseases [161].
Increasing evidence suggests that ncRNAs can regulate inflammation in the brain by
affecting microglial activation and polarization (Figure 1) through different mechanisms.

MiR-210, miR-155, and miR-342 have been shown to be relevant factors mediating
pro-inflammatory pathways and M1-type activation [161,162]. Li et al. reported that miR-
210-triggered the microglia M1 phenotype by targeting sirtuin-1 (SIRT1), thereby reducing
deacetylation of NF-κB p65 in an animal model of neonatal rats [163]. MiR-155 has been
shown to be a pro-inflammatory signal that activates TREM2-Apolipoprotein E (ApoE)
signaling in microglia in inflammatory states [164,165]. MiR-342 can affect microglial acti-
vation and its crosstalk with neurons. Overexpression of miR-342 is sufficient to trigger
the NF-kB pathway by inhibiting BCL2-associated athanogene-1 (BAG-1), resulting in
enhanced IL-1β and TNF-α secretion in rat brain-derived mixed glial cells [166]. MiR-711
and miR-145 mediate neuroprotective signaling and M2 phenotype activation in primary
murine microglia [167]. Exosomes play a crucial role in cell-to-cell communication by
transporting bioactive miRNAs. Microglia secrete exosomes containing miRNAs that affect
brain injury development. For example, cerebral ischemic injury in mice was alleviated
by transporting exosomal miRNA-137 [168]. Upregulation of exosomal miRNA-124-3p ex-
pressed by BV2 microglia cells inhibits neuronal inflammation and promotes neurogenesis
following traumatic brain injury [169].

CircRNAs are highly expressed in the CNS and are involved in various regulatory pro-
cesses [170]. It has been reported that circular RNA can change the microglial polarization
in central system diseases by regulating the activity of miRNA [171]. Circ-ubiquitin specific
peptidase 10 (Usp10) may promote microglial activation by targeting miR-152-5p/CD84
and inhibiting the secretion of pro-inflammatory factors in BV2 microglia [172]. CircHivep2
interacts with miR-181a-5p to upregulate the expression of suppressor of cytokine signaling
2 (SOCS2), promote microglial activation, and inhibit the expression of pro-inflammatory
factors in epilepsy [173]. CircPrkcsh regulates the MEKK1/JNK/p38 MAPK pathway
through miR-488 to stimulate M1 polarization of microglia in vivo and in vitro [174]. Circ-
Rps5 promotes M2 microglial polarization under conditions of hypoxia by affecting the
downstream targets SIRT7 and miR-124-3p in MCAO mice [175].

LncRNAs can act as endogenous competing RNAs to regulate microglial polarization
during central system injury. LncRNA-H19, as a classical lncRNA, could competitively
bind to let-7b to promote an inflammatory response by targeting STAT3 and activating
hippocampal glial cells in a rat model [176]. H19 knockdown blocked M1 microglial
polarization driven by oxygen–glucose deprivation (OGD) and increased Arg-1 and CD206
production both in vivo and in vitro [177]. LncRNA-Gm4419, through phosphorylation
of IκBα, results in transcriptional activation of IL-1β, IL-6, and TNF-α in the nucleus,
which activates microglia during OGD/R injury [178]. LncRNA-maternally expressed
gene 3 (Meg3) has been shown to play a crucial role in various biological processes. Meng
et al. have shown that Meg3 attenuates microglial activation by targeting the miR-7a-
5p/Nlrp3 pathway in vitro [179]. Overexpression of lncRNA-small nucleolar RNA host
gene 14 (SNHG14) significantly promoted the activation of BV2 microglial cells induced by
OGD and increased the production of TNF-α and nitric oxide (NO) [180].

4. Microglia Phagocytic Function following Stroke
4.1. Microglia Phagocytotic Function during Physiological State

Microglia are the main phagocytes in the brain, and they are capable of engulfing
and digesting extracellular materials and other cells. Microglial phagocytosis is an
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important mechanism for the formation of neural circuits. During brain development,
microglia form neural circuits by phagocytosing dendrites, axons, excess synapses,
myelin, neurons, and neuronal precursors, and clearing proteins with high turnover,
such as beta-amyloid (Aβ) [181,182].

In healthy brain, microglia are in a resting state with highly differentiated morpholo-
gies and elongated processes that are capable of recognition and phagocytosis [8]. Time-
delay imaging has shown that microglial processes are highly active even in uninjured
brain and their contacts with synapses are transient but frequent [183]. Microglia play
a crucial role in monitoring synapses in the physiological state and participate in the
maturation or elimination of synapses [79]. In the early stages of brain development, too
many synapses are formed, and the number of synapses decreases over time; in adulthood,
the synaptic density remains constant. Microglia phagocytosis plays an important role in
this process, engulfing synapses with weak neural activity, which is called developmental
synaptic reduction [184,185]. A large number of neuronal connections can be removed by
synaptic pruning and loss or shortening of axons and dendrites. This leads to a broader
reorganization of neuronal structures and their connections, which is closely related to the
formation of neural circuits and various functional gains in humans [79,181].

In addition to selectively removing synapses from viable neurons, microglia can phago-
cytose viable neuronal precursors and structures during development. In monkey and
rodent models, microglia phagocytize neural precursors in multiple regions of the develop-
ing CNS. The number of neural precursors can be significantly increased by deactivating
microglia with tetracycline in rat uterus or by removing them from the fetal cerebral cortex
with liposomal clodronate, whereas the number can be reduced through maternal immune
activation of microglia in the uterus [186]. Microglia can also phagocytose glial precursors
during cortical development. It follows that microglia can limit excessive cell production
and ultimately regulate the cerebral cortex and other CNS structures [186].

4.2. Functional Changes of Microglia Phagocytosis after Stroke

In immune inflammation and stroke recovery, microglial phagocytosis is a double-
edged sword. Microglia phagocytose stressed-but-viable and damaged neurons, leading to
excessive cell death and neurological deficits, and they phagocytose endothelial cells and
astrocytic endfeet, leading to destruction and leakage of the BBB. However, the removal
of dead neurons and tissue debris, such as cell body debris and myelin debris, promotes
tissue reconstruction and neural network reorganization to a certain extent [187–190]. The
removal of infiltrating neutrophils can create a microenvironment that is conducive to
neurogenesis, limits inflammatory damage, and promotes tissue repair (Figure 3).

Stroke is often accompanied by cell death and infiltration of blood-derived monocytes
into the brain parenchyma. The accumulation of dead cells and cell debris causes an
excessive inflammatory response; therefore, removal is essential for restoration of brain
homeostasis, and both microglia and macrophages are involved in this process. However,
studies have shown that microglia participate more in the phagocytosis of dead cells within
the CNS [191]. After MCAO, microglia, as phagocytes, accumulated prior to blood-derived
monocytes in the infarct zone. On the first day, the morphology of the microglia changed
to an ameboid or round shape and acquired the ability to phagocytose. Subsequently,
their numbers continue to increase to become the main phagocytes in the early stages of
stroke. On day 7, the density of microglial infiltration was approximately three times higher
than that of macrophages. By the time monocytes infiltrate the brain tissue, the dead cells
are almost completely removed. Studies have shown that infiltration of blood-derived
macrophages into the infarct area is delayed by at least 24–48 h after stroke onset [91,192].
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Figure 3. After stroke, activated microglia mediate phagocytosis in the central nervous system
through a combination of ligands expressed by target cells and corresponding receptors in microglia.
After stroke, activated microglia can directly phagocytose damaged or dead neurons (a), cell debris
(b), myelin debris (c), and peripheral neutrophils (d) to reduce inflammatory responses, create a
microenvironment for tissue repair, and restore brain homeostasis. Microglia can also phagocytose
vascular endothelial cells and astrocytic endfeet (e) to damage the integrity of the blood-brain barrier
and exacerbate the inflammatory development. In addition, neuronal exosomes and microglial
exosomes can promote synaptic pruning (f). (a) Injured neurons can express “Find me” signals,
including CX3CL, ATP, UTP, and UDP, recognized by corresponding microglial receptors including
CX3CR, P2Y12R, P2Y6R, and “eat me” signals including PS, calreticulin, C3 recognized by LRP,
MerTK, and C3R respectively. “Do not eat me” signal (CD47) can be downregulated, and its receptor
is SIRPα. (d) Neutrophils release CSF-1, which is recognized by CSF-1R in microglia. (e) Vascular
endothelial cells secrete CCL5, which binds to CCR5 in microglia to play a protective role in main-
taining the integrity of the blood-brain barrier. Other microglial surface receptors, including TREM2,
SR-A, SR-BI, CD36, are involved in the clearance of apoptotic cells as well as cell and myelin debris.
CX3CL, C-X3-C motif chemokine ligand; CX3CR, C-X3-C motif chemokine receptor; ATP, adenosine
triphosphate; UTP, uridine triphosphate; UDP, uridine diphosphate; P2Y12R, P2Y12 receptor; P2Y6R,
P2Y6 receptor; PS, phosphatidylserine; MerTK, c-mer tyrosine kinase; C3, complement 3; C3R, C3
receptor; LRP, low-density lipoprotein receptor-associated protein; SIRPα, signal regulatory protein
α; CSF-1, colony-stimulating factor-1; CSF-1R, CSF-1 receptor; CCL5, C-C motif chemokine ligand 5;
CCR5, C-C motif chemokine receptor 5; TREM2, triggering receptor expressed on myeloid cells 2;
DAP12, DNAX activation protein 12; SR-A, scavenger receptor A; SR-BI, scavenger receptor class B
type I. Created with BioRender.com.

In the ischemic core area, there are more dead neurons owing to more severe ischemia
and hypoxia. Decomposition of dead cells further leads to the release of toxic substances
and self-antigens and enhances the autoimmune response. Microglia begin to infiltrate and
phagocytose within a few hours. This process contributes to the resolution of inflammation.
In the penumbra area, there are more stressed neurons, which are damaged or have
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changes in activity after stimulation but are still salvageable. Phagocytosis of these neurons
is unfavorable and may lead to exacerbation of brain atrophy and dysfunction [193].

M2-like microglia have a persistent capacity to remove debris after ischemic stroke.
The studies to date have mostly focused on multiple sclerosis for the clearance of myelin
debris. Phagocytosis of damaged myelin by microglia improves the immune microenviron-
ment for oligodendrocyte differentiation and plays an important role in remyelination and
white matter recovery.

Neutrophils from the blood system rapidly infiltrate the brain parenchyma after
ischemia, releasing pro-inflammatory factors, metalloproteinase matrix, and oxygen free
radicals to mediate inflammatory damage and enhance neurotoxic effects. Microglia can
efficiently phagocytose these cells. In time-lapse images of hippocampal culture sections
from an OGD model, microglia migrated to and phagocytosed apoptotic and surviving
neutrophils [194], which was also observed using two-photon microscopy in a rat model of
cerebral ischemia [195].

The BBB is crucial for maintaining brain homeostasis. After stroke, BBB disruption can
occur throughout the brain owing to the infiltration of immune cells, thereby promoting
further inflammatory cascades [196]. Microglia can interact with endotheliocytes and
regulate the BBB [197]. On the one hand, microglia can directly engulf astrocytic endfeet and
disrupt the integrity of the BBB. On the other hand, microglia aggravate endothelial necrosis
and exacerbate BBB disruption by secreting pro-inflammatory cytokines such as IL-1β,
IL-6, and TNF-α. IL-1β released from microglia downregulates the production of claudin-5,
occludin, and zonula occludens (ZO)-1, thereby increasing BBB permeability [198].

In addition, microglia can act indirectly as synaptic regulators without physical
contact with neurons [199]. Microglia exposed to inflammation secrete extracellular vesi-
cles (EVs) that contain proteins, lipids, and RNAs. Internal miR-146a-5p targets and
inhibits the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neurolectin
1 (Nlg1), resulting in a reduction in the number of dendritic spines and the density of exci-
tatory synapses [200]. Neuronal exosomes promote microglial phagocytosis and enhance
synaptic pruning. Incubation of microglia with neuron-secreted exosomes upregulated
the expression of complement 3 (C3) in microglia and enhanced microglial clearance of
inappropriate synapses [201].

In stroke-mediated inflammation, the mechanism of microglial phagocytosis is af-
fected by many factors, including age, sex, physiological condition, lesion site, phagocytic
target, various types of phagocytic cells (astrocytes, pericytes, monocytes, peripherally
infiltrated neutrophils, etc.), and the timing and ability of phagocytosis [191,202]. There-
fore, the comprehensive mechanism and effect of microglia in case conditions need to be
studied further.

4.3. Phagocytic Signaling

Whether a target cell is engulfed depends on the signals expressed and released.
Under normal physiological conditions, microglia mainly phagocytose naturally apoptotic
cells, and their phagocytic function maintains a steady balance. Under inflammatory
conditions, when neurons are damaged or dead, their surface will be exposed to “find me”
and “eat me” signals, and the expression of “do not eat me” signals will be downregulated,
inducing chemotaxis and phagocytosis of microglia [189,203]. Several recognized surface
signals expressed by neurons and other cells that mediate phagocytosis are described
below (Figure 3).

4.3.1. Find Me Signal

In the CNS, C-X3-C motif chemokine ligand (CX3CL) is expressed and released by
neurons, and specifically binds to the receptor CX3CR1 on the surface of microglia [133].
The CX3CL1/CX3CR1 biological axis is involved in the directed migration of chemotactic
cells as well as immune and inflammatory responses. Studies have shown that CX3CL1 in-
hibits LPS-induced microglial activation by limiting the release of pro-inflammatory factors
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in vitro and in vivo, which results in a neuroprotective effect [204]. Additionally, CX3CR1
activation is important for microglial migration to lesion sites during development. It has
been demonstrated that mice lacking CX3CR1 exhibit a variety of neuronal defects, which is
thought to be associated with defective phagocytosis of microglia [205]. CX3CL1/CX3CR1
contribute significantly to synaptic pruning by microglia. CX3CR1 knockout mice also
exhibited decreased microglial numbers during postnatal development.

Nucleotides, including adenosine triphosphate (ATP) and uridine triphosphate (UTP),
can be released as transmitters by active neuron synapses or by pannexin-1 channels
of apoptotic, damaged neurons [203]. Microglial recruitment to neuron is primarily
mediated through activation of P2Y12 receptor (P2Y12R). During CNS development,
P2Y12R knockdown delays synaptic pruning by microglia in the mouse visual cortex [206].
Release of ATP/ADP is an important condition for inducing the directional and rapid
migration of microglia to injured neurons. In an animal study, the application of apyrase,
which is capable of degrading extracellular ATP/ADP, inhibited microglial motility and
migration to injured neurons. ATP/ADP-dependent microglial migration facilitates the
clearance of dying and dead cells and alleviates secondary damage within a critical time
after nervous damage [207,208].

In addition, in vivo and in vitro studies have shown that the metabotropic P2Y6
receptor (P2Y6R) expressed in microglia can also trigger phagocytosis when activated by
uridine diphosphate (UDP) [209]. Pharmacological inhibition of P2Y6R can effectively
prevent microglial phagocytosis by neurons [210,211].

4.3.2. Eat Me Signal

Phosphatidylserine (PS) can be irreversibly exposed on the surface of apoptotic cells,
becoming a critical “eat me” signal [212]. Phosphatidylserine is normally restricted to the
cell membrane [213]. Upon apoptosis, PS eversion occurs due to the decline in phosphoser-
ine aminotransferase activity, which is a general feature of apoptotic cells and an important
signal for recognition by phagocytes [214]. The cause of eversion is related to oxidative
stress, increased calcium levels, and glutamate release following neuronal injury. During
inflammation, phosphatidylserine binds to the microglia-released opsonin milk fat globule-
epidermal growth factor 8 (MFG-E8). It is then recognized by the vitronectin receptor (VR)
on the microglial surface [203,215–217] and plays an important role in inducing phagocyto-
sis. The combination of opsonin, such as growth arrest-specific protein 6 (GAS6), galectin-3
(Gal-3), and Tubby with “eat me” signal on the surface of neurons can activate the microglia
surface receptor c-mer tyrosine kinase (MerTK) [218,219]. The upregulation of MFG-E8
and MerTK has been reported to be delayed by 2 to 3 days after focal cerebral ischemia
in an animal model [220], which may be consistent with the resolution of inflammation.
Thus, the specific binding of phosphatidylserines to opsonins and the expression of their
receptors results in the detection and phagocytosis of signal-exposed neurons, a process
that contributes to inflammatory response [193].

Calreticulin, normally located in the endoplasmic reticulum (ER), is released to the
neuronal cell surface in response to stress or inflammatory signals. Calreticulin acts as
an “eat me” signal or opsonin to trigger phagocytosis through low-density lipoprotein
receptor-associated protein (LRP) on the surface of microglia [181,188]. The addition of
nanomolar calreticulin could result in attraction of microglia, stimulation of microglia to
release pro-inflammatory factors, alteration of microglial morphology and proliferation,
and promotion of phagocytosis [188,221]. LPS-induced microglial phagocytosis can be
inhibited by calreticulin or microglial surface LRP1 receptor blocker [222].

4.3.3. Do Not Eat Me Signal

CD47 is a transmembrane protein that is expressed on neurons and inhibits phago-
cytosis by binding to signal regulatory protein α (SIRPα) on phagocytes. It can serve
as a “Do not eat me” signal [181,223]. CD47 or SIRPα knockdown resulted in increased
microglial synaptic phagocytosis of neurons, indicating that the CD47-SIRPα signaling
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pathway plays an important role in regulating synaptic elimination [224]. In addition,
according to an animal study, CD47 expressed on myelin phospholipid debris can inhibit
microglial phagocytosis by binding to SIRPα. Eliminating SIRPα-dependent inhibition of
phagocytosis can promote the removal of myelin debris and advance functional recovery
from nerve injury [225].

There is a high density of sialic acid residues on glycoproteins and glycolipids on the
surface of the neuronal membranes. The sialylated protein can activate sialic acid-binding
immunoglobin-like lectins (Siglecs) including Siglec-11(in humans) and Siglec-E (in mice).
In addition, it can also inhibit the phagocytosis of microglia by inhibiting the binding of
the opsonins C1q, C3, and Gal-3 [226,227]. Reduced sialylation has been shown to disrupt
synaptic homeostasis and damage neurons in middle-aged mice [228]. In addition, sialidase
treatment of BV-2 microglia can induce IL-6 release and activate TLR4 signaling. These
results show that sialic acid plays an important role in regulating microglial activation and
mediating the inflammatory response in the nervous system [229].

Excluding the phagocytosis of neurons, microglia can migrate, engulf and digest
other extracellular materials, including endothelial cells, immune cells, and myelin de-
bris [91]. Studies have shown that systemic inflammation can induce the release of C-C
motif chemokine ligand 5 (CCL5) by endothelial cells, which attracts microglia in the CNS
to migrate to the cerebrovascular system. In vivo and in vitro experiments have shown
that the CCL5/C-C motif chemokine receptor 5 (CCR5) signaling pathway helps attract
microglia to blood vessels and induces microglia to express the tightly connected trans-
membrane protein claudin-5 (CLDN5). Subsequently, microglia permeate through the
neurovascular unit, contacting endothelial cells, and forming tight connections to maintain
the integrity of the BBB [230,231]. Ablation or blocking of the CCL5 signaling pathway
increases BBB permeability.

Phagocytosis of peripheral neutrophils by reactive microglia after ischemic stroke is
thought to be closely related to the surface receptor colony-stimulating factor-1 receptor
(CSF-1R). CSF-1R is a tyrosinase that binds to signal molecules such as PI3K and AKT and
induces ERK1/2-mediated signal transduction in microglia [232–234]. In a mouse model
of MCAO, long-term treatment with CSF-1R antagonists led to a decrease in the number
of microglia, an increase in the number of neutrophils, and an expansion of the ischemic
lesion, which adversely affected local tissue recovery [115].

The scavenger receptor (SR) family, including food-borne receptor class A (SR-A, CD204),
scavenger receptor class B type I (SRBI), and CD36 are cell surface proteins involved in the
clearance of cell debris, myelin, bacteria, apoptotic cells, and outer rod segments [235]. SR-A
expressed on neonatal microglia regulates the phagocytosis of apoptotic cells expressing phos-
phatidylserine [236]. In AD, activated microglia phagocytose Aβ via scavenger receptors [237].
CD36 is essential for the removal of myelin debris in neuroinflammation [238].

5. Therapeutic Intervention Targeting Microglia in Stroke Rehabilitation

Microglia can regulate neuroplasticity after stroke and play a critical role in the recov-
ery from neuroinflammation. Endogenous microglial activation or polarization may not
be sufficient to achieve the desired effects of structural and functional recovery. Therefore,
exogenous therapy targeting microglia can be used to promote post-stroke recovery.

5.1. Pharmacotherapy

The use of drugs can provide a beneficial microenvironment for microglial activation
and polarization, thus promoting the positive regulation of microglia during inflammation
(Table 3). The most commonly used drug is minocycline. Due to its high lipophilicity,
minocycline can cross the BBB and inhibit microglial activation. The mechanism is as
follows: First, it can prevent microglial activation by attenuating the NLRP3 inflammasome
signaling pathway to ameliorate ischemic brain damage [239]. Second, the expression of
pro-inflammatory factors such as IL-1β and TNF-α is decreased, and the expression of
anti-inflammatory factors such as IL-10 and TGF-β is increased in microglia around the
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infarction area [240]. Third, minocycline can affect the STAT1/STAT6 pathway to inhibit
M1 polarization of microglia and promote M2 polarization. In addition, early minocycline
treatment reduces microglial phagocytosis [241].

Many drugs can affect M2-like polarization by regulating microglial inflammatory
cytokines. Wnt-3a [242] reduces the expression of iNOS, TNF-α, and CD16/32, increases
the expression of CD206 and Arg-1, and changes the microglial polarization state from M1
to M2. Delayed treatment with recombinant Gal-3 after stroke is related to the proliferation
of chitinase-like protein 3-positive microglia and decreased iNOS expression [243]. Atorvas-
tatin can reduce the expression of IL-6, TNF-α, and monocyte chemotactic protein (MCP)-1,
and increase the production of IL-10 after stroke. These results suggest that it can effectively
alleviate microglia-mediated neuroinflammation after stroke [244]. Exendin-4, an agonist
of the glucagon-like protein-1 (GLP-1) receptor, had no effect on M1 markers in microglia
but increased the expression of M2 markers [245]. Bendavia is a mitochondria-targeted
tetrapeptide that reduces the expression of MMP-9 and TNF-α [246].

In addition, many drugs regulate microglia by directly or indirectly affecting tran-
scription factors: It has been shown vx-765 [247], baicalein [248] and cottonseed oil [249]
alter the phenotype by switching polarization to M2-like microglia. This is associated with
inhibition of NF-κB activation [250]. Gardenia extract GJ-4 inhibits microglia-mediated
neuroinflammatory responses by inhibiting JAK2 and STAT1 pathways [251]. Studies
have shown that melatonin can activate the STAT3 pathway to promote microglial polar-
ization toward the anti-inflammatory phenotype, thus inhibiting the neurotoxic effect of
pro-inflammatory microglia on OGD neurons [252]. Ki20227, a specific inhibitor of CSF-1R,
can downregulate the NLRP3 pathway and inflammasome activation, thereby reducing
the microglial number and significantly reducing dendritic spinous loss and behavioral
deficits following transient global cerebral ischemia [253,254]. Curcumin not only reduces
the expression of pro-inflammatory factors and promote M2 microglial polarization after
stroke [255] but also suppresses microglial pyroptosis and ameliorates stroke-induced
white matter injury by inhibiting the NF-κB/NLRP3 signaling pathway [256]. Traditional
Chinese medicine extracts such as salidroside [257], tripterine [258], resveratrol [259] and
schisandrin B [260] have been shown to regulate microglial anti-inflammatory polarization
and play a protective role after stroke in animal models.

Table 3. Pharmacotherapy can promote post-stroke recovery by targeting microglia. ↑, upregulate; ↓,
downregulate; Gal-3, galectin-3, MCAO/R, middle cerebral artery occlusion/reperfusion; tMCAO,
transient MCAO; dMCAO, distal MCAO; pMCAO, permanent MCAO; PT, photothrombosis; OGD/R,
oxygen-glucose deprivation/reperfusion; LPS, lipopolysaccharide; IL-1β, interleukin-1β; IL-18,
interleukin-18; NLRP3, NOD-like receptor thermal protein domain associated protein 3; TNF-α,
tumor necrosis factor-α; IL-10, interleukin-10; TGF-β, transforming growth factor-β; Ym1, chitinase-
like protein 3, IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; Arg-1, arginase-1; IFN-γ,
interferon-γ; IL-17, interleukin-17; IL-4, interleukin-4; MCP-1, monocyte chemotactic protein-1;
MMP9, matrix metalloproteinase 9; NO, nitric oxide; COX-2, cyclooxygenase-2; STAT1, signal
transducer and activator of transcription 1; STAT6, signal transducer and activator of transcription 6;
NF-κB, nuclear factor kappa-B; TLR4, toll-like receptor 4; STAT3, signal transducer and activator of
transcription 3; JAK2, Janus kinase 2.

Drug
In Vivo In Vitro Effect on

Microglia
Signal Reference

Animal Model Treatment Cell Culture Treatment

Minocycline Mouse (tMCAO)

Intraperitoneal
injections after MCAO

induction;
10, 25, and

50 mg/kg/day for
3 consecutive days

BV2 microglial cells
oxygen–glucose depriva-

tion/reoxygenation
(OGD/R) cell model

Minocycline at doses of
0.01, 0.1, 1, 10, and 100

µM;
preincubated 1 h before

OGD/R injury

IL-1β↓, IL-18↓,
NLRP3↓ [239]
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Table 3. Cont.

Drug
In Vivo In Vitro Effect on

Microglia
Signal Reference

Animal Model Treatment Cell Culture Treatment

Rats (tMCAO)
Intravenous injection

after reperfusion onset;
a single dose (3 mg/kg)

IL-1β↓, TNF-α↓,
IL-10↑, TGF-β↑,

Ym1↑
[240]

Mouse
(MCAO/R)

Intraperitoneal
injections after

reperfusion;
10, 25, or 50 mg/kg/day

for 2 weeks

Primary microglia from
cerebral cortex of

newborn mice

LPS (100 ng/mL) +
IFN-γ (20 ng/mL) +
minocycline (50 µM);

incubation for 24 h

IL-1β↓, IL-6↓,
iNOS↓, TNF-α↓,
Arg-1↑, IL-10↑,
TGF-β↑, Ym1↑

STAT1/STAT6
pathways ↓ [241]

Wnt-3a Mouse (tMCAO)

Intranasally delivered at
the time of reperfusion

and next 2 days;
2 µg/kg/day

iNOS↓, TNF-α↓,
Arg-1↑, CD206 ↑ [242]

Gal-3 Mouse (MCAO)
Intracortical injection at
24 h following MCAO;
100 ng/mouse (20–25 g)

Primary cell cultures
from the brains of the
adult, 8–9-week-old

C57BL/6
wild-type mice

Incubation with Gal-3
(5 µM) for 24 h

TNF-α↓, IL-1β↓,
IFN-γ↓, IL-17↓,
iNOS↓, Ym1↑,
IL-4 ↑, IL-6 ↑

[243]

Atorvastatin Mouse (pMCAO)
Oral gavage after
MCAO induction;

20 mg/kg/day

IL-6↓, TNF-α↓,
MCP-1↓, IL-10 ↑ [244]

Exendin-4 Mouse (MCAO)

Intraperitoneal
injection;

50 mg/kg at 1.5 h after
MCAO induction;

0.2 mg/kg daily for
3 days until sacrifice

Primary
microglia-enriched

cultures were prepared
from whole brains of
2- to 3- day-old mice

LPS (10 ng/mL) + Ex-4
(40 ng/mL);

incubation for 24 h

CD206↑, Arg-1↑,
Ym1/2↑ [245]

Bendavia Mouse (tMCAO)

Intraperitoneal
injection immediately

after reperfusion
and 4 h later;

5 mg/kg

MMP9↓, TNF-α ↓ [246]

Vx-765 Mouse (MCAO)

intraperitoneal
injection starting
immediately after
MCAO induction;

50 mg/kg for
3 consecutive days

IL-1β↓, TNF-α↓,
iNOS↓, TGF-β↑,

Ym1↑
NF-κB

signaling↓ [247]

Baicalein Mouse (MCAO)

Intragastrical
administration

after reperfusion;
100 mg/kg/day

for 3 days

BV2 microglial cells

a LPS (100 ng/mL) +
IFN-γ (20 ng/mL)
+ baicalein (45 µM);
incubation for 24 h

b OGD stimulated BV2
cells + baicalein (45 µM);
incubation for 24 h

Ym1/2↑, Arg-1↑,
CD206↑, TNF-α↓,

IL-1β↓, IL-6↓,
NO↓

TLR4/NF-κB
↓, phospho-

rylated
STAT1 ↓

[248]

Cottonseed
oil Rats (MCAO/R)

Subcutaneous injection
before MCAO;

1.3 mL/kg/day
for 3 weeks

IL-1β↓, IL-6↓,
TNF-α↓ TLR4/NF-κB ↓ [249]

GJ-4 Rats (MCAO/R)

Oral administration
after MCAO induction;
10, 25, 50 mg/kg/day

for 12 days

iNOS↓, COX-2↓,
MMP9↓ JAK2/STAT1 ↓ [251]

Melatonin Mouse (dMCAO) 20 mg/kg at 0 and 24 h
after reperfusion

Co-culture of BV2 cells
(growing on culture

inserts) and
OGD neuron

Melatonin (100, 200, or
400 mM);

incubation for 12 h

pro-inflammatory
markers ↓,

anti-inflammatory
markers ↑

p-
STAT3/STAT3↑ [252]

Ki20227 Mouse (PT)

Oral gavage before
modeling;

0.002 mg/kg/day for 7
consecutive days

TNF-α↓, iNOS ↓,
IL-10↑, Arg-1 ↑,
NLRP3↓, Active

caspase 1 ↓

NF-κB
signaling↓ [253]

Curcumin

Mouse (tMCAO)

Intraperitoneal
injection;

150 mg/kg at 0 h and
24 h after reperfusion

BV2 microglial cells

LPS (100 ng/mL) +
IFN-γ (20 ng/mL) +
curcumin (12.5 and

25 µmol/L);
incubation for 48 h

TNF-α↓,
IL-12p70↓, IL-6 ↓ [255]

Mouse
(MCAO/R)

Intraperitoneal
injection;

150 mg/kg/day for
7 days after

ischemic stroke

Primary microglia were
isolated from the whole

brains of neonatal
C57BL/6J mice

LPS (100 ng/mL) +
curcumin (12.5 µM);
incubation for 24 h

NLRP3/NF-κB
pathway ↓ [256]

5.2. Exercise

Exercise can promote the recovery of inflammation after stroke by affecting the acti-
vation and function of microglia, and the mechanism mainly depends on the regulation
of pro-inflammatory and anti-inflammatory cytokines (Table 4). Exercise can promote the



Biomolecules 2023, 13, 571 21 of 38

production of the anti-inflammatory cytokines IL-4 and IL-10, which can interact with
microglial receptors and inhibit CNS inflammation [261–264]. In addition, exercise can
downregulate the expression of pro-inflammatory factors and inhibit microglial activation
in human and mouse models. Long-term voluntary exercise can reduce the levels of IL-1β,
iNOS, and IL-6 [265,266], downregulate the TLR pathway, and reduce the activation of
hippocampal microglia [267].

Studies have found that different intensities of treadmill exercise training can in-
hibit the expression of NLRP3 inflammasome components, stimulate the expression of
endogenous BDNF, reduce the levels of pro-inflammatory factors, and upregulate the
levels of anti-inflammatory factors [268]. Colocalization analysis showed that M2-type
microglia increased and M1-type microglia decreased in the infarct area, and their mor-
phology also changed significantly, from ameboid to the branched form. High-intensity
interval training (HIIT) improves functional recovery after ischemic stroke better than
moderate-intensity continuous training (MICT) [269]. Thus, the anti-inflammatory effect of
exercise can inhibit inflammation-mediated pyroptosis by polarizing microglia towards a
neuroprotective M2 phenotype [270]. In addition, it can also promote the recovery of brain
plasticity and function by upregulating the level of neuro-nutrients and enhancing synaptic
generation [268,269]. In terms of exercise time, studies have found that more than four
consecutive weeks of treadmill training can effectively reduce the activation of microglia
compared to one week of training, but it had no effect on neuroprotection [265,271].

Exercise may also regulate synaptic plasticity by promoting the migration of exosomes
into the brain [272] through circulation and by preventing the overactivation of microglia [273].
Exosomes have been shown to inhibit the overactivation of M1-type microglia [274,275],
increase the complexity of dendrites and expression of synaptic plasticity-associated proteins,
and significantly reduce the volume of cerebral infarction and dysfunction.

In addition to aerobic exercise, such as running, training of damaged forelimbs
in post-stroke mice significantly reduces excessive microglial activation in the area
around the lesion [276,277].

For hemorrhagic stroke, 8 days after intracerebral hemorrhage induction, exercise
preconditioning mice showed reduced lesion volume and increased pro-survival factors
in plasma, and promoted the recovery of neurological deficits and induced microglial
phagocytic function [278].

However, the studies to date on the regulatory effects of exercise on microglial acti-
vation have mostly focused on PD and AD [279], and further studies are needed on the
post-stroke-related mechanisms of inflammation regulation.

Table 4. Exercise and NIBS as the main rehabilitative interventions can promote post-stroke recovery
by targeting microglia. ↑, upregulate; ↓, downregulate; MCAO, middle cerebral artery occlusion; dM-
CAO, distal MCAO; PT, photothrombosis; rTMS, repetitive transcranial magnetic stimulation; tDCS,
transcranial direct current stimulation; TUS, transcranial ultrasound stimulation; tFUS, transcranial
focused ultrasound stimulation; TBS, theta-burst stimulation; HIT, high-intensity; MOD, moderate-
intensity; IL-4, interleukin-4; NLRP3, NOD-like receptor thermal protein domain associated protein 3;
IL-10, interleukin-10; p75NTR, P75 neurotrophin receptor; BDNF, brain-derived neurotrophic factor;
IFN-γ, interferon-γ; Gal-3, galectin-3; Syn, synaptophysin; PSD-95, postsynaptic density protein 95;
TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-
inducible factor-1α; TLR4, toll-like receptor 4; NF-κB, nuclear factor kappa-B; STAT6, signal transducer
and activator of transcription 6; GABA, γ-aminobutyric acid; IL-10R, interleukin-10 receptor.

Type Treatment (Intensity, Time,
Frequency, Duration) Model Effect on Microglia Outcome Reference

Exercise Treadmill exercise

12 m/min;
30 min/day;

3 or 6 consecutive days
Rats (MCAO)

IL-4↑
M1-like markers↓
M2-like markers↑

Improving
neurobehavioral outcomes [270]

5–6 m/min;
5 min/day;

3 consecutive days
Mouse (MCAO) NLRP3↓

Showing better
improvements at
functional levels

[268]
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Table 4. Cont.

Type Treatment (Intensity, Time,
Frequency, Duration) Model Effect on Microglia Outcome Reference

HIT program: 10 days
(>25 m/min)

MOD program: 2 days
(<20 m/min)

Rats (MCAO) IL-10↑, p75NTR↑,
BDNF↑

Promoting
cerebral plasticity [269]

30 min/day;
5 days/week;

4 weeks
Mouse (MCAO)

Iba1+↑
(hippocampal
CA1 region)

Alleviating increased
neuroinflammation [271]

25 cm/s;
30 min/day;
3 days/week

4.5 weeks

Mouse (MCAO)
IL-10↑, NLRP3↑,
IFN-γ↑, Gal-3↓

(caused by stress)

Having beneficial
neuro-inflammatory effects;

inducing detrimental stress
response by forced running

[280]

10 m/min;
60 min/day;

5 weeks

Mouse
(microinjection of

collagenase into the
striatum region)

CD36/Iba1-double
positive cells↑

Contributing to
neuroprotection [278]

12 m/min;
30 min/day;

5 times/week;
4 weeks

Rats (MCAO)
(exosomes injection)

Excessive microglial
activation↓, Syn↑,

PSD-95↑

Regulating synaptic
plasticity and protecting

neural function
[273]

Skilled reaching
training of the

impaired forelimb

5 days/week;
14 or 42 days Rats (PT) Excessive microglial

activation↓

Modulating perilesional
cellular plasticity and

contributing to a better
functional recovery

[276]

10 or 42 days Rats (PT) Excessive microglial
activation↓

Improving
functional recovery [277]

rTMS

Continuous TBS

5 min (3 pulses of 50 Hz
repeated every 200 ms);

5 days
Rats (PT) Pro-inflammatory

cytokines↓
Improving the
local neuronal

microenvironment
[281]

5 min (3 pulses of 50 Hz,
repeated every 200 ms);

6 days
Rats (PT) TGF-β↑, VEGF↑,

HIF-1α↑

Presenting protective
effects in the context of

ischemic stroke;
contributing to vascular

repair and protection

[282]

Intermittent TBS

Ten 50 Hz bursts with 3 pulses
each repeated 20 times at

5 Hz intervals;
twice per day;

7 continuous days

Mouse (MCAO)
TLR4/NF-
κB/NLRP3

signaling pathway↓

Alleviating locomotor
deficits and

neuronal pyroptosis
[283]

High frequency

10 Hz rTMS with a total
of 60 trains;

20 pulses per train (1200 pulses);
10 s intertrain interval;

for 11 min 44 s

Rats (MCAO) NF-κB↓, STAT6↓
Promoting neurogenesis

and improving neural
function recovery

[284]

tDCS

Cathodal

500 µA, 15 min;
once per day;

10 days
Rats (MCAO)

Iba1+↓
Pro-inflammatory

factors↓
Anti-inflammatory

factor↑

Accelerating recovery from
neurologic deficit and

brain damage
[285]

250 µA;
40 min;
1 day

Mouse (PT) CD206↑
CD68↓

Being effective from a
functional point of view [286]

250 µA;
40 min Mouse (MCAO)

Iba1+↓
GABA and
glutamate↓

Exerting a measurable
neuroprotective effect [287]

Anodal
250 µA;
15 min;
10 days

Mouse (MCAO) Iba1+↓
Inducing regeneration and

promoting
functional recovery

[288]

Cathodal or anodal
250 µA (110.13 A/m2) or

500 µA (220.3 A/m2);
15 days

Mouse (PT) CD16/32↓, Iba1+↓
Impacting neurogenesis

and influencing
functional recovery

[289]

TUS/
tFUS Low intensity

528 mW/cm2;
5 days;

15 min/day;
5 days before MCAO

Mouse (MCAO) VEGF↑, BDNF↑,
Caspase-3↓

Ameliorating
brain damage [290]

86 mW/cm2;
60 min Rats (dMCAO) Inflammatory

factors↓
Increasing cerebral blood

flow and supporting
neuroprotection

[291]

0.5 MHz;
120 mW/cm2;

7 consecutive days;
Mouse (MCAO) M2 microglia↑

IL-10 and IL-10R↑
Promoting

neurorehabilitation [292]

5.3. Cell-Based Therapy

Cell-based therapy is considered a new potential therapeutic strategy, and its mecha-
nisms include protective factor release, immune regulation, cell differentiation, and neural
circuit reconstruction.
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Stem cells have anti-inflammatory and immunomodulatory properties [293]. In vitro
and in vivo studies have shown that bone marrow mesenchymal stem cells (BMMSCs)
can migrate to ischemic sites and differentiate into neurons, endothelial cells, and glial
cells. They can also produce and release trophic factors (such as BDNF, VEGF, GDNF,
and TGF) that have neuroprotective effects [294]. The injection of human mesenchymal
stromal cells (hMSCs) into adult mice has been shown to induce the activation of M2-type
microglia [295], which play an important role in functional recovery, angiogenesis, and en-
dogenous neurogenesis [296,297]. Adipose-derived stem cells have similar functions [298].
After intravenous injection of human umbilical tissue-derived cells (hUTC) into monkeys,
the total density of activated microglia increased significantly in both the perifocal gray
matter and subfocal white matter, which played a protective role in the effective clearance
of debris in the peri-infarct area and enhancement of neuroplasticity [299].

Transplanted NSCs can generate both neurons and glial cells. Exogenous NSCs
can be derived from induced pluripotent stem cells (iPSCs), embryonic stem cells , fetal
tissue, and the adult nervous system and can also stimulate SVZ neurogenesis. NSC trans-
plantation can reduce microglia, infiltrated macrophages, and cells expressing iNOS and
cyclooxygenase-2 (COX-2) in rodent models [300]. Animal studies on NSC transplantation
can be used as a multifaceted neurosupportive strategy in the acute/subacute phase of
ischemic stroke to limit the severity of cell damage caused by ischemic injury [301].

Transplantation of iPSCs-derived microglia is an important component of transla-
tional neuroimmunology and has great therapeutic potential. Stem cells secrete a variety
of bioactive molecules through paracrine signaling, which is involved in inflammation
development, angiogenesis, and regeneration [302]. Human induced pluripotent stem
cell-derived glial progenitor cell (GPCs)-conditioned medium produces high levels of
neurotrophic factors [303]. An experiment performed in mice showed that iPSC-derived
microglia can be transplanted into the brain via the transnasal route, thus providing a
potential treatment approach [304].

The transplantation of exogenous microglia may also have a protective effect
against ischemic brain injury. Exogenous microglial cells injected into the subclavian
artery of gerbils can promote neuronal survival by migrating to CA1 vertebral neurons,
increasing BDNF expression in the ischemic hippocampus, and preventing ischemia-
induced neuronal deformation [305,306].

Treg cells, a small subgroup of CD4+ T cells defined by the expression of marker
proteins such as forkhead box protein 3 (Foxp3) and CD25 [307], have been found to be
targets for neural repair in stroke recovery. According to in vitro and in vivo experiments,
brain-infiltrated Treg cells have a strong immunomodulatory effect on microglia to enhance
their repair activity [308]. Treg cells begin to infiltrate the infarcted area of mouse brain
early after ischemic injury (days 1–7). As the disease progresses, the number of Treg cells in
the brain increases and remains high for at least one month after stroke [309]. Co-culture
studies of Treg cells and microglia showed that microglia genes associated with the anti-
inflammatory phenotype were upregulated, such as arginase 1 (Arg1), fibrinogen like
2 (Fgl2), mannose receptor C-type 1 (Mrc1), interleukin 1 receptor antagonist (Il1rn), and
galectin 3 (Lgals3). It was speculated that the interaction between Treg cells and microglia
enhances the neuroprotective effect of microglia and promotes the recovery of white matter
in the chronic stage of stroke [308]. Animal studies have shown that ischemic brain injury
can be attenuated effectively by promoting the increase in endogenous Treg cells, such as
by using CD28SA, poly(ADP-ribose) polymerase 1 (PARP1) inhibitors, IL-2/IL-2 antibody
complex, etc. [310,311]. Treatment with exogenous Tregs at 2, 6, or 24 h after ischemia
can reduce the volume of cerebral infarction and neurological deficits in mice [312]. Both
in vivo and in vitro studies have demonstrated that exogenous Tregs can effectively inhibit
the increase in neutrophil-derived MMP9, thus playing a protective role in the acute stage
of ischemia and preventing the destruction of the BBB [312].
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5.4. Noninvasive Brain Stimulation

Noninvasive brain stimulation (NIBS) can promote positive neuromodulation by
targeting microglia (Table 4). Repetitive transcranial magnetic stimulation (rTMS) has
been extensively used in stroke rehabilitation because it is non-invasive, painless, and
safe. It is widely accepted that high-frequency (≥5 Hz) and intermittent theta-burst
stimulation (iTBS) can improve neuronal excitability, whereas low-frequency (≤1 Hz)
and continuous theta-burst stimulation (cTBS) can inhibit neuronal excitability [313]. Its
mechanisms mainly include regulation of brain excitability, improvement of BBB perme-
ability, regulation of neurotransmitters and cytokine levels, and reconstruction of brain
networks [314]. In addition, rTMS can improve the nervous microenvironment and regulate
microglial activation and polarization. Studies have shown that theta-burst transcranial
magnetic stimulation prominently reduces the levels of pro-inflammatory cytokines and
chemokines and inhibits pyroptosis-related proteins in neurons around infarctions. By
inhibiting the TLR4/NF-κB/NLRP3 signaling pathway and activating STAT6, the lev-
els of proteins associated with the M2-like phenotype are increased (IL-4, IL-10, Arg-1,
and CD206) [281,283,284].

In addition, rTMS treatment has other therapeutic effects, including inhibition of
glial scar formation, reduction of neuronal deformation and synaptic loss, maintenance of
mitochondrial membrane integrity [281], increased expression of genes related to nerve
remodeling, repair, neuroprotection, and damage responses [315], and promotion of the
proliferation of neural stem/progenitor cells (NSPC) [316]. In conclusion, rTMS can im-
prove the inflammatory microenvironment by regulating the microglial phenotype and
promoting the functional recovery of the CNS.

Transcranial ultrasound stimulation (TUS) or transcranial focused ultrasound stimu-
lation (tFUS), a new non-invasive brain stimulation method, has high penetration depth
and high spatial resolution and reduces ischemic injury and neuroprotective effects after
stroke [317]. It can be used in arterial thrombolytic therapy to promote the functional recov-
ery of patients with ischemic stroke and improve the curative effect of rehabilitation [318].
tFUS can activate microglia [319] and upregulate the IL-10 signaling pathway to regulate
microglial polarization towards an anti-inflammatory phenotype [292]. Other studies have
shown that low-intensity transcranial pulsed ultrasound can induce the expression of
BDNF, antagonize the hypoxia/reperfusion-induced microglial injury [290], and reduce
the proportion of damaged neurons after stroke [320]. Therefore, timely and appropriate
tFUS intervention after the onset of ischemic stroke can improve neurological function and
quality of life in post-stroke patients.

Transcranial direct current stimulation (tDCS) with different polarities may play a dual
role in ischemic brain. Cathodic stimulation protects cortical neurons from ischemic injury
and reduces inflammation. However, the anode can aggravate impairment of the BBB,
increase the exosmosis of immunoglobulin G (IgG) in circulating blood, reduce the tight
connection of blood vessels, and increase the volume of injury [287]. During the acute stage
of stroke, the release of cortical glutamate [287] and activation of microglia are decreased
by cathodic stimulation [285]. Cathodic tDCS has been reported to accelerate functional
recovery, increase neurogenesis, and reduce M1-type microglia-associated CD16/32 expres-
sion between days 5 and 9 post-stroke. During the second week, microglia became more
polarized towards the neuroprotective CD206+ M2 phenotype [289]. These changes were
more concentrated in the ischemic core [286].

In addition to the damaging effects, anodic tDCS has been found to have a positive
effect in the subacute and chronic stages of post-stroke [287]. Anodic tDCS has the potential
to modulate ischemic penumbra and contralateral pericortical dendrite and axonal plasticity
without exacerbating the infarct volume and metabolic changes [321].

The mechanism of transcranial direct current stimulation for stroke treatment is not
fully understood, but several studies have shown that tDCS can affect neuronal function by
regulating the activation and polarization of microglia. It is also important to explore the
optimal time window for tDCS application.
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Photobiomodulation (PBM) has been shown to have neuroprotective or neurorepair
effects in patients with chronic stroke through transcranial irradiation and multizone
irradiation [322]. Red and near-infrared light can regulate microglial activity, reduce
oxidative stress and inflammatory responses, and promote neurogenesis [323]. Vogel et al.
have shown that transcranial low-level laser-induced photobiological regulation can inhibit
microglial overactivation, enhance the expression of glial fibrillary acid protein (GFAP),
and ultimately decrease neuroinflammation and infarct lesion volume [324].

Although different therapeutic interventions can target and regulate microglia in
order to promote stroke recovery, they have several limitations. Drugs that enter the body
orally and intranasally are unable to concentrate and act efficiently on lesions, resulting in
low bioavailability. Many drugs can be injected intravenously, but it is difficult for drug
molecules to cross the BBB to directly target microglia [325]. This may limit the effectiveness
of the treatments. For exercise and noninvasive brain stimulation, the selection of types
and control of parameters, such as the intensity, duration, frequency, may directly affect the
therapeutic effect. Since research targeting microglia is still at the stage of animal studies,
rodents may experience stress at a high therapeutic intensity and cause a detrimental
response [280]. In cell-based therapy, although clinical studies have demonstrated the safety
and efficacy of cell transplantation [326,327], an animal study showed that transplantation
of iPSCs led to tumorigenesis and aggravated ischemic injury in mice [328]. Therefore, it is
necessary to monitor the risk of carcinogenesis following cell transplantation. Moreover,
although the effect of the therapy is robust in different study species, the clinical potential
of cell-based therapies should be further explored.

6. Conclusions and Perspective

Microglia play an important role in maintaining homeostasis in the CNS during the
resting state. During stroke recovery, microglia are activated and play both beneficial
and detrimental roles, which are closely related to the polarization and phenotypes of
microglia. While single-cell sequencing has provided new insights into the classification
and exploration of microglial subsets, the regulation of microglia directed to the beneficial
state after stroke remains to be further studied. Second, most of the molecular switches
and signaling pathways are activated in the acute phase of stroke, and whether they can
play the same role in the chronic phase needs to be studied further. This mechanism may
provide the molecular basis for rehabilitative intervention targeting microglia after stroke.
Third, the structural differences between animal models and the human brain result in
different microglial distribution and activation patterns. The clinical study of rehabilitative
interventions targeting microglia should also be strengthened in stroke recovery. Fourth,
many studies have regarded microglia as key targets in neuroplasticity regulation for post-
stroke rehabilitation. In addition to the therapeutic methods mentioned in this article, many
combination therapies may achieve better efficacy, thus warranting further study. For exam-
ple, in addition to its neuromodulatory effects, transcranial focused ultrasound therapy has
been shown to improve blood supply and repeatedly open the BBB [329]. Therefore, drug
delivery during transcranial focused ultrasound therapy allows drug molecules to readily
pass through the BBB, which has multiple therapeutic effects, and provides new ideas for
combining drug therapy after stroke. Fifth, although the spatiotemporal colocalization of
microglial activation and the development of neuroplasticity in stroke recovery have been
presented, more solid evidence that microglia directly regulate neuroplasticity after stroke,
which is promising for post-stroke rehabilitation, still needs to be further accumulated.
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