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Abstract: Skewed X chromosome inactivation (XCI-S) has been reported to be associated with some
X-linked diseases. Several methods have been proposed to estimate the degree of XCI-S (denoted as
γ) for quantitative and qualitative traits based on unrelated females. However, there is no method
available for estimating γ based on general pedigrees. Therefore, in this paper, we propose a Bayesian
method to obtain the point estimate and the credible interval of γ based on the mixture of general
pedigrees and unrelated females (called mixed data for brevity), which is also suitable for only general
pedigrees. We consider the truncated normal prior and the uniform prior for γ. Further, we apply
the eigenvalue decomposition and Cholesky decomposition to our proposed methods to accelerate
the computation speed. We conduct extensive simulation studies to compare the performances of
our proposed methods and two existing Bayesian methods which are only applicable to unrelated
females. The simulation results show that the incorporation of general pedigrees can improve the
efficiency of the point estimation and the precision and the accuracy of the interval estimation of γ.
Finally, we apply the proposed methods to the Minnesota Center for Twin and Family Research data
for their practical use.

Keywords: skewed X chromosome inactivation; Bayesian method; mixture of pedigrees and
unrelated females; eigenvalue decomposition; Cholesky decomposition; Minnesota Center for Twin
and Family Research data

1. Introduction

X chromosome inactivation (XCI) is an important epigenetic phenomenon, which was
described by Lyon [1] for the first time. In mammals, females have two X chromosomes,
whereas males have only one X chromosome. During the early development of embryos
in females, one of the two X chromosomes becomes a Barr body and remains inactivated
in subsequent somatic cells to ensure the balance of transcriptional dosages on the X
chromosome between females and males [2]. In general, the process of XCI is random.
Specifically, in females, approximately 50% of the cells have the paternal allele at an X-
chromosomal locus inactivated, and the remaining approximately 50% of the cells keep the
maternal allele inactivated, which is called random XCI (XCI-R) [3]. However, there are
still two other patterns of XCI: the escape from XCI (XCI-E) and the skewed XCI (XCI-S) [3].
XCI-E means that a female has a region of the X chromosome without inactivation, i.e.,
the alleles on both X chromosomes are kept active. In humans, approximately 15–30% of
X-linked loci have been reported to undergo XCI-E [4,5]. As for XCI-S, more than 75% of
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the cells inactivate the same allele at an X-chromosomal locus in females [6–8]. In some
extremely skewed cases, it is possible that more than 90% of the cells have the same allele
being inactivated [9].

Some X-linked diseases have been reported to be associated with XCI-S, such as
esophageal carcinoma, recurrent spontaneous abortion, and Klinefelter’s syndrome [10–13].
The degree of XCI-S can affect the severity of X-linked diseases in heterozygous females [14].
A larger proportion of the cells with the activated deleterious allele in heterozygous females
will cause more severe expression of the related diseases, whereas a smaller proportion can
protect the females from the diseases [6,7]. For example, the XCI-S towards mutant alleles
on the F9 gene may cause moderately severe haemophilia B, whereas the XCI-S against the
same mutant alleles may cause mild haemophilia B in heterozygous females [15]. Thus, the
incorporation of the XCI-S information into association analysis may improve the test power
of the X-chromosomal association tests [16]. In fact, some methods have been proposed to
test for the association between X-chromosomal single nucleotide polymorphisms (SNPs)
and traits, which consider the XCI patterns [17–26]. For unrelated data, Wang et al. [24]
proposed a permutation-based maximum likelihood ratio association test for qualitative
traits, which takes account of all the XCI patterns. More specifically, for XCI, three female
genotypes (dd, Dd, and DD) are encoded as 0, γ, and 2, respectively, meanwhile two male
genotypes (d and D) are encoded as 0 and 2, respectively, where d and D are the normal
and deleterious alleles, respectively. γ ∈ [0, 2] is the unknown genotypic value used to
measure the degree of XCI-S. For XCI-E, three female genotypes are encoded as 0, 1, and
2, and two male genotypes are encoded as 0 and 1. For pedigree data, Ding et al. [21]
put forward a Monte Carlo pedigree disequilibrium test for X-linked qualitative traits
and Zhang et al. [25] constructed the orthogonal model and used the kinship matrix to
represent the correlation between the individuals in pedigrees for X-linked quantitative
traits. Both methods take XCI-R or XCI-E into account, however, they are not suitable for
XCI-S. Furthermore, the method of Ding et al. [21] cannot directly incorporate covariates
and the method of Zhang et al. [25] is time-consuming. On the other hand, there is an
autosomal association test, named GEMMA, which can incorporate covariates and is
computationally efficient for pedigree data [27]. Moreover, GEMMA can be easily extended
to accommodate the XCI-R and XCI-E patterns.

Recently, some methods to measure the degree of XCI-S have become available. Based
on family trios (parents and their affected daughter), Xu et al. [28] proposed a statistical
index to measure γ for qualitative traits. Wang et al. [29] and Li et al. [30] used unrelated
females to estimate γ and derive the corresponding confidence interval (CI) for qualitative
and quantitative traits, respectively. In Wang et al. [29] and Li et al. [30], γ was expressed
as the ratio of two regression coefficients, and the CI was obtained using Fieller’s method.
However, these methods may yield unbounded CIs when the denominator in the ratio
is close to zero. It should be noted that Wang et al. [31] put forward a penalized Fieller’s
method which can obtain the bounded CI of a ratio by penalizing the denominator of
the ratio away from zero. Therefore, Yu et al. [32] applied the penalized Fieller’s method
to the estimation of the degree of XCI-S for unrelated females. However, the penalized
Fieller’s method does not consider the constraint condition of γ ∈ [0, 2], and just simply
uses the interval [0, 2] to truncate the point estimate and the CI of γ, which may result
in extreme point estimates (0 or 2), empty sets, non-information intervals (i.e., [0, 2]),
and discontinuous intervals. Therefore, Yu et al. [32] considered the constraint condition
γ ∈ [0, 2] as the prior, and further proposed a Bayesian method for estimating the degree
of XCI-S based on unrelated females. The Bayesian method can avoid the generation
of extreme point estimates, empty sets, non-information intervals, and discontinuous
intervals. However, the above-mentioned methods are all based on family trios or unrelated
females and cannot accommodate general pedigrees. It should be noted that general
pedigrees are increasingly popular because pedigree designs are naturally equipped to
control for population stratification [33,34]. Therefore, it is necessary to suggest a method
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for estimating the degree of XCI-S based on general pedigrees or the mixture of general
pedigrees and unrelated females.

In this paper, we propose a Bayesian method to estimate the degree of XCI-S based on
the mixture of general pedigrees and unrelated females for both quantitative and qualita-
tive traits, which is also suitable for only general pedigrees. We use the kinship matrix to
represent the correlation between females in general pedigrees and construct the general-
ized linear mixed model. The prior of γ is set to be a truncated normal distribution and a
uniform distribution. The posterior distribution of γ is drawn using a Hamiltonian Monte
Carlo (HMC) sampling algorithm. We regard the mode of the sample from the posterior
distribution as the point estimate of γ, and consider the corresponding highest posterior
density interval (HPDI) as the credible interval of γ [35]. Because the posterior sampling
process of the generalized linear mixed model is very computationally intensive [36], we
additionally employ the eigenvalue decomposition (EVD) and Cholesky decomposition
to accelerate the computation speed. Further, we conduct extensive simulation studies to
compare the performances of our proposed methods and the existing Bayesian methods.
Finally, we apply our proposed methods to Minnesota Center for Twin and Family Research
(MCTFR) data for their practical use.

2. Materials and Methods
2.1. Notations

Consider an X-chromosomal locus with alleles d and D being the normal allele and the
deleterious allele, respectively. Suppose that we have collected the X-linked traits (quantita-
tive or qualitative), the genotypes at the locus of Np pedigrees (including np individuals,
males or females), and additional nI f independent/unrelated females. Note that the indi-
viduals in the same pedigree are genetically correlated. Since XCI only exists in females,
we only select np f females in these pedigrees and additional nI f unrelated females to build
the model, and we assume that n f = np f + nI f . Let Yi be the trait of the ith female and

Gi = {dd, Dd, DD} indicate the genotype of the ith female
(

i = 1, 2, . . . , np f , np f+1, . . . , n f

)
.

Then, Y =
(

Y1, Y2, . . . , Ynp f , Ynp f +1, . . . , Yn f

)T
is the trait vector of all the females, and

G =
(

G1, G2, . . . , Gnp f , Gnp f +1, . . . , Gn f

)T
is the genotype vector of all the females. Accord-

ing to Wang et al. [24], we encode the genotypes Gi = {dd, Dd, DD} as the genotypic values
Xi = {0, γ, 2}, where γ ∈ [0, 2] represents the degree of XCI-S. As such, the genotypic value

vector of all the females can be expressed as X =
(

X1, X2, . . . , Xnp f , Xnp f +1, . . . , Xn f

)T
.

Considering the correlations among np f females selected from Np pedigrees, we utilize the
kinship matrix to measure the correlations of this kind. To be specific, we first use both the
males and the females in the pedigrees to construct an np × np kinship matrix ψ, which
can be obtained using the algorithm of Lange [37] through the “kinship2” package of R
software [38]. Then, we select the corresponding rows and columns of np f females in matrix
ψ and obtain the np f × np f matrix ψ f of these np f females. As for nI f unrelated females,
the genetic relatedness matrix can be expressed as the nI f × nI f identity matrix InI f×nI f .
Finally, the genetic relatedness matrix ϕ of Y can be denoted as the following block matrix:

ϕ =

(
2ψ f 0

0 InI f×nI f

)

We build the generalized linear mixed model to describe the association between Gi
and Yi

h(µi) = βXi + aTZi + bi (1)

where β is the regression coefficient of Xi; Zi = (Zi1, Zi2, . . . , Zim)
T is the vector of m covariates

of the ith female including 1 as the first element and Z =
(

Z1, Z2, . . . , Znp f , Znp f +1, . . . , Zn f

)T



Biomolecules 2023, 13, 543 4 of 24

is an n f × m covariate matrix; a = (a1, a2, . . . , am)
T is the m× 1 vector of the regression

coefficients of Zi with a1 being the intercept; bi is a random effect, and the random variable

b =
(

b1, b2, . . . , bnp f , bnp f +1, . . . , bn f

)T
is generated by the multivariate normal distribution,

i.e., b ∼ MVN
(

0, σ2
gϕ
)

, where σ2
g is the variance of the polygenic effects; h(·) is the link

function; and µi = E(Yi|Xi, Zi) is the conditional mean of Yi given Xi and Zi.
To estimate γ, we decompose Xi in Equation (1) into Xi = γX1i + (2− γ)X2i according

to Wang et al. [29], where X1i and X2i are two indicator variables. X1i = I{Gi=DdorDD} in-
dicates whether the ith female contains at least one deleterious allele D, and X2i = I{Gi=DD}
denotes whether the ith female has two deleterious alleles. Then, we can rewrite Equation (1)
as follows:

h(µi) = βγX1i + β(2− γ)X2i + aTZi + bi (2)

For quantitative traits, h(·) is the identity function and Yi has the residual error εi, so
Equation (2) becomes a linear mixed model

Yi = βγX1i + β(2− γ)X2i + aTZi + bi + εi (3)

where εi ∼ N
(
0, σ2

e
)

and σ2
e is the variance of εi. For qualitative traits, h(·) is the logit

function, and Equation (2) can be written as

logit(µi) = βγX1i + β(2− γ)X2i + aTZi + bi (4)

2.2. Building Bayesian Models

For quantitative traits, Y =
(

Y1, Y2, . . . , Ynp f , Ynp f +1, . . . , Yn f

)T
follows a multivariate

normal distribution according to Equation (3), i.e.,

Y ∼ MVN
(

βγX1 + β(2− γ)X2 + Za, σ2
gϕ+ σ2

e In f×n f

)
(5)

where X1 =
(

X11, X12, . . . , X1np f , X1(np f +1), . . . , X1n f

)T
and X2 = (X21, X22, . . . , X2np f ,

X2(np f +1), . . . , X2n f )
T . The unknown parameters are θ1 =

(
β, γ, aT , σg, σe

)T , and let L1

be the likelihood function of Y based on expression (5). So, the posterior distribution of θ1

can be expressed as f (θ1|X1, X2, Z,ϕ) = f (θ1)L1∫
f (θ1)L1dθ1

, where f (θ1) is the joint prior of θ1.
As for qualitative traits, Yi follows a Bernoulli distribution based on Equation (4), i.e.,

Yi ∼ B(pi) (6)

where pi = logit−1(ηi) and

ηi = βγX1i + β(2− γ)X2i + aTZi + bi (7)

The unknown parameters are θ2 =
(

β, γ, aT , σg
)T , and let L2 be the likelihood func-

tion of Y based on expression (6). The posterior distribution of θ2 can be expressed as
f (θ2|X1, X2, Z,ϕ) = f (θ2)L2∫

f (θ2)L2dθ2
, where f (θ2) is the joint prior of θ2.

2.3. Eigenvalue Decomposition and Cholesky Decomposition for Accelerating Computation Speed

It should be noted that, due to the high-dimensional matrix ϕ, the Bayesian posterior
sampling processes of f (θ1|X1, X2, Z,ϕ) and f (θ2|X1, X2, Z,ϕ) would be computationally
intensive, especially when n f is large [36,39]. So, according to Runcie and Crawford [40]
and Zhao et al. [36], we use the EVD and Cholesky decomposition to accelerate the sam-
pling process for quantitative and qualitative traits, respectively. The transformed posterior
distributions of θ1 and θ2 are denoted by f *(θ1

∣∣X*
1, X*

2, Z*, Σ
)

and f *(θ2|X1, X2, Z, C, h),
respectively, where X*

1 = QX1, X*
2 = QX2 and Z* = QZ, respectively, are the transformed



Biomolecules 2023, 13, 543 5 of 24

X1, X2 and Z based on ϕ = QTΣQ by the EVD; C is a lower triangular matrix satisfy-
ing ϕ = CCT by Cholesky decomposition; and h follows MVN

(
0, In f×n f

)
and satisfies

σgCh ∼ MVN
(

0, σ2
gϕ
)

. The details refer to Supplementary Appendices SA and SB. From
Table 1, we find that using the EVD and Cholesky decomposition in the posterior sampling
process can greatly reduce running time (the details can be seen in Section 3).

Table 1. Mean running time of the BNP method with a posterior sampling process based on EVD or
Cholesky decomposition and an original posterior sampling process for general pedigrees.

Np
Quantitative Trait Qualitative Trait

EVD a Original b Cholesky a Original b

150 10 s 1.8 h 1.3 min 7.2 h
600 40 s 7 days 47 min 30 days

a The mean running time is based on 500 replicates; b the mean running time is based on 10 replicates.

2.4. HMC Algorithm and Priors

Note that it is difficult to derive the closed forms of the posterior distributions
f *(θ1

∣∣X*
1, X*

2, Z*, Σ
)

and f *(θ2|X1, X2, Z, C, h), so we use the HMC algorithm [35] to sample
the parameters from the approximate posterior distributions, which can be efficiently im-
plemented through the “cmdstanr” package in R software. We choose the HMC algorithm
because it can improve the independence of the samples and has higher efficiency than the
other Markov-Chain Monte Carlo methods [35].

According to Yu et al. [32], we set the priors of θ1 and θ2 as follows: For nui-
sance parameters β and a, we select non-informative priors to reduce their influence
on the posterior distributions. Specifically, we assume that β ∼ N

(
0, 102) and

a ∼ MVN
(
0, diag

(
102, 102, . . . , 102)) [41] so that β and a can be sampled from the positive

and negative values with equal probabilities. For the standard deviation σg of polygenic
effects, we choose the exponential distribution with mean being 1, i.e., σg ∼ exp(1) [35].
For θ1 based on quantitative traits, there is an extra parameter σe, and we also suppose that
σe ∼ exp(1). For the parameter γ of interest, by considering the constraint condition of
γ ∈ [0, 2], we set two priors. One is a uniform distribution from 0 to 2, i.e., γ ∼ U(0, 2),
which is a non-informative prior. The other is to assume that the more skewed values
of γ have the lower probability and the probability of γ being 1 is the highest, which is
consistent with the genetic background [3]. In this way, we set γ to obey a truncated normal
distribution with both the parameters being fixed at 1 and the values ranging from 0 to 2.
The probability density function of the prior of γ is

f (γ) =

{
φ(γ−1)

Φ(1)−Φ(−1) , 0 ≤ γ ≤ 2
0, otherwise

where φ(·) is the probability density function of the standard normal distribution and
Φ(·) is its cumulative distribution function. We assume that the unknown parameters are
unrelated to each other because the HMC algorithm does not dramatically suffer from the
correlated parameters in the model [35]. Therefore, the prior distributions f (θ1) and f (θ2)
can be calculated as the product of the priors of all the parameters. Moreover, f (θ1) and
f (θ2) can also be flexibly set according to practical background.

After we obtain the posterior samples of θ1 and θ2 through the HMC algorithm, we
calculate the mode of the samples as the point estimate of γ, and compute the HPDI of the
samples as the credible interval of γ. We denote the Bayesian methods with the truncated
normal distribution and the uniform distribution for the mixture of general pedigrees and
additional unrelated females as BNM and BUM, and the corresponding point estimates
yielded by these two methods as γ̂BNM and γ̂BUM, respectively.
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2.5. Situations When Considering General Pedigrees and Unrelated Females, Respectively

Notice that our proposed methods are also applicable to the situation with only
general pedigrees and that with only unrelated females. For the situation with only general
pedigrees, the genetic relatedness matrix ϕ degenerates to twice the kinship matrix of all
the np f females from the pedigrees, i.e., 2ψ f . We denote the Bayesian methods with the
truncated normal distribution and the uniform distribution for general pedigrees as BNP
and BUP, and the corresponding point estimates as γ̂BNP and γ̂BUP, respectively. For the
situation with only unrelated females, our proposed methods still work where the genetic
relatedness matrix ϕ is reduced to be the identity matrix InI f×nI f . However, compared
with the existing BN and BU methods having the prior of γ being the truncated normal
distribution and the uniform distribution, respectively [32], our proposed methods require
additionally estimating the random effects bi’s, which may reduce the estimation accuracy
and be time-consuming. Therefore, in practice, for unrelated females, we recommend using
the existing BN and BU methods. Furthermore, just like Yu et al. [32], the point estimates
of γ based on the BN and BU methods are represented as γ̂BN and γ̂BU , respectively.

2.6. Situation When There Are Missing Genotypes for Some Individuals from General Pedigrees

It should be noted that our proposed methods are also suitable for the situation where
the genotypes of some individuals from some pedigrees are missing, by simply excluding
the individuals with missing genotypes and deleting the corresponding rows and columns
of these individuals from the genetic relatedness matrix ϕ.

2.7. Simulation Settings

To evaluate the performance of our proposed methods (BNM and BUM for the mixture
of general pedigrees and additional unrelated females, and BNP and BUP for only general
pedigrees) and compare them with the existing methods (BN and BU for only unrelated
females) [32] when estimating the degree of the XCI-S, we conduct the following extensive
simulation studies. When simulating general pedigrees, we consider three pedigree struc-
tures: (1) the nuclear family with 4 people, (2) the three-generation family with 10 people
and (3) the four-generation family with 12 people, as shown in Figure 1. We fix the sex
ratio at 1:1 in our simulation study. A total of 50 pedigrees under each pedigree structure
are simulated, which leads to Np being 150, np being 1300, and np f being approximately
650. For a larger sample size, we simulate 200 pedigrees under each pedigree structure,
and the corresponding Np is 600, np is 5200, and np f is approximately 2600. Because there
are two X chromosomes in females and only one in males, we first generate the genotypes

{dd, Dd, DD} of the female founders using probabilities
{(

1− p f

)2
, 2p f

(
1− p f

)
, p2

f

}
and the genotypes {d, D} of the male founders using probabilities {(1− pm), pm}, where
p f and pm are the frequencies of the deleterious allele D in females and males, respectively.
We first set p f to be 0.3 and 0.1 and keep pm consistent with p f . To simulate the situations

with p f and pm being different, we further set
(

p f , pm

)
= (0.3, 0.1) and (0.1, 0.3). Then,

we simulate the genotypes of the nonfounders according to Mendelian inheritance. We
consider a covariate K, which is generated from the standard normal distribution. Note
that the estimation of the degree of XCI-S only needs the females. As such, let Kpi be the
value of K for the ith female (i = 1, 2, . . . , np f ) and we only simulate the quantitative trait
values of all the np f females in the pedigrees, which are generated based on the following
multivariate normal distribution:

Yp ∼ MVN
(

β0 + βXp + δKp, 2σ2
g ψ f + σ2

e Inp f×np f

)
(8)

where Yp is the vector of the quantitative trait values of these np f females; Xp is the vector
of their genotypic values with the elements being 0, γ, or 2 respectively corresponding
to genotypes {dd, Dd, DD}, where the value of γ represents the degree of XCI-S and is
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randomly sampled from U(0, 2); Kp =
(

Kp1, Kp2, . . . , Kpnp f

)T
; and ψ f is the kinship matrix

of the np f females and Inp f×np f is an np f × np f identity matrix. β0 is the intercept and δ is
the regression coefficient of the covariate K, which are both fixed at 0.5 [42]. According to
Schifano et al. [43], we set σ2

g = {1/3, 1} and σ2
e = 1, which means that the values of the

polygenic heritability h2
p = σ2

g /
(

σ2
g + σ2

e

)
= {0.25, 0.50}. Furthermore, we set β = 0.2 so

that the heritability due to the causal SNP, h2
c = β2 p f

(
1− p f

)
/
(

σ2
g + σ2

e

)
, remains less

than 2% for the chosen values of p f , σ2
g , and σ2

e mentioned above. As for a qualitative trait,
we generate the corresponding values using the threshold model [44]. Specifically, once the
quantitative trait values in Equation (8) are generated, they are transformed to be affected if
they are less than the threshold and otherwise to be unaffected. Here, we fix the prevalence
of the disease under study at 0.3, and the threshold is then taken as the 30% quantile of
the distribution of the quantitative trait. In addition, to consider the situation in which the
genotypes of some individuals in the pedigrees are missing, the missing rate (MR) is set to
be 0 and 0.4. MR = 0 means that the genotypes of all the individuals in the pedigrees are
collected and MR = 0.4 indicates that the genotype of an individual is randomly missing
with probability 0.4.
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When simulating unrelated females, we directly generate their genotypes {dd, Dd, DD}

using probabilities
{(

1− p f

)2
, 2p f

(
1− p f

)
, p2

f

}
. For comparing BNP and BUP for only

general pedigrees with BN and BU for only unrelated females, respectively, we set the
number of unrelated females (nI f ) to be 650 and 2600, which is almost equal to the num-
ber of the females in 150 and 600 pedigrees mentioned above, and we fix the variance
of the residual error in the unrelated females at σ2

g + σ2
e [45], which is the same as the

total variance of the quantitative trait value in the females from the general pedigrees.
Other parameters and simulation settings are kept the same as those when simulating
general pedigrees. Specifically, the quantitative trait values of the nI f unrelated females are
generated according to the following multivariate normal distribution:

YI ∼ MVN
(

β0 + βXI + δKI ,
(

σ2
g + σ2

e

)
InI f×nI f

)
where YI is the vector of the quantitative trait values of the nI f unrelated females; XI is
the vector of their genotypic values with the elements being 0, γ, or 2 corresponding to
genotypes {dd, Dd, DD}; KI =

(
KI1, KI2, . . . , KInI f

)
is the covariate vector, where KIi is the

value of the covariate K for the ith female (i = 1, 2, . . . , nI f ); and InI f×nI f is an nI f × nI f
identity matrix. As for a qualitative trait, just like simulating the general pedigrees, we
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also generate the corresponding values using the threshold model [44]. By combining the
females in the general pedigrees and additional unrelated females, we can obtain the mixed
data. We use the BNM and BUM methods, the BNP and BUP methods, and the existing BN
and BU methods to obtain the point estimates and the HPDIs of γ based on the mixed data,
only general pedigrees, and only unrelated females, respectively.

Ma et al. [23] claimed that the variance of the quantitative trait under study for
heterozygous females (Dd) may be higher than those for homozygous females (dd and
DD) due to the XCI and other factors (e.g., gene-gene interactions and gene mutation), and
the increase ratio can be up to 20%. However, so far, in our model, we do not consider
the heteroscedasticity of this kind because of the potential computation cost in Bayesian
inference. To investigate whether our proposed methods are still robust in the presence
of the heteroscedasticity, we additionally simulate the mixed data for quantitative traits
with the heteroscedasticity. Specifically, we use σ2

e0, σ2
e1, and σ2

e2 to represent the residual
variance σ2

e in females with genotypes dd, Dd, and DD, respectively. The simulation
settings for the mixed data are the same as those under the homoscedasticity, except
that we assume

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1.2, 1) here. Furthermore, for comparison, we utilize(

σ2
e0, σ2

e1, σ2
e2
)
= (1, 1, 1) to represent that the variances across different genotypes are the

same. We apply the BNM and BUM methods to the mixed data, and apply the BNP and
BUP methods to only general pedigrees.

We conduct 500 replicates for each simulation setting. For each replicate, we set
4 chains for extracting the samples simultaneously. For each chain, we extract 3000 sam-
ples, and the first 1000 samples are used for warming up. Therefore, we finally obtain
8000 samples in each replicate. To ensure the convergence, the target acceptance rate is
taken as 0.9. We assess the convergence of Markov chains by calculating the convergence
diagnostic R̂ [46]. Note that the R̂’s of our proposed methods are all less than 1.05, which
indicates good convergence and also means that drawing 8000 samples is enough. The
above posterior sampling process is implemented using the “cmdstanr” package in R
software (version 4.1.2, http://r-project.org, accessed on 2 February 2023). To evaluate
the accuracy of the point estimates, we calculate their mean squared errors (MSEs). Here,
MSE = ∑500

w=1(γ̂w − γw)
2/500, where γw is the wth true value of γ, and γ̂w is the estimate

of γw (w = 1, 2, . . . , 500). We also draw scatter plots to visually display the six point esti-
mates (γ̂BNM, γ̂BUM, γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU) against the true values of γ. To compare
the performances of the interval estimation of all the six methods (BNM, BUM, BNP, BUP,
BN, and BU), we calculate the coverage probability (CP) as well as the median, the mean,
the interquartile range, and the standard deviation of the widths of the 95% HPDIs of γ
(respectively denoted by Wmedian, Wmean, Wiqr, and Wsd). Moreover, we draw scatter plots
of the interval widths of all the six methods against the true values of γ.

3. Results
3.1. Simulation Results under the Situations of Homoscedasticity and Allele Frequencies in Females
and Males Being the Same

To assess the computation efficiency of our proposed methods based on the EVD and
Cholesky decomposition, we considered the BNP method for only general pedigrees as an exam-
ple. Here, Np was taken to be 150 and 600, p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1)

and MR = 0 (i.e., there were no missing genotypes in all the pedigrees) for both quan-
titative and qualitative traits. The other parameters were fixed in the same way as in
the “Simulation Settings” subsection. A total of 500 replicates were conducted for each
simulation setting. There were two kinds of BNP methods that we wanted to compare:
(1) the BNP method with the posterior sampling process based on the EVD (for quantitative
traits) or Cholesky decomposition (for qualitative traits), and (2) the BNP method with
the posterior sampling process based on the posterior distribution f (θ1|X1, X2, Z,ϕ) (for
quantitative traits) or f (θ2|X1, X2, Z,ϕ) (for qualitative traits), which is called the original
posterior sampling process in this paper. We computed the mean running time of the BNP
method based on the EVD or Cholesky decomposition for all 500 replicates. However, it is

http://r-project.org
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important to note that the original posterior sampling process may take up a huge amount
of time. Therefore, we only calculated the mean running time of the original posterior
sampling process over the first 10 replicates. All the computations were performed on
a Tsinghua Tongfang Z900 personal computer (Microsoft Windows 7 Enterprise (Service
Pack 1), 4 GB of RAM and 3.60 GHz Intel(R) Core(TM) i7-4790 CPU). The results of the
mean running time are given in Table 1. As shown in Table 1, the EVD and Cholesky
decomposition can greatly speed up the Bayesian sampling process, especially when Np
is 600.

The MSEs of the six point estimates (γ̂BNM, γ̂BUM, γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU) of γ
under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) are listed in Table 2. We found that the MSEs of

γ̂BNM and γ̂BUM based on the mixed data are the smallest under all the simulated scenarios,
which means that it is more efficient to estimate the degree of XCI-S by simultaneously
using general pedigrees and additional unrelated females. The MSEs of γ̂BNP and γ̂BUP
for only general pedigrees are slightly larger than those of γ̂BN and γ̂BU for only unrelated
females in all the simulated situations. This probably demonstrates that general pedigrees
provide less information for estimating the degree of XCI-S than unrelated females when
the total number of the females in all the pedigrees and that of the unrelated females are
the same. As for the two priors of γ, the point estimates (γ̂BNM, γ̂BNP, and γ̂BN) with the
truncated normal distribution have the MSEs similar to those (γ̂BUM, γ̂BUP, and γ̂BU) with
the uniform distribution, with γ̂BNM, γ̂BNP, and γ̂BN performing slightly better than γ̂BUM,
γ̂BUP, and γ̂BU , respectively. Furthermore, it can be observed from Table 2 that the MSEs of
the six point estimates decrease when Np and nI f increase, p f and pm (the frequency of the
deleterious allele D) increase, and σ2

g (the variance of the polygenic effects) decreases. As
expected, compared to MR = 0 (i.e., there are no missing genotypes in all the pedigrees),
the MSEs of the six point estimates increase when MR = 0.4 (i.e., the genotypes of about
40% individuals in general pedigrees are missing). In addition, the six point estimates have
smaller MSEs for quantitative traits than for qualitative traits.

Figures 2 and 3 show the scatter plots of the six point estimates (γ̂BNM, γ̂BUM, γ̂BNP,
γ̂BUP, γ̂BN , and γ̂BU) against the true values of γ with Np = 150, nI f = 650, p f = pm = 0.3,
σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for quantitative and qualitative

traits, respectively. Supplementary Figures S1–S14 show the corresponding scatter plots
under other simulation settings. The six rows of each figure represent the results of the
six point estimates, and the two columns of each figure denote the corresponding results
with MR = 0 and 0.4, respectively (i.e., subplots (a), (c), (e), (g), (i) and (k) are the scatter
plots of γ̂BNM, γ̂BUM, γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU with MR = 0, respectively, whereas
subplots (b), (d), (f), (h), (j) and (l) are the corresponding scatter plots with MR = 0.4).
The upper side and the right side of each subplot are the distribution of the true value of
γ and that of the point estimate of γ, respectively. By comparing the six subplots in the
same column of each figure, we found that γ̂BNM and γ̂BUM based on the mixed data are
closer to the true value of γ than γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU . Moreover, noting that the
distribution of the true value of γ is U(0, 2), it can be seen that the distributions of γ̂BNM
and γ̂BUM are more uniform than those of the four other point estimates. These indicate
that it is necessary to combine general pedigrees with unrelated females when estimating
γ. The dispersion of γ̂BNM is slightly smaller than that of γ̂BUM, and the dispersions of
γ̂BN and γ̂BU are slightly less than those of γ̂BNP and γ̂BUP, although differences of these
kinds are not so obvious in most figures. By comparing the two subplots in the same row
of each figure, it can be seen that the estimates with MR = 0.4 (in the subplot of the second
column) have larger dispersion than those with MR = 0 (in the subplot of the first column),
implying that the missing genotypes of some individuals in the collected pedigrees would
increase the MSEs of the point estimates. Furthermore, comparing Figure 2 with Figure 3 (or
comparing Supplementary Figures S1–S7 with Supplementary Figures S8–S14, respectively)
shows that the six point estimates have better performance for quantitative traits than
for qualitative traits. In addition, from these figures, the trend of the six point estimates
with respect to Np, nI f , p f , pm, and σ2

g is consistent with that in Table 2. Finally, it is
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observed from these figures that most of the point estimates can be evenly distributed
on both sides of the true value of γ, except for the situations with Np = 150, nI f = 650,
and p f = pm = 0.1, where the six point estimates may underestimate γ (Supplementary
Figures S2, S3, S9 and S10). However, when Np = 600, nI f = 2600, and p f = pm = 0.1,
we can obtain point estimates which are much more evenly distributed around the true
value of γ (Supplementary Figures S6, S7, S13 and S14). This suggests that when analyzing
the SNPs with low frequencies of the deleterious allele, our proposed point estimates need
large sample sizes.

Table 2. Mean squared errors (MSEs) of point estimates γ̂BNM, γ̂BUM, γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU

under p f = pm and
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 500 replicates for mixed data, only general

pedigrees, and only unrelated females, respectively.

Trait (Np,nIf) pf σ2
g MR

Mixed Data Pedigrees Unrelated
Females

γ̂BNM γ̂BUM γ̂BNP γ̂BUP γ̂BN γ̂BU

Quantitative

(150, 650)

0.3 1/3 0 0.0643 0.0707 0.1167 0.1342 0.1123 0.1258
0.3 1/3 0.4 0.0943 0.1032 0.1564 0.1757 0.1532 0.1704
0.3 1 0 0.0889 0.0966 0.1528 0.1646 0.1391 0.1556
0.3 1 0.4 0.1323 0.1473 0.2086 0.2409 0.2017 0.2354
0.1 1/3 0 0.1850 0.1968 0.2959 0.3247 0.2284 0.2499
0.1 1/3 0.4 0.2455 0.2670 0.3781 0.4325 0.3304 0.3706
0.1 1 0 0.2010 0.2192 0.3399 0.3792 0.3260 0.3595
0.1 1 0.4 0.2754 0.3064 0.4224 0.4900 0.4046 0.4709

(600, 2600)

0.3 1/3 0 0.0229 0.0236 0.0407 0.0421 0.0377 0.0383
0.3 1/3 0.4 0.0359 0.0377 0.0570 0.0606 0.0558 0.0596
0.3 1 0 0.0256 0.0260 0.0543 0.0576 0.0540 0.0571
0.3 1 0.4 0.0416 0.0445 0.0805 0.0879 0.0764 0.0813
0.1 1/3 0 0.0786 0.0846 0.1210 0.1300 0.1169 0.1209
0.1 1/3 0.4 0.1147 0.1205 0.1689 0.1750 0.1593 0.1684
0.1 1 0 0.0962 0.1039 0.1650 0.1773 0.1512 0.1660
0.1 1 0.4 0.1353 0.1415 0.2080 0.2252 0.1910 0.2056

Qualitative

(150, 650)

0.3 1/3 0 0.0862 0.0926 0.1551 0.1774 0.1499 0.1621
0.3 1/3 0.4 0.1243 0.1298 0.2181 0.2593 0.1922 0.2197
0.3 1 0 0.1175 0.1249 0.2112 0.2381 0.1923 0.2138
0.3 1 0.4 0.1588 0.1863 0.2768 0.3405 0.2459 0.2793
0.1 1/3 0 0.2654 0.2815 0.3911 0.4343 0.3822 0.4107
0.1 1/3 0.4 0.4051 0.4250 0.5403 0.6122 0.5383 0.6103
0.1 1 0 0.2910 0.3316 0.4342 0.5159 0.4322 0.4921
0.1 1 0.4 0.4430 0.5020 0.6024 0.6967 0.5978 0.6838

(600, 2600)

0.3 1/3 0 0.0344 0.0347 0.0551 0.0599 0.0540 0.0562
0.3 1/3 0.4 0.0564 0.0581 0.0847 0.0921 0.0811 0.0885
0.3 1 0 0.0441 0.0459 0.0816 0.0872 0.0667 0.0700
0.3 1 0.4 0.0727 0.0743 0.1154 0.1261 0.1045 0.1091
0.1 1/3 0 0.1092 0.1214 0.2405 0.2546 0.1549 0.1615
0.1 1/3 0.4 0.1577 0.1665 0.3585 0.3722 0.2225 0.2273
0.1 1 0 0.1429 0.1496 0.2427 0.2570 0.1718 0.1832
0.1 1 0.4 0.1783 0.2017 0.3614 0.3857 0.2472 0.2614

Table 3 describes the CPs of the six interval estimation methods (BNM, BUM, BNP, BUP,
BN, and BU) under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1). From Table 3, we can find that all

six methods can control the CPs around 95% in all the simulated situations, which verifies
their accuracy when estimating the degree of XCI-S. Table 4 and Supplementary Table S1
display the medians and the means of the widths of the 95% HPDIs (Wmedian and Wmean),
respectively, obtained by the six methods under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1). From

these tables, we can see that the BNM and BUM methods based on the mixed data have
smaller Wmedian and Wmean than the other four methods (BNP, BUP, BN, and BU) under
all the simulated scenarios, which indicates that simultaneously using general pedigrees
and additional unrelated females can improve the precision of the interval estimation of
the degree of XCI-S. The Wmedian and Wmean of the BNP and BUP methods for only general
pedigrees are slightly larger than those of the BN and BU methods for only unrelated
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females, which is consistent with the findings based on the MSEs of their corresponding
point estimates from Table 2. For two priors of γ, the interval estimation with the truncated
normal prior (the BNM, BNP, and BN methods) and that with the uniform prior (the
BUM, BUP, and BU methods) have a similar performance, whereas the BNM, BNP, and BN
methods respectively obtain slightly smaller Wmedian and Wmean than the BUM, BUP, and
BU methods. When Np and nI f increase, p f and pm (the frequency of the deleterious allele
D) increase, σ2

g (the variance of the polygenic effects) decreases, MR (the probability of the
genotype of an individual in a pedigree being missing) changes from 0.4 to 0, or the trait
changes from qualitative to quantitative, the Wmedian and Wmean of the six methods decrease.
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Figure 2. Scatter plots of six point estimates of γ against true values of γ with Np = 150, nI f = 650,
p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for quantitative trait. The

upper side and the right side of each subplot are the distribution of the true value of γ and that of
the point estimate of γ, respectively. (a) γ̂BNM with MR = 0; (b) γ̂BNM with MR = 0.4; (c) γ̂BUM

with MR = 0; (d) γ̂BUM with MR = 0.4; (e) γ̂BNP with MR = 0; (f) γ̂BNP with MR = 0.4; (g) γ̂BUP

with MR = 0; (h) γ̂BUP with MR = 0.4; (i) γ̂BN with MR = 0; (j) γ̂BN with MR = 0.4; (k) γ̂BU with
MR = 0; and (l) γ̂BU with MR = 0.4.
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Figure 3. Scatter plots of six point estimates of γ against true values of γ with Np = 150, nI f = 650,
p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for qualitative trait. The upper

side and the right side of each subplot are the distribution of the true value of γ and that of the point
estimate of γ, respectively. (a) γ̂BNM with MR = 0; (b) γ̂BNM with MR = 0.4; (c) γ̂BUM with MR = 0;
(d) γ̂BUM with MR = 0.4; (e) γ̂BNP with MR = 0; (f) γ̂BNP with MR = 0.4; (g) γ̂BUP with MR = 0;
(h) γ̂BUP with MR = 0.4; (i) γ̂BN with MR = 0; (j) γ̂BN with MR = 0.4; (k) γ̂BU with MR = 0; and
(l) γ̂BU with MR = 0.4.
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Table 3. Coverage probabilities (CPs, in %) of the BNM, BUM, BNP, BUP, BN, and BU methods under
p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 500 replicates for mixed data, only general pedigrees,

and only unrelated females, respectively a.

Trait (Np,nIf) pf σ2
g MR

Mixed Data Pedigrees Unrelated
Females

BNM BUM BNP BUP BN BU

Quantitative

(150, 650)

0.3 1/3 0 94.6 96.2 95.4 96.2 95.2 94.8
0.3 1/3 0.4 95.0 95.6 95.2 95.6 95.4 96.0
0.3 1 0 95.0 95.0 93.8 94.6 95.2 95.2
0.3 1 0.4 94.4 95.2 94.2 95.0 94.0 94.4
0.1 1/3 0 93.8 93.6 95.8 94.4 95.0 95.2
0.1 1/3 0.4 93.4 95.4 95.0 94.2 94.4 95.4
0.1 1 0 96.2 94.6 94.0 95.0 94.2 94.8
0.1 1 0.4 94.4 95.8 94.2 95.4 93.8 94.2

(600, 2600)

0.3 1/3 0 94.2 94.2 94.0 94.4 94.8 95.0
0.3 1/3 0.4 94.2 94.4 95.6 95.4 95.6 95.4
0.3 1 0 95.0 96.4 95.6 95.8 95.2 95.2
0.3 1 0.4 95.8 95.8 94.6 94.6 95.4 94.8
0.1 1/3 0 94.2 94.2 95.0 94.6 94.4 95.4
0.1 1/3 0.4 94.0 95.0 94.6 95.2 95.2 96.2
0.1 1 0 95.6 95.6 95.6 96.0 93.6 95.2
0.1 1 0.4 95.0 95.4 94.8 95.6 95.6 94.6

Qualitative

(150, 650)

0.3 1/3 0 95.8 94.8 95.0 94.8 94.2 95.2
0.3 1/3 0.4 94.8 95.0 94.2 95.0 94.6 95.2
0.3 1 0 95.2 95.6 95.4 94.8 95.0 95.6
0.3 1 0.4 94.8 96.4 94.2 95.4 94.8 93.8
0.1 1/3 0 95.4 94.8 95.2 94.8 95.4 94.6
0.1 1/3 0.4 95.2 95.0 94.8 95.2 94.8 95.6
0.1 1 0 93.6 94.6 95.0 95.8 95.4 94.8
0.1 1 0.4 94.8 95.2 94.6 94.8 95.0 95.4

(600, 2600)

0.3 1/3 0 95.4 94.8 95.0 94.8 96.2 95.6
0.3 1/3 0.4 93.8 95.2 94.2 95.4 95.0 94.2
0.3 1 0 94.2 94.2 95.0 94.8 94.2 95.4
0.3 1 0.4 95.6 95.2 95.0 95.6 95.8 94.4
0.1 1/3 0 93.6 94.6 96.0 94.4 94.6 95.8
0.1 1/3 0.4 95.0 95.0 94.4 95.6 94.0 95.0
0.1 1 0 94.2 93.8 95.2 93.4 95.2 95.0
0.1 1 0.4 95.6 95.2 94.4 95.4 95.0 95.8

a The empirical CP should be between 93.05% and 96.95% (0.95± 2×
√

0.95×0.05
500 ) with 95% probability.

Table 5 and Supplementary Table S2 show the interquartile range and the standard
deviation of the widths of the 95% HPDIs (Wiqr and Wsd), respectively, of the six methods
under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1). Figures 4 and 5 display the scatter plots

of the widths of the 95% HPDIs based on the six interval estimation methods (BNM,
BUM, BNP, BUP, BN, and BU) against the true values of γ with Np = 150, nI f = 650,
p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for quantitative and

qualitative traits, respectively. Supplementary Figures S15–S28 give the corresponding
scatter plots under other simulation settings. The six rows of each figure represent the
results of the six methods, and the two columns of each figure denote the corresponding
results with MR = 0 and 0.4, respectively. From Table 5, we find that when the prior
of γ is fixed to be the truncated normal distribution, the BNM method generally obtains
smaller Wiqr than the BNP and BN methods under all the simulated scenarios except for
the cases of Np = 150, nI f = 650, and p f = pm = 0.1 for quantitative traits and those
of Np = 150 and nI f = 650 for qualitative traits. Similarly, when the prior of γ is taken
as the uniform distribution, the Wiqr of the BUM method are less than those of the BUP
and BU methods under all the simulated scenarios in general, except for the situations
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mentioned above. It can be seen in Supplementary Table S2 that the BNM (BUM) method
generally derives smaller Wsd than the BNP and BN (BUP and BU) methods except for
the cases with p f = pm = 0.1 for both quantitative and qualitative traits and those with
Np = 150, nI f = 650, and p f = pm = 0.3 for qualitative traits. This may be explained
by the fact that the largest width of the 95% HPDIs of the six methods is 2, and when
Np = 150 and nI f = 650 or p f = pm = 0.1, the widths of the intervals obtained by the
BNP, BUP, BN, and BU methods are very close to 2 (as can be observed in Supplementary
Figures S16, S17 and S22–S24), which make the dispersion of the widths of the intervals of
the BNP, BUP, BN, and BU methods smaller and cause smaller Wiqr and Wsd of the BNP,
BUP, BN, and BU methods. It is important to note that the width of the 95% HPDI of γ does
not follow the normal distribution under most of the simulated scenarios (Supplementary
Figures S15–S17, S20–S24, S27 and S28), so the trend of the results of the Wsd is not exactly
the same as that of the Wiqr. On the other hand, the Wiqr and Wsd of the BNP (BUP)
method are larger than those of the BN (BU) method. In addition, the Wiqr and Wsd of the
six methods decrease with higher p f and pm when Np = 600 and nI f = 2600, and increase
when Np = 150 and nI f = 650 and other parameters are unchanged. As for two priors, the
BNM, BNP, and BN methods obtain slightly smaller Wiqr and Wsd than the BUM, BUP, and
BU methods. It is shown in some subplots of Figures 4 and 5 and Supplementary Figures
S15–S28 that the scatter plots look like an inverted V shape. This indicates that shorter
intervals are obtained when the true values of γ are close to 0 or 2, by noting γ ∈ [0, 2]. On
the other hand, in some figures (e.g., Supplementary Figures S16, S17 and S22–S24), most
of the widths of the intervals based on the BNP, BUP, BN, and BU methods are very close
to 2, which leads to the smaller dispersion of the interval widths. Other findings are similar
to those from Tables 4 and 5, and Supplementary Tables S1 and S2, and we do not discuss
them here for brevity.

Table 4. Wmedians of the BNM, BUM, BNP, BUP, BN, and BU methods under p f = pm and(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 500 replicates for mixed data, only general pedigrees, and unre-

lated females, respectively.

Trait (Np,nIf) pf σ2
g MR

Mixed Data Pedigrees Unrelated
Females

BNM BUM BNP BUP BN BU

Quantitative

(150, 650)

0.3 1/3 0 0.9770 0.9815 1.2152 1.2336 1.2103 1.2249
0.3 1/3 0.4 1.1601 1.1801 1.4467 1.4781 1.3937 1.4373
0.3 1 0 1.0627 1.0636 1.3667 1.3966 1.3405 1.3653
0.3 1 0.4 1.2572 1.2627 1.5525 1.6017 1.5260 1.5821
0.1 1/3 0 1.4258 1.4452 1.5863 1.6305 1.5729 1.6297
0.1 1/3 0.4 1.5502 1.5935 1.6720 1.7201 1.6584 1.7103
0.1 1 0 1.5453 1.5940 1.6713 1.7166 1.6637 1.7112
0.1 1 0.4 1.6493 1.6999 1.7109 1.7633 1.7106 1.7629

(600, 2600)

0.3 1/3 0 0.5350 0.5378 0.7332 0.7324 0.7292 0.7278
0.3 1/3 0.4 0.6658 0.6642 0.8894 0.8840 0.8639 0.8650
0.3 1 0 0.6216 0.6272 0.8754 0.8861 0.8388 0.8433
0.3 1 0.4 0.7755 0.7868 1.0389 1.0515 1.0265 1.0282
0.1 1/3 0 1.0073 1.0217 1.2340 1.2505 1.2201 1.2450
0.1 1/3 0.4 1.1494 1.1790 1.3633 1.3885 1.3538 1.3814
0.1 1 0 1.1208 1.1298 1.3468 1.3654 1.3392 1.3562
0.1 1 0.4 1.3067 1.3313 1.4664 1.5054 1.4634 1.5038
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Table 4. Cont.

Trait (Np,nIf) pf σ2
g MR

Mixed Data Pedigrees Unrelated
Females

BNM BUM BNP BUP BN BU

Qualitative

(150, 650)

0.3 1/3 0 1.0719 1.0821 1.4111 1.4353 1.3991 1.4332
0.3 1/3 0.4 1.2857 1.3103 1.6186 1.6573 1.5767 1.6258
0.3 1 0 1.2224 1.2394 1.5703 1.6178 1.5559 1.6176
0.3 1 0.4 1.4206 1.4531 1.6704 1.7288 1.6644 1.7193
0.1 1/3 0 1.5167 1.5485 1.6562 1.7093 1.6551 1.6972
0.1 1/3 0.4 1.5914 1.6449 1.7038 1.7543 1.6725 1.7236
0.1 1 0 1.6121 1.6757 1.7135 1.7649 1.6907 1.7450
0.1 1 0.4 1.6751 1.7284 1.7203 1.7690 1.7160 1.7642

(600, 2600)

0.3 1/3 0 0.6888 0.6920 0.8648 0.8684 0.8369 0.8448
0.3 1/3 0.4 0.8207 0.8274 1.0530 1.0555 1.0117 1.0057
0.3 1 0 0.7781 0.7777 1.0235 1.0199 0.9527 0.9559
0.3 1 0.4 0.9714 0.9739 1.1988 1.2089 1.1522 1.1660
0.1 1/3 0 1.1414 1.1550 1.3164 1.3447 1.3027 1.3380
0.1 1/3 0.4 1.3028 1.3184 1.4463 1.4831 1.4182 1.4421
0.1 1 0 1.2614 1.2848 1.4063 1.4336 1.4022 1.4294
0.1 1 0.4 1.4044 1.4328 1.5227 1.5681 1.5185 1.5555

Table 5. Wiqrs of the BNM, BUM, BNP, BUP, BN, and BU methods under p f = pm and(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 500 replicates for mixed data, only general pedigrees, and only unre-

lated females, respectively.

Trait (Np,nIf) pf σ2
g MR

Mixed Data Pedigrees Unrelated
Females

BNM BUM BNP BUP BN BU

Quantitative

(150, 650)

0.3 1/3 0 0.3333 0.3700 0.4620 0.5268 0.4530 0.5122
0.3 1/3 0.4 0.4106 0.4680 0.4760 0.5466 0.4435 0.4987
0.3 1 0 0.4218 0.4755 0.4739 0.5418 0.4291 0.5261
0.3 1 0.4 0.4351 0.5176 0.4162 0.4673 0.4069 0.4314
0.1 1/3 0 0.4058 0.4620 0.3309 0.3603 0.3193 0.3392
0.1 1/3 0.4 0.3389 0.3812 0.2603 0.2690 0.2267 0.2243
0.1 1 0 0.3345 0.3817 0.2612 0.2806 0.2586 0.2585
0.1 1 0.4 0.2467 0.2585 0.1618 0.1658 0.1590 0.1488

(600, 2600)

0.3 1/3 0 0.1590 0.1629 0.2391 0.2655 0.2272 0.2582
0.3 1/3 0.4 0.2184 0.2344 0.3295 0.3803 0.2823 0.3190
0.3 1 0 0.1946 0.2087 0.3241 0.3795 0.2968 0.3297
0.3 1 0.4 0.2733 0.3080 0.3892 0.4434 0.3643 0.4125
0.1 1/3 0 0.3785 0.4380 0.3878 0.4345 0.3790 0.4319
0.1 1/3 0.4 0.4386 0.4744 0.3998 0.4649 0.3880 0.4338
0.1 1 0 0.3744 0.4297 0.4101 0.4489 0.3670 0.4449
0.1 1 0.4 0.3653 0.3961 0.3640 0.4160 0.3524 0.4152

Qualitative

(150, 650)

0.3 1/3 0 0.4290 0.4922 0.4841 0.5399 0.4561 0.5148
0.3 1/3 0.4 0.4542 0.5314 0.3988 0.4512 0.3902 0.4319
0.3 1 0 0.4539 0.5204 0.4009 0.4466 0.3970 0.4309
0.3 1 0.4 0.4424 0.5062 0.2980 0.3132 0.2893 0.3005
0.1 1/3 0 0.3811 0.4325 0.2866 0.3086 0.2694 0.2752
0.1 1/3 0.4 0.3118 0.3636 0.2822 0.3342 0.2245 0.2540
0.1 1 0 0.3195 0.3387 0.2239 0.2082 0.1856 0.1867
0.1 1 0.4 0.2468 0.2913 0.1973 0.2209 0.1932 0.2027

(600, 2600)

0.3 1/3 0 0.1886 0.2109 0.2929 0.3232 0.2715 0.3036
0.3 1/3 0.4 0.2580 0.2884 0.3947 0.4478 0.3536 0.4152
0.3 1 0 0.2680 0.2937 0.3801 0.4009 0.3617 0.3981
0.3 1 0.4 0.3576 0.4061 0.4404 0.5107 0.4060 0.4630
0.1 1/3 0 0.3826 0.4368 0.3421 0.4035 0.3350 0.3903
0.1 1/3 0.4 0.3333 0.3700 0.4620 0.5268 0.4530 0.5122
0.1 1 0 0.4106 0.4680 0.4760 0.5466 0.4435 0.4987
0.1 1 0.4 0.4218 0.4755 0.4739 0.5418 0.4291 0.5261
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with 𝑀𝑅 = 0; and (l) BU with 𝑀𝑅 = 0.4. 

Figure 4. Scatter plots of widths of HPDIs based on six methods against true values of γ with
Np = 150, nI f = 650, p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for

quantitative trait. The upper side and the right side of each subplot are the distribution of the true
value of γ and that of the width of the HPDI of γ, respectively. (a) BNM with MR = 0; (b) BNM
with MR = 0.4; (c) BUM with MR = 0; (d) BUM with MR = 0.4; (e) BNP with MR = 0; (f) BNP
with MR = 0.4; (g) BUP with MR = 0; (h) BUP with MR = 0.4; (i) BN with MR = 0; (j) BN with
MR = 0.4; (k) BU with MR = 0; and (l) BU with MR = 0.4.
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Figure 5. Scatter plots of widths of HPDIs based on six methods against true values of γ with
Np = 150, nI f = 650, p f = pm = 0.3, σ2

g = 1/3,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for

qualitative trait. The upper side and the right side of each subplot are the distribution of the true
value of γ and that of the width of the HPDI of γ, respectively. (a) BNM with MR = 0; (b) BNM
with MR = 0.4; (c) BUM with MR = 0; (d) BUM with MR = 0.4; (e) BNP with MR = 0; (f) BNP
with MR = 0.4; (g) BUP with MR = 0; (h) BUP with MR = 0.4; (i) BN with MR = 0; (j) BN with
MR = 0.4; (k) BU with MR = 0; and (l) BU with MR = 0.4.

3.2. Simulation Results When Allele Frequencies in Females and Males Being Different

Supplementary Table S3 shows the MSEs of the point estimates γ̂BNM, γ̂BUM, γ̂BNP,
and γ̂BUP under

(
p f , pm

)
= (0.3, 0.1) and (0.1, 0.3), and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1). Supple-

mentary Tables S4–S8 give the CP, Wmedian, Wmean, Wiqr, and Wsd, respectively, of the

BNM, BUM, BNP, and BUP methods under
(

p f , pm

)
= (0.3, 0.1) and (0.1, 0.3), and(

σ2
e0, σ2

e1, σ2
e2
)
= (1, 1, 1). It can be observed from Supplementary Table S4 that when
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(
p f , pm

)
= (0.3, 0.1) and (0.1, 0.3), all four methods control the CPs around 95%. From

Supplementary Tables S3 and S5–S8, the MSE, Wmedian, Wmean, Wiqr and Wsd of the four

methods with
(

p f , pm

)
= (0.3, 0.1) and (0.1, 0.3) are generally smaller than those with(

p f , pm

)
= (0.1, 0.1) and larger than those with

(
p f , pm

)
= (0.3, 0.3) (compared with

Tables 2 and 4, Supplementary Table S1, Table 5 and Supplementary Table S2, respectively),
implying that our proposed methods still work when there are differences in the frequencies
of the deleterious alleles between females and males.

3.3. Simulation Results under Heteroscedasticity

Supplementary Table S9 displays the MSEs of the point estimates γ̂BNM, γ̂BUM, γ̂BNP,
and γ̂BUP under p f = pm, and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) and (1, 1.2, 1). Supplementary

Tables S10–S14 show the CP, Wmedian, Wmean, Wiqr, and Wsd, respectively, of the BNM,
BUM, BNP, and BUP methods under p f = pm, and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) and (1, 1.2, 1).

As shown in Supplementary Table S10, our four proposed methods all control the CPs
around 95% well when heteroscedasticity exists (i.e.,

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1.2, 1)). From

Supplementary Table S9 and Supplementary Tables S11–S14, we can find that the MSE,
Wmedian,Wmean, Wiqr, and Wsd of our proposed methods under heteroscedasticity are similar
to the corresponding results under homoscedasticity (i.e.,

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1)) for all

simulated situations, which indicates that our proposed methods are still robust when
heteroscedasticity is present.

3.4. Application to MCTFR Data

The MCTFR Genome-Wide Association Study of Behavioral Disinhibition is a family-
based study of substance abuse and related psychopathology [47]. The dataset can be
downloaded from the database of Genotypes and Phenotypes with the accession number
phs000620.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000620.v1.p1, accessed on 2 February 2023). This dataset contains 2183 families,
7377 participants (3831 females and 3546 males), and 527,829 SNPs. There are five quantita-
tive traits in the dataset: the nicotine composite score, the alcohol consumption composite
score, the alcohol dependence composite score (DEP), the illicit drug composite score,
and the behavioral disinhibition composite score [48]. Because we only use females for
measuring the degree of XCI-S, 3831 females and 12,354 SNPs on the X chromosome were
selected. We filtered the data using the following quality control criteria: (1) excluding
SNPs with a missing rate > 10%, (2) removing SNPs with a minor allele frequency < 5%,
and (3) excluding individuals with a genotype missing rate > 10%. After quality con-
trol, 850 families, 3195 females (including 1959 females from 850 families and additional
1236 unrelated females), and 11,344 SNPs were kept to conduct the subsequent analyses.

It is important to note that estimating γ requires the SNPs on the X chromosome to
be associated with the traits under study. Therefore, borrowing the idea of the GEMMA
method for association analysis on autosomes based on only general pedigrees [27], we
propose an improved linear mixed model to test for association on the X chromosome
based on the mixed data. We made the following two main modifications: Firstly, we
set the relatedness matrix as the block matrix ϕ in the Materials and Methods section so
that the proposed linear mixed model is applicable to the mixture of general pedigrees
and additional unrelated females. Secondly, the parameter γ is generally unknown. To
consider the XCI, referring to Wang et al. [24], we utilized the grid search method and
γ was taken to be {0, 0.5, 1, 1.5, 2} in the increments of 0.5. We used the improved
linear mixed model to calculate the p-value for each value of γ, and then combined these
five p-values using Cauchy’s method [49] to obtain the final test statistic. We conducted
some simulation studies and found that the proposed improved linear mixed model can
control the type I error rate well (the details can be seen in Supplementary Appendix SC
and Supplementary Table S15). It should be noted that the five quantitative traits in the
MCTFR dataset do not follow normal distributions. Therefore, we transformed the traits

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000620.v1.p1
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using the rank-based inverse normal transformation [50] before carrying out association
analysis. Furthermore, we incorporated two covariates, age and year of birth, into the
improved linear mixed model. The significance level of the association tests was set to be
0.05/11344 = 4.41× 10−6 based on the Bonferroni correction.

The proposed linear mixed model identified three SNPs, rs10522027, rs12860832,
and rs12849233, which are associated with the DEP trait at the 4.41 × 10−6 level. The
positions, alleles, minor allele frequencies, corresponding traits, p-values, and genes which
the three SNPs belong to are presented in Table 6. SNP rs10522027 is found within the gene
transmembrane protein 47 (TMEM47), which may be associated with the chemoresistance
of breast cancer cells and hepatocellular carcinoma [51]. SNPs rs12860832 and rs12849233
are found in the gene PAS domain containing repressor 1 (PASD1), which might serve
as a new target for the prognosis and the future treatment of glioma [52]. Furthermore,
we calculated the point estimates (γ̂BNM, γ̂BUM, γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU) and the 95%
HPDIs of γ based on the proposed BNM, BUM, BNP, and BUP methods and the existing BN
and BU methods for these three SNPs, where the BNM and BUM methods use the mixed
data (850 families and an additional 1236 unrelated females), the BNP and BUP methods
utilize only 850 families with 1959 females, and the BN and BU methods are applied to
only the additional 1236 unrelated females. The point estimates and the corresponding 95%
HPDIs of γ obtained by the six methods for these SNPs are listed in Table 7. It is shown
that the six point estimates of γ for the three SNPs are not far away from one, and the
corresponding 95% HPDIs all contain one, which means that the XCI patterns of the three
SNPs are the XCI-R or the XCI-E. In addition, we can observe the advantage of the BNM
and BUM methods because they generally obtain smaller credible intervals than the other
four methods, which is consistent with our simulation results. However, the BNP and BUP
methods can give shorter HPDIs than the BN and BU methods, which does not coincide
with our simulation results. This could be because the number of females in the 850 families
is 1959, which is much larger than the number of additional unrelated females (1236).

Table 6. SNPs detected in association analysis for the MCTFR data.

SNP Position Alleles MAF a Trait p-Value Gene

rs10522027 34630163 G > A 0.141 DEP 3.64× 10−7 TMEM47
rs12860832 151643064 G > A 0.263 DEP 2.00× 10−6 PASD1
rs12849233 151645704 C > A 0.329 DEP 1.26× 10−6 PASD1

a MAF represents the minor allele frequency.

Table 7. Application of the six methods to SNPs detected in association analysis for the MCTFR data.

SNP
Point Estimate 95% HPDI

γ̂BNM γ̂BUM γ̂BNP γ̂BUP γ̂BN γ̂BU BNM BUM BNP BUP BN BU

rs10522027 0.6922 0.6895 0.6394 0.6494 0.7238 0.7429 (0.2451,
1.3518)

(0.2316,
1.4420)

(0.0156,
1.5816)

(0.0063,
1.5567)

(0.1791,
1.6615)

(0.1870,
1.6384)

rs12860832 0.8371 0.8288 0.9422 0.9448 0.7281 0.7200 (0.3266,
1.4935)

(0.3942,
1.5788)

(0.1878,
1.6258)

(0.2077,
1.6698)

(0.0945,
1.6294)

(0.1214,
1.6503)

rs12849233 0.7633 0.7426 0.8843 0.8736 0.6906 0.6968 (0.2236,
1.2934)

(0.2133,
1.3054)

(0.1054,
1.5392)

(0.1361,
1.5964)

(0.0211,
1.5229)

(0.0764,
1.5490)

4. Discussion

In this paper, we consider a generalized linear mixed model and propose two Bayesian
methods (BNM and BUM) to estimate the degree of XCI-S (i.e., γ) based on the mixture of
general pedigrees and additional unrelated females for both quantitative and qualitative
traits, where the BNM method uses the prior of the truncated normal distribution and the
BUM method utilizes the prior of the uniform distribution, which both make full use of
the constraint condition of γ ∈ [0, 2]. When only general pedigrees were available, the
BNM and BUM methods were reduced to the BNP and BUP methods, respectively. We
do not propose the corresponding Fieller’s method and the Penalized Fieller’s method
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to estimate the degree of XCI-S based on general pedigrees in this paper, as it has been
confirmed that the performance of the above two methods is worse than Bayesian methods
for only unrelated females [32]. It is important to note that that the closed form of the
posterior distribution of γ is not easily derived, so we applied the HMC algorithm to
conduct the posterior sampling process, calculated the mode of the resulting samples as the
point estimate of γ, and regarded the HPDI of γ as the credible interval of γ. However, the
posterior sampling process based on general pedigrees is very computationally intensive,
especially when the dimension of the relatedness matrix (i.e., ϕ in this paper) is over
1000 [36]. As such, we used the EVD and Cholesky decomposition of ϕ to speed up the
posterior sampling process for quantitative and qualitative traits, respectively. On the
other hand, we also considered the median and the percentile interval (the 2.5th and 97.5th
percentiles) of the posterior samples as the point estimate and the credible interval of γ,
respectively. However, they performed less well than the mode and the HPDI (data not
shown for brevity), and then we selected the latter instead.

The simulation results demonstrate that the EVD and Cholesky decomposition can
greatly speed up the posterior sampling process, which is important to allow our proposed
methods to accommodate large sample sizes, and may be referenced by other Bayesian
researchers. The simulation results under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) also show

that the BNM and BUM methods have similar performances and are advantageous over the
other four methods, which indicates that it is necessary to simultaneously analyze general
pedigrees and additional unrelated females when estimating the degree of XCI-S in practice.
More specifically, for the point estimation, the MSEs of γ̂BNM and γ̂BUM are close to each
other and are smaller than those of the four other point estimates. The MSE of γ̂BNM is
the smallest in all the simulated situations. The MSEs of the existing point estimates γ̂BN
and γ̂BU for unrelated females are slightly smaller than those of γ̂BNP and γ̂BUP for general
pedigrees when the number of females is fixed. This suggests that general pedigrees provide
less information for estimating the degree of XCI-S than unrelated females when the total
number of the females in all the pedigrees and that of the unrelated females are the same.
For the interval estimation, all six methods (BNM, BUM, BNP, BUP, BN, and BU) control the
CPs around 95%. The BNM and BUM methods perform similarly to each other and both
obtain much smaller credible intervals (Wmedian and Wmean) than the other four methods
under all the simulated scenarios. The BNP and BUP methods perform slightly worse than
the BN and BU methods when the number of females is fixed, which is consistent with
the findings based on the point estimation (γ̂BNP, γ̂BUP, γ̂BN , and γ̂BU). For two priors of
γ, the performances of the BNM, BNP, and BN methods with the truncated normal prior
are slightly better than those of the BUM, BUP, and BU methods with the uniform prior,
whereas differences of these kinds are not so obvious in our proposed methods, suggesting
that our proposed methods are not as sensitive to the choice of priors. Furthermore, our
proposed methods perform better when Np and nI f increase, p f and pm (the frequency of
the deleterious allele D) increase, σ2

g (the variance of the polygenic effects) decreases, or
the trait changes from qualitative to quantitative. When there are missing genotypes for
some individuals in pedigrees, the SLINK software based on the peeling algorithm [53]
could be used to impute these missing genotypes. However, to make the test statistics
in hypothesis testing robust, or the parameter estimation accurate and precise, one may
repeatedly impute the missing genotypes using the SLINK software (e.g., 50 imputations),
which is very time-consuming for our proposed Bayesian methods. On the other hand,
it is easy to combine 50 resulting point estimates of γ by taking the mean, median, or
mode of them as the final point estimate; however, there appears to be an issue with the
process of combining the 50 resulting credible intervals. Therefore, when the genotypes of
some individuals in the collected pedigrees were missing, we did not impute these missing
genotypes. Instead, we chose to delete the individuals with missing genotypes directly.
In fact, the simulation results show that, even when the genotypes of approximately 40%
of individuals in general pedigrees are missing, our proposed methods can still control
the CPs well, indicating that our proposed methods are robust when there are missing
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genotypes in the data. The simulation results also show that our proposed methods still
work when the frequency of the deleterious allele in females and that in males are different
(i.e.,

(
p f , pm

)
= (0.3, 0.1) and (0.1, 0.3)). Furthermore, when heteroscedasticity exists (i.e.,(

σ2
e0, σ2

e1, σ2
e2
)
= (1, 1.2, 1)), our proposed methods remain robust.

The proposed methods have the following issues to be discussed: Firstly, it is well
known that the prior distributions of unknown parameters are important in Bayesian
inference, and the choice of them may affect the results. In this paper, we consider two priors
for γ, a non-informative prior U(0, 2) which has little effect on the posterior distribution of
γ, and a truncated normal distribution N(1, 1) ∈ [0, 2] based on the genetic background
of XCI. We also take account of non-informative priors for regression coefficients and
weak priors for variances. In practical applications, researchers can choose appropriate
priors according to their research background. Secondly, the Bayesian method adopts the
HMC algorithm for the posterior sampling process, which is not greatly influenced by
the correlations among unknown parameters. Therefore, for computational efficiency, we
assume that all unknown parameters are unrelated. However, Bayesian methods should
have better performance if the correlation between parameters is considered. Thirdly, the
HPDIs that contain the number one can only indicate that the SNP undergoes the XCI-R
or XCI-E pattern. The process of further distinguishing the XCI-R and XCI-E patterns
is a potential problem to be solved. Fourthly, Ma et al. [23] claimed that the variance
of the quantitative trait under study for heterozygous females may be higher than that
for homozygous females in some cases. For computational efficiency, we assumed that
the variances of quantitative traits for different genotypes in females are the same in our
proposed methods.

To address the issues mentioned above, we will consider the following improvements
in the future: Firstly, we will take into account non-informative priors for variances, such
as non-informative Gamma prior or inverse-Gamma prior [41], to improve our proposed
methods. Secondly, we will use the Gibbs sampling algorithm [54] to conduct the Bayesian
posterior sampling process when the parameters are correlated. Thirdly, the information
from the XCI-E can be estimated using the difference of transcriptional dosage on the X
chromosome between male hemizygotes and female homozygotes. Therefore, we will
incorporate the information from males into our model to further distinguish the XCI-E
from the XCI-R. Fourthly, although we have completed some simulation studies showing
that our proposed methods are still robust in the presence of heteroscedasticity (Supple-
mentary Tables S9–S14), we will extend our proposed methods to manage the situation
of heteroscedasticity to further improve the precision and the accuracy of estimating the
degree of XCI-S in the future. Finally, besides the GEMMA [27], we understand that the
REGENIE method for autosomal SNPs [55] could take into account population stratification.
Therefore, we will extend it to test for the association between X chromosomal SNPs and
traits based on the mixed data in the future.

5. Conclusions

In summary, we propose a Bayesian method with two priors (the truncated normal
prior and the uniform prior) to estimate the degree of XCI-S based on the mixture of general
pedigrees and additional unrelated females, which are denoted by the BNM and BUM
methods, respectively. We also develop the corresponding Bayesian method, which is
suitable for only general pedigrees, denoted by the BNP and BUP methods. We conducted
an extensive simulation study to compare the performance of our four proposed methods
with the two existing BN and BU methods. The simulation results show that the BNM
method obtains the smallest MSE, the shortest width of the HPDIs, and the most stable CPs,
which indicates that it is more efficient in estimating the degree of XCI-S by simultaneously
using general pedigrees and additional unrelated females. Finally, we applied the proposed
methods to the MCTFR data, and found that three associated SNPs (rs10522027, rs12860832,
and rs12849233) undergo the XCI-R or XCI-E pattern.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13030543/s1. Supplementary Appendix SA: Using the EVD
to speed up the posterior sampling process for quantitative traits; Supplementary Appendix SB:
Using Cholesky decomposition to speed up the posterior sampling process for qualitative traits;
Supplementary Appendix SC: Simulation study of the type I error rate for our proposed improved
linear mixed model; Tables S1 and S2: Wmeans and Wsds of the BNM, BUM, BNP, BUP, BN, and BU
methods under p f = pm and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 500 replicates for mixed data, only

general pedigrees, and only unrelated females, respectively; Table S3: Mean squared errors (MSEs)

of point estimates γ̂BNM, γ̂BUM, γ̂BNP, and γ̂BUP under
(

p f , pm

)
= (0.3, 0.1) and (0.1, 0.3), and(

σ2
e0, σ2

e1, σ2
e2
)
= (1, 1, 1) among 500 replicates for mixed data and only general pedigrees, respectively;

Tables S4–S8: Coverage probabilities (CPs, in %), Wmedians, Wmeans, Wiqrs and Wsds of the BNM, BUM,

BNP, and BUP methods under
(

p f , pm

)
= (0.3, 0.1) and (0.1, 0.3), and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among

500 replicates for mixed data and only general pedigrees, respectively; Table S9: Mean squared errors
(MSEs) of point estimates γ̂BNM, γ̂BUM, γ̂BNP, and γ̂BUP under p f = pm, and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1)

and (1, 1.2, 1) among 500 replicates for quantitative traits; Tables S10–S14: Coverage probabilities
(CPs, in %), Wmedians, Wmeans, Wiqrs, and Wsds of the BNM, BUM, BNP, and BUP under p f = pm,
and

(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) and (1, 1.2, 1) methods among 500 replicates for quantitative traits;

Table S15: Type I error rate of our proposed improved linear mixed model under p f = pm and(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1) among 1000 replicates. Figures S1–S14: Scatter plots of six point estimates

of γ against true values of γ with Np = 150 and 600, nI f = 650 and 2600, p f = pm = 0.3 and
0.1, σ2

g = 1/3 and 1,
(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for the quantitative or qualitative

traits; Figures S15–S28: Scatter plots of widths of HPDIs based on six methods against true values
of γ with Np = 150 and 600, nI f = 650 and 2600, p f = pm = 0.3 and 0.1, σ2

g = 1/3 and 1,(
σ2

e0, σ2
e1, σ2

e2
)
= (1, 1, 1), and MR = {0, 0.4} for the quantitative or qualitative traits.
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