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Abstract: Protein intrinsic disorder is increasingly recognized for its biological and disease-driven
functions. However, it represents significant challenges for biophysical studies due to its high
conformational flexibility. In addressing these challenges, we highlight the complementary and
distinct capabilities of a range of experimental and computational methods and further describe
integrative strategies available for combining these techniques. Integrative biophysics methods
provide valuable insights into the sequence–structure–function relationship of disordered proteins,
setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally,
we briefly summarize recent advances in the development of new small molecule inhibitors targeting
the disordered N-terminal domains of three vital transcription factors.

Keywords: protein intrinsic disorder; integrative biophysics; drug discovery

1. Introduction

Intrinsic disorder in proteins is becoming important due to its prevalence in the human
proteome and its roles in cellular signaling in normal and abnormal cells [1]. The amino
acid sequence of these intrinsically disordered proteins (IDPs) presents a challenge, as
it lacks a well-defined 3D structure and is highly flexible. The demand for their func-
tional and disease-driven understanding is beyond simple sequence-based bioinformatic
analysis. An in-depth understanding requires adding the “structure” component to the
disorder–function relationship typically expected for structurally folded proteins.

The high flexibility of IDPs prompts a revisit of available biophysical tools. For
simplicity, we categorize these tools into experimental and computational methods before
discussing their synergistic integration. These techniques often complement one another,
fostering the growth of integrative biophysics through a combination of experiments
and computations.

The biophysical studies of IDPs present opportunities for their potential application
in drug discovery due to their links to various diseases. Targeting the disorder itself,
rather than its upstream or downstream coregulator proteins, has been found to be viable,
with multiple successful examples reported. This short review concludes by providing an
overview of the status of targeting the intrinsic disorder in the N-terminal domains (NTDs)
of three key transcription factors: p53, androgen receptor (AR), and estrogen receptor (ER).

2. Experimental Biophysical Techniques

IDPs vary in molecular size from tens to over one thousand amino acids weighing
more than 100 kDa [2]. Each IDP may require different biophysical techniques for structural
analysis due to varying chain lengths. Nuclear magnetic resonance (NMR) spectroscopy
is particularly useful for studying IDPs but is limited to small proteins, e.g., those under
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25 kDa. Some other techniques have no size limit, making them suitable for larger proteins,
but they may not provide the same level of detail and amino acid coverage as NMR. As
such, we begin this section with general techniques before discussing NMR-specific tools,
some of which are illustrated in Figure 1.

Figure 1. A schematic diagram of various biophysical techniques probing the structural properties of
intrinsically disordered proteins (IDPs). A large gray circle illustrates the 2D pattern from small-angle
X-ray scattering to provide information about the global conformation and the pairwise distance
distribution between atoms within the protein. MTSL (large orange circle): a nitroxide spin label;
blue dots: observed NMR-active nuclei whose signal intensity is attenuated (blue circles) to monitor
specific distances from the paramagnetic spin-label, typically within the range of 12–25 Å. Gd3+

represents gadodiamide. OH: hydroxyl radicals; CF3: a trifluoromethyl tag; D2O: heavy/deuterated
water. These agents act as a probe to detect site-specific information about solvent accessibility at the
peptide or single-residue level.

2.1. Global Conformations via Small-Angle X-ray Scattering (SAXS)

SAXS has been a primary tool for studying the relationship between the overall radius
of gyration (Rg) and polypeptide length N (i.e., number of amino acids) for a broad range of
unfolded and natively disordered proteins without size limits [3,4]. A power law typically
describes this relationship as Rg~Nv, where v is a scaling component [5]. Exceptions may
occur, particularly for proteins with a high percentage of hydrophobic amino acids [6,7],
although this power law remains a proper first-order estimate from a polymer perspective.

The two critical parameters in analyzing an experimental SAXS intensity profile I(q)
are the physical Rg and v, where q is the X-ray scattering distance in the reciprocal space
(i.e., the amplitude of momenta transfer during the scattering). Rg is typically determined
from the low-q region (e.g., q·Rg < 1.3), while v is calculated from the high-q region
(e.g., q·Rg~3–10 [8,9]). The v value of an IDP can range from 0.45 (for compact disorder)
to 0.5 (for modest disorder) to 0.65 (for expanded disorder) [10]. This range of disorder
behaviors is often illustrated in a Kratky plot of q2·I(q) vs. q·Rg, distinguishing folded
proteins with a bell-like shape from IDPs that level off to reach a plateau at high-q regions [9].
Other parameters, such as the Porod volume that integrates over the entire q region,
can assist in, e.g., processing raw scattering data, but their full utilization has yet to be
fully explored [11,12].

Individual IDPs are known for their high flexibility with a range/ensemble of con-
formations in solution. SAXS provides an ensemble-averaged representation of the distri-
bution of distances between all pairs of atoms, a well-known approach for non-biological
systems [13]. For proteins, by using the GNOM method to transform the entire I(q) profile,
the pair distance distribution function can be determined [14], providing a global view of
IDP conformations in aqueous equilibrium.
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The high flexibility of IDPs can pose challenges for accurate SAXS data acquisition,
as they tend to aggregate or show heterogeneity. Size-exclusion chromatography-coupled
SAXS (SEC-SAXS) is a step-forward solution to eliminate unwanted species that may be
present in the standard flow cell setup [15,16]. However, a higher protein concentration is re-
quired for SEC-SAXS due to dilution from SEC elution. With improvements in synchrotron
light sources and increased X-ray brightness, protein concentration is becoming less of
a concern, and the desire for accuracy and reliability is often given priority. Thus, SEC-
SAXS is the preferred method for obtaining accurate scattering information in biological
applications when feasible.

2.2. Site-Specific Solvent Accessibility through the Lens of Three Labeling Techniques

Several biophysical techniques are available to probe the solvent exposure of specific
residues in a polypeptide chain. These methods typically involve labeling, quantification,
and structural mapping. To show their common features and differences, we describe three
exemplary techniques: H/D exchange (HDX) [17–19], hydroxyl radical protein footprinting
(HRPF) [20–25], and D2O-induced fluorine chemical shift perturbations (DFCS) [6,26,27].
These labeling techniques are particularly useful for studying large proteins that NMR
cannot analyze.

HDX and HRPF share similar concepts but have distinct features. HDX utilizes
excess deuterated (D2O) buffer to exchange amide hydrogens, while HRPF relies on
X-ray hydrolysis [20,28] or laser photolysis [22,29] to generate hydroxyl radicals that can
irreversibly and covalently modify the sidechains of individual amino acids. The efficiency
of HRPF labeling is based on the diffusion of labeling agents within a short time frame
(e.g., milliseconds). The labeling site is a key difference between the methods: HDX focuses
on backbone amino hydrogens and HRPF on sidechains. Both techniques often involve a
dose–response process at different time windows, followed by the quenching of exchange
or reaction before protein digestion by proteases into small peptic peptides.

The DFCS technique uses fluorine labeling by attaching a trifluoromethyl (–CF3) tag,
typically from 3-Bromo-1,1,1-trifluoroacetone (BTFA), to cysteine sidechains [30–34]. This
method is beneficial for proteins without native cysteine residues, as the tag can be placed
at any position that is mutated to cysteine. However, it can be nontrivial for proteins with
multiple cysteines, as it requires identifying individual labeling sites. The process can
also be labor-intensive and time-consuming if multiple sites are needed for individual
characterization. Each site needs a new protein construct with a cysteine mutation, as we
demonstrated for 12 sites of fluorine labeling [6]. Because isotopic D2O water causes a
change in fluorine chemical shift (up to 0.2 ppm), the fluorine tag acts as a probe to evaluate
its local solvent environment at varying D2O concentrations.

Labeling quantification is conducted using liquid chromatography coupled with tan-
dem mass spectrometry for HRPF and most HDX experiments, typically at the level of
peptides. Advances in HRPF have enabled a single-residue description, taking advantage
of the hydrodynamic difference between individual labeled sites separated by chromatog-
raphy elution [35,36]. Furthermore, sample delivery has been improved using a liquid
injection jet without a container [37]. Other advanced options include time-resolved HRPF,
either using a rapid-mixing stopped-flow system [38,39] or a rapid-relaxation temperature
jump setup [40], which has been demonstrated to study the kinetics of protein–protein
binding, e.g., at the (sub-)millisecond or even microsecond timescale, providing infor-
mation beyond the ensemble-averaged thermodynamic properties afforded by standard
HRPF measurements. DFCS quantification is more straightforward and involves recording
fluorine chemical shift spectra and identifying fluorine peaks. The rate/slope of these
peaks changes as a function of D2O concentration report information on the exposure of
the fluorine-tagged site to deuterated solvent.

Structural mapping can be achieved from the HDX rate, HRPF rate, and DFCS slope.
The protection factor (PF) method has been well established for structural analysis using the
HDX rate [18]. A similar PF analysis has been introduced for the HRPF rate, which accounts
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for variations among different amino acid types in their intrinsic rate at a peptide or single-
residue level [41]. Unlike HDX and HRPF, the DFCS slope allows direct comparison
between various labeling sites, utilizing the same fluorine tag uniformly [42].

The final amino acid position coverage varies among techniques due to labeling
efficiency, location of sites, and protease digestion. In the case of a 184-residue protein [6],
the HDX data provide excellent coverage at the peptide level. However, due to high solvent
exposure, the averaging-out across all amino acids within each peptide cannot yield a
meaningful description. In contrast, HRPF effectively characterizes the solvent exposure of
16 amino acids (out of 184), demonstrating that some residues are well protected from the
solvent despite the intrinsic disorder [6].

2.3. Probing Single Pairwise Distances between Amino Acids

The distance between a specific pair of amino acids can be probed via amino acid
labeling. These methods include Förster resonance energy transfer (FRET) [43], double
electron–electron resonance (DEER) [44,45], and photoinduced electron transfer (PET) [46].
The major difference between these distance-related methods is the relation between the
experimental signal and the distance between the pair of labeled/specific amino acids.
Different methods are often most sensitive to different distance regimes. Therefore, they
are often applied in other contexts but can sometimes be complementary, considering the
wide distance distribution between two amino acids within a conformational ensemble of
an IDP. However, interpreting the physical variables from these methods can be non-trivial
due to the heterogenous conformations in IDP ensembles.

FRET. The FRET method covalently links a pair of a donor and an acceptor dye at
a specific amino acid site of interest along the chain. The donor dye is optically excited,
and the excited energy can either be emitted as a photon or transferred to an acceptor dye.
The energy transfer efficiency E is related to the distance r between the pair of dyes if the
dye can rapidly experience different orientations within time scales of the donor lifetime.
The physical interpretation of the FRET signal can be captured by the Förster equation

E(r) =
[
1 + (r/R0)

6
]−1

, where R0 is the Förster radius [47], a value intrinsic to a given
set of dyes. This value determines the optimal distance range for FRET measurements.
By varying the type of dye, R0 can range from approximately 40 to 70 Å. Such a distance
regime reasonably covers the averaging end-to-end distance of a 100-residue IDP with a
size close to a random coil. If multiple pair labeling positions are affordable, FRET can also
provide distances between more than one pair of amino acids [10,48]. This information
sheds light on the conformational tendencies of various regions of an IDP and reveals
scaling behavior [10] and heteropolymeric properties [49].

DEER. The DEER method, a type of electron paramagnetic resonance (EPR) spec-
troscopy, measures the dipole–dipole couplings between two unpaired electron spins. The
spin labels can be introduced as labels on specific amino acids far apart in the sequence.
DEER measurements have a distance dependence of r−3 in contrast to the r−6 dependence
in FRET and are most sensitive to distances of 20–80 Å [44]. More specifically, the distance
distribution can be obtained through methods such as Tikhonov regularization [50].

PET. In contrast, the PET method does not require a label attached to a specific
amino acid; instead, the quenching happens between two naturally occurring amino
acids, tryptophan and cysteine [46,51]. These two amino acids are not commonly seen
in an IDP sequence, suggesting that it is often impossible to directly measure an IDP’s
conformation without mutations. PET studies often involve mutating an aromatic amino
acid to tryptophan and serine to cysteine, which minimizes the modification impact [52].
The rate of PET decays exponentially as a function of the distance between two amino
acids, typically less than 8 Å [53]. This indicates that if PET is applied alone for an IDP, the
sequence separation between two amino acids of interest should not exceed 40 residues.
This restraint poses a challenge for the PET application, considering the typical length of an
IDP. However, due to the growing interest in capturing transient specific interactions within
IDPs, PET could be an alternative method focusing on these short-range distances of interest.
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For example, PET studies of p53-NTD have revealed a kinetic slowdown of long-range
loop closure between two amino acids (e.g., V31 and W53) due to phosphorylation [54].

2.4. Versatile NMR Techniques

For proteins amenable to chemical shift assignments, NMR is a premier tool for in-
depth investigations beyond analyzing the transient secondary structure and chemical
shift perturbation [55–58]. High protein concentrations, typically above 200 uM, are re-
quired for resonance assignments. However, for 2D NMR spectra such as heteronuclear
single-quantum coherence (HSQC), a lower concentration of around 30–100 uM is gener-
ally sufficient to produce adequate signal-to-noise ratios in a reasonable acquisition time,
enabling its broad application to IDPs.

The sampling temperature for NMR data acquisition is an important distinction be-
tween disordered and folded proteins. For folded proteins, higher temperatures (e.g., room
temperature) are commonly used to enable fast rotational diffusion for sharp resonances
due to the restricted mobility of structured regions. On the other hand, lower temperatures
(e.g., 4–10 ◦C) are favored for high-quality 2D NMR spectra of highly flexible IDPs because
of the increase in line broadening caused by amide hydrogen exchange with the solvent,
particularly for solvent-exposed residues.

The low protein concentration requirement for 2D NMR spectra (e.g., HSQC) is a cru-
cial advantage in the studies of highly flexible IDPs. The reduced concentration minimizes
interference from nonspecific intermolecular interactions and enables the focus on in-
tramolecular dynamics. Furthermore, this allows using a wide range of NMR techniques to
study IDPs. The most informative NMR experiments for IDPs include assessments of back-
bone dynamics using relaxation measurements, long-range interactions using paramagnetic
relaxation enhancements (PRE), and backbone solvent accessibility using solvent-PRE.

15N relaxation. Backbone dynamics can be probed through 15N relaxation measure-
ments (longitudinal R1 and transverse R2) by monitoring the intensity decays of individual
amino acids [59,60]. This method has been used to study both unfolded and disordered
proteins. One approach uses R1ρ, the 15N longitudinal relaxation rate in the rotating frame,
with longer relaxation delays to account for the relatively slow 15N-relaxation of disor-
dered protein [61]. Applications include identifying residual structural features, such as
hydrophobic clustering, and locating regions of restricted backbone mobility as indicated
by large R2/R1 ratios [62–64].

PRE. The PRE method allows for determining long-range distances between amino
acids, typically in the range of 12–25 Å [65–67] (illustrated in Figure 1), compared to NOE-
derived interproton distances of less than 6 Å [68]. The technique involves attaching a
nitroxide spin label, such as MTSL, to a cysteine residue (either native or introduced by
mutagenesis) via a disulfide bond. The spin label enhances the transverse relaxation rates of
nearby amino acids, resulting in line-broadening due to dipole–dipole interactions between
the spin label and NMR-active nuclei. This paramagnetic effect follows an inverse sixth
power of the distance between the label and the observed residue, as demonstrated in
folded proteins or complexes [69,70]. For many disordered proteins, this PRE method is
beneficial in identifying long-range interactions between amino acids [71–76]. It provides
information on many amino acid pairs simultaneously, compared to methods that monitor
the distance between a single pair of amino acids. An interesting expansion is double
spin-labeling, also referred to as paramagnetic relaxation interference [77–79], where the
two paramagnetic sites enable accurate triangulation of individual amino acids of interest
by probing the collective effect of spin labels on these amino acids without severe intensity
attenuation, practically outside the intermediate surroundings of the spin labels.

Solvent-PRE. The solvent accessibility of specific residues can be probed without
covalently attaching probes to the protein’s amino acids by using highly soluble para-
magnetic agents such as Gadodiamide, also known as Omniscan. These agents diffuse
freely and rapidly and enhance the transverse relaxation rates of nearby nuclei, such as
amide hydrogens [80,81]. The rate of enhancement is proportional to the concentration of
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paramagnetic agents in the solution, making it an adequate measure of solvent accessibility.
This method has been used to characterize folded proteins [81] and has been applied to
disordered proteins showing low solvent exposure of a native-like beta-hairpin and overall
high solvent exposure for the rest of the denatured ubiquitin [82,83]. Compared to non-
NMR methods, this solvent-PRE method significantly improves the detection of backbone
solvent accessibility with a higher amino acid coverage, as many residues are resolved
by 2D NMR spectra through either proton or carton detection [84]. A new development
uses two differently charged co-solutes (cationic and anionic or neutral) as free-diffusion
paramagnetic agents [85–87]. These co-solutes are used to determine an effective per-
residue electrostatic potential by utilizing an inverse sixth power of the distance between
the paramagnetic co-solutes and the observed residue, particularly useful in characterizing
the electrostatics of well-defined ligand-binding cavities, highly charged DNA-binding
surfaces, or electrostatics-driven protein–protein interfaces.

3. Theoretical and Computational Biophysical Techniques

Experiments are often accompanied by theoretical and computational methods in
various forms. This section explores four aspects of this collaboration between computation
and experiment, arranged by ease of application. These aspects include sequence-based
predictors for distinguishing IDPs from folded proteins, polymer models for interpreting
experimental measurements, molecular simulations and modeling techniques that are
parameterized via experimental data, and ensemble-fitting that integrates experiments
and computations.

3.1. Prediction from the IDP’s Primary Amino Acid Sequence

In the 1990s, while investigating proteins involved in transcription, it was observed
that the minimum requirement for functional amino acid sequences often included highly
acidic contents and negatively charged amino acids [88,89]. Given the repulsive interactions
involved in short regions of tens of amino acids, it was difficult to imagine these regions
could fold into a well-defined three-dimensional structure, as often seen in folded proteins.
Increasing numbers of sequence segments without a definable “structure” led to attempts
at sequence-level classifications between disordered and structured regions of proteins. In
2000, Uversky and Dunker introduced a diagram using two sequence-based descriptors,
mean net charge and mean net hydrophobicity, and found that known folded proteins
and IDPs often occupy different regions of this two-dimensional diagram [90]. This work
demonstrated qualitatively that the physical properties of individual amino acids could be
used to predict the general structural preference of IDPs, despite some exceptions where
IDPs cross the folded–disordered boundary [6].

Sequence descriptors. Investigations have been carried out on various amino acid
properties to determine their suitability for IDP prediction. The first type of sequence
descriptor focuses on charged amino acids. The fraction of charged amino acids often
affects the contribution of other sequence descriptors based on charged amino acids to
the overall conformational preference. For instance, IDPs with a high content of charged
residues depend primarily on the arrangement of their charged amino acids [91]. When
determining the overall attractive or repulsive interactions, one can look at more detailed
charge-relevant sequence descriptions such as net charge per residue (NCPR) or a more
complex fraction of positively/negatively charged amino acids, which are often thought to
be more effective in predicting the conformational preference of an IDP [92]. The second
type of sequence descriptor is based on the hydrophobicity of amino acids, and several
hydrophobicity scales are available for the 20 amino acids [93–95]. In addition, secondary
structure preference [96,97] and solvent accessibility [98] of amino acids can be used as
inputs to predict disordered regions. Furthermore, a fraction of different types of amino
acids can be used, and in some cases, a specific type of amino acid has been found to be
important to the conformational preference of an IDP [99–101]. However, when considering
an n-gram language model (e.g., the fraction of an n-amino-acid pattern) in a protein
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sequence, there may be many such sequence descriptors, and a machine learning method
is often needed to achieve predictive power [102]. Figure 2A provides an example using
two representative sequence descriptors introduced by Uversky [90]: the absolute value of
the net charge per residue |<q>| and the amino acid hydrophobicity per residue <H> [95].
The folded proteins used here were obtained from the TOP2018 database [92] (excluding
the regions that cannot be assigned a secondary structure with DSSP software [103]), while
disordered proteins were obtained from the DisProt database [104] (with a criterion for a
chain length of longer than 30 amino acids). As shown in Figure 2A, most folded proteins
are located within the border of this Uversky-proposed boundary line, while disordered
proteins occupy a broad range of space. With the increasing number of IDPs, there can be
quite a few getting close to the well-folded protein regime, suggesting these proteins have
similar sequence properties, at least in terms of the two sequence descriptors used.

Figure 2. Theoretical and computational methods for studying IDPs. (A) Folded vs. disordered pro-
teins in a two-dimensional plot of hydrophobicity and net charge of individual proteins. Blue:
a representative folded structure of CDK7 kinase (PDB id: 7B5O [105]); colored lines: a con-
tour plot derived from a large set of high-resolution folded protein structures available from the
Protein Data Bank via the Top2018 database [106]. Black: a representative disordered structure
(PDB-Dev id: PDBDEV_00000027 and SASBDB id: SASDEE2); gray lines: a contour plot derived
from a set of disordered proteins via the DisProt database [104]. Dashed line: a boundary line of
<H> = (|<q>| + 1.151)/2.785 as proposed by Uversky [90] where <H> is the average hydrophobicity
per amino acid [95] and |<q>| is the absolute value of average net charge per amino acid. Most folded
proteins are within the border of this boundary line, while disordered proteins spread over a broad
range of space. Red triangle: p53-NTD (M1-V97; UniPort id: P0463; <H> = 0.445 and |<q>| = 0.155);
green triangle: AR-NTD (M1-K558; UniPort id: P10275; <H> = 0.434 and |<q>| =0.031); blue circle:
ER-NTD (M1-Y184; UniPort id: P03372; <H> = 0.434 and |<q>| = 0.000). (B) Polymer models for
deriving single-distance distributions indicate that the interpretation of experimental measurement is
highly model-dependent by converting a FRET efficiency of 0.2 from a 100 amino-acid peptide to
the distance distribution function p(r) [107]. (C) Pairwise scaling exponent map from coarse-grained
simulations for the N-terminal disordered region of E-cadherin [49].
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Machine learning methods. Several machine learning methods, from simple linear
regression to more sophisticated approaches such as support vector machines and deep
learning (artificial neural networks with multiple layers), can combine existing sequence
descriptors to predict the disordered sequences. With the increasing degrees of freedom
(sequence descriptors) and increasing training datasets (e.g., DisProt [108], IDEAL [109],
MobiDB [110], and solved PDB structures), deep learning has become a commonly used
method for this purpose. A recent assessment testing 43 predictors found that machine
learning methods and specifically deep learning methods outperform physicochemical
methods [111]. However, predicting disordered regions for binding can still be challenging.
Due to the ease of applying these predictors, most of which have existing web inter-
faces [112–115], one can always try several methods and increase the confidence level of
determining the disordered region when facing a new sequence. However, the contribution
of a specific sequence descriptor to the prediction or the underlying sequence grammar can
often be challenging to access due to the hidden layers of deep learning methods.

Short sequence regions. Significant efforts have been devoted to exploring short se-
quence regions that facilitate specific interactions between disordered regions and various
biomolecules [116]. Two major categories of these regions are molecular recognition frag-
ments (MoRFs) and short linear motifs (SLiMs). MoRF can undergo a disorder-to-order
transition upon binding to their partner and can be predicted using various methods with
sequence lengths ranging from 5 to 25 amino acids [117–121]. On the other hand, SLiMs
are short sequence patches each containing 3 to 15 amino acids that are often found within
the disordered regions of diverse proteins and can be highly conserved [116,122–125]. Such
sequence conservation, e.g., within low-complexity disordered regions, suggests potential
coevolution with binding partners for specific functions. In this case, sequence-based
algorithms have been developed to predict binding regions within an IDP that interact
with other proteins [126,127], nucleic acids [128], and even lipids [129]. Databases such
as DIBS [130] and FuzDB [131] can be used for this purpose or as a training dataset for
their algorithm development. Recent evidence has suggested coevolution between SLiMs
and linkers for a particular IDP [132], indicating that flanking regions with less-conserved
sequences in IDPs might also affect interactions between these short sequence regions
and their binding partners [133], although this realization remains to be validated on a
case-by-case basis.

Patterning of sequence descriptors. One can also investigate the patterning of existing
sequence descriptors, which might provide additional physical insights. It has been shown
that charge patterning, for example, plays a significant role in determining individual chain
configurations [134–136]. By considering the patterning of even hydrophobic amino acids,
often thought of as secondary to charged interactions, predictions of global properties such
as polymer scaling exponent and radius of gyration are further improved [137]. Charge
patterning can also be applied to understand the interactions between two IDPs dominated
by the patterning of the charged amino acids [138]. More interestingly, the charge block
idea has been realized for some critical IDP functions [139,140].

It should be noted that structure prediction methods such as AlphaFold v2.0 [141,142]
can be used to distinguish folded and disordered regions. In addition, sequence-based
algorithms can be extended to predict other factors such as prion-like domains [143,144],
liquid–liquid phase separation [145–147], protein aggregation [148,149], and mutual syn-
ergistic protein folding [150], with an increasing number of experimental measurements
serving as the training data set. A clear advantage of sequence-based predictors is their
ease of use. Many predictors come with a web interface, making them accessible to quickly
analyze new sequences of interest before more complex computational and experimental
techniques are applied. Therefore, it is recommended to use sequence-based predictors
before using any other computational/theoretical methods for IDPs. Even though there
is ongoing interest in developing computational models for both folded and disordered
proteins, most of the methods described here only apply to IDPs.
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3.2. Polymer Models for Interpreting Experimental Measurements

Experimental measurements typically correspond to averaged physical variables from
an ensemble of diverse conformations. Without a physics-based model, it is nontrivial
to convert the experimental measurements directly. For instance, an experimental mea-
surement that provides the distance between two amino acids still requires a distance
distribution function to connect the experimental signal and the distance r. This can be
performed through various methods, ranging from polymer models with analytical equa-
tions for p(r) to all-atom explicit solvent simulations. This section briefly describes polymer
models, often the first step for interpreting experimental data.

Gaussian chain. When looking at the sizes of IDPs measured using SAXS (i.e., Rg),
FRET (i.e., distance R), and dynamic light scattering (DLS) or pulsed-field gradient NMR
(i.e., hydrodynamic radius Rh), IDPs of varying chain lengths N were found to be close
to the scaling behavior of a random coil as Rg, Rh or R~Nν, where ν is the scaling
exponent [3,4,151]. Therefore, a Gaussian chain model [5] is often used for analyzing,
e.g., FRET data and helping convert the FRET efficiency into the distance between the pair
labeling positions. The distance distribution function P(r) of the model can be written as

P(r) =
(

3
2π

)3/2 4π

R

( r
R

)2
exp

[
−3

2

( r
R

)2
]

where R is the root mean squared distance of all the conformations in the ensemble and r
is the distance between a specific pair of amino acids for one conformation. Then, R can
be obtained by minimizing

∣∣∫ E(r)P(r)dr − Eexpt
∣∣, where E(r) is the Förster equation [47]

describing the FRET efficiency as a function of the distance and Eexpt as the experimentally
measured FRET efficiency. However, for one specific IDP, the scaling exponent can differ
from 0.5. A FRET investigation that labeled multiple pair positions on different proteins
revealed that six IDPs exhibit scaling exponents between approximately 0.45 and 0.65 [10].
It has been noted that the Gaussian chain model tends to overestimate the R value inter-
preted from FRET efficiency when the specific IDP is closer in behavior to an excluded
volume chain [152].

Self-avoiding walk. A more general polymer model other than the Gaussian chain
model is the self-avoiding walk (a polymer which cannot cross itself) model, in which the
distance distribution P(r) can be adjusted according to the scaling exponent, referred to as a
SAW-νmodel, and the P(r) can be written as

P(r, ν) = A
4π

R

( r
R

)2+g
exp

[
−B
( r

R

)δ
]

where R is the root mean squared distance, A and B are obtained from the conditions
1 =

∫ ∞
0 P(r)dr and R2 =

∫ ∞
0 r2P(r)dr, and the exponents are given by g ≈ (γ − 1)/ν [153],

γ = 1.1615 [154], and δ = 1
1−ν [155]. Then the scaling exponent ν can be obtained by min-

imizing
∣∣∫ E(r)P(r, ν)dr − Eexpt

∣∣ by the restraint of R ∝ Nν. We show in Figure 2B, with
provided FRET efficiency of 0.2 of a 100 amino-acid peptide, that the P(r) reconstructed
using a Gaussian chain and the SAW-ν model can be quite different, suggesting such
data analysis is model-dependent. The results from the SAW-νmodel have been in close
agreement with the all-atom explicit solvent simulations [107], which are usually com-
putationally demanding to generate. The SAW-ν model can also be applied to other
experimental methods to provide the distance between two specific amino acids. For
instance, for PET and PRE, one can easily replace the E(r) in the previous minimization
with the equation corresponding to the experimental signal and the distance, and then
the P(r) can be obtained using a different experimental method. In addition, methods that



Biomolecules 2023, 13, 530 10 of 27

provide Rg from SAXS data can be compared with the methods that provide distance R via
the relation between Rg and R [156],

λ =
R2

R2
g
=

2(γ + 2ν)(γ + 2ν + 1)
γ(γ + 1)

where γ = 1.1615 [154]. SAXS can be analyzed similarly with a higher-order correction
factor to the original Guinier analysis [157].

Another advantage of using the SAW-ν model is that it provides the scaling exponent
in addition to R. The scaling exponent sometimes tells more than just the size of an IDP.
For instance, in the case of liquid–liquid phase separation, a strong correlation was found
between the critical temperature of phase separation and the theta-solvent temperature at
which the scaling exponent is 0.5 [158]. It is important to note that the scaling exponent is
only well-defined for a homopolymer, and the polymer models discussed assume that the
IDP being studied is a homopolymer. This assumption is acceptable for some IDPs with
low-complexity sequences and weak nonspecific interactions. However, growing evidence
suggests specific IDPs exhibit transient interactions between pairs of amino acids [159,160].
Further work may be required, such as incorporating a new term into the current polymer
model or using more sophisticated simulation models.

3.3. Molecular Simulations and Modeling Methods

Computational simulation and modeling techniques require experimental data for
parameterization and calibration and can be computationally demanding. However, once
established, these techniques can be applied to a wide range of systems beyond those used
for parameterization. Techniques include all-atom explicit or implicit solvent simulations
and coarse-grained modeling, which differ in the level of detail they provide for amino
acids and water molecules. Choosing the proper simulation method requires finding
a balance between detail and feasibility. All simulations rely on experimental data for
parameterization or validation of results. Low-resolution models typically have fewer free
parameters and require less experimental input. This approach may be appealing due to
their physical intuition for understanding the underlying mechanisms. However, they
may lack the detail to capture experimental measurements accurately. Higher-resolution
models have more free parameters and thus require more experimental data, but they may
not be easily transferable to new proteins without verification. Other approaches, such as
Rosetta [161] and AlphaFold [142], can be used to model disordered regions that may be
partially structured but not discussed here.

All-atom simulations. All-atom explicit solvent simulations offer the highest resolution
and may be able to describe specific residue interactions that can be lost in lower-resolution
coarse-grained models, such as hydrogen bonds, salt bridge, cation-π, sp2/π interactions,
and general hydrophobic/van der Waals interactions [162]. Since water molecules are
explicitly represented, all-atom explicit solvent simulations can also lead naturally into
discussing the dynamics of IDPs rather than just the averaging equilibrium properties [163].
For instance, end-to-end chain relaxation time from all-atom simulations have been found
in close agreement with that estimated from the FRET experiment [164]. However, one
major challenge of using all-atom explicit solvent simulations is the accuracy of the force
field [165–169]. Since an IDP lacks a nonlocal tertiary structure, this enlarges minor inaccu-
racies of local secondary structure preference and amino acid interactions of old force fields.
Recent attempts to improve the accuracy of all-atom force fields rely primarily on imple-
menting better dihedral potentials for reproducing secondary structure propensities [170]
and fine-tuning protein–solvent interactions for capturing the sizes of IDPs [165]. Another
option is to use implicit instead of explicit solvent [171]. Implicit solvent can be problematic
when simulating interactions between charged amino acids at physiological ionic strength.
This issue can be solved by introducing explicit ions such as the ABSINTH model [172,173],
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which can be a good alternative between an all-atom explicit solvent model and more
reduced coarse-grained models.

However, all-atom models are challenging for simulating more complex phenomena
with more than one chain in the simulation, such as folding upon binding [174], liquid–
liquid phase separation [162], or aggregation [175] due to the high computational cost
for obtaining trajectories with sufficient time scales. There can be a few possible ways
to overcome sampling difficulties. One option is the use of advanced sampling methods.
Replica exchange molecular dynamics (REMD) can be applied to IDPs [176,177] and have
been applied to the p53 disordered region [178]. Despite the high computational demands,
this REMD method can be combined with other advanced sampling techniques, such as
Gaussian-accelerated molecular dynamics (GaMD) [179,180], to enhance its capabilities
further. Combining REMD and GaMD has been applied for the ER disordered region [6].
Collective-variable-based methods are commonly applied to folded proteins [181–183];
however, their application to IDPs remains to be seen due to the lack of obvious collective
variables for IDP dynamics. Other approaches to accelerate simulations include using
specialized supercomputers such as Anton [184] or implementing GPU-assisted versions
of molecular dynamics packages [185–187].

Coarse-grained simulations. Coarse-grained (CG) models further reduce the complex-
ity of amino acids in addition to just implicit solvents. Resolution varies greatly across CG
models according to their intended use, from several CG beads for each residue
(e.g., AWSEM [188–190], and flexible-meccano [191]), to one CG bead per residue, to one CG
bead for the entire domain. One needs to choose an appropriate resolution depending on
the problem of interest. A model with a resolution of one bead per residue could be a good
balance between reducing computational cost and achieving amino acid specificity. Here
we briefly describe one example, the HPS model [192]. There are three different types of
interactions of local bonded interactions, electrostatics, and short-range pairwise interactions.
The electrostatic interactions are modeled using a Coulombic term with Debye-Hückle electro-
static screening [193] to account for salt concentrations. The short-range pairwise interactions
account for protein–protein and protein–solvent interactions and are based on the amino acid
hydropathy scale [99]. In the current HPS model, the Ashbaugh–Hatch functional form is
used for the short-range pairwise interactions [194], but other functional forms can be used
to consider the nonbonded interactions in addition to the electrostatic interactions between
charged amino acids [195–198]. The overall interaction strength of this pairwise interac-
tion term and amino-acid-specific parameters (e.g., hydropathy scales) can be optimized
with the experimental data of IDPs [190,199–201]. This term can also be temperature-
dependent on accounting for the upper and lower critical solution temperatures [202]
and salt-dependent to account for the salting-out effect at high salt concentrations [203].
Additional angle and dihedral terms can be introduced to capture the residue-specific
secondary structure propensities of the chain [204,205]. The entire framework is flexible
and easy to re-optimize with growing experimental measurements [190,199–201] and can
be extended to biomolecules such as nucleic acids [206]. The HPS model lacks specific
interactions such as hydrogen bond, salt bridge, cation-π, and sp2/π interactions and often
underestimates specific strong interactions that might exist in a particular IDP. However,
this model is usually sufficient to capture interactions between charged amino acids. As
shown in Figure 2C, the HPS model can correctly capture the attractive interactions (blue
in the scaling exponent map) between charged amino acids within the N-terminal region of
the disordered E-cadherin protein. These interactions lead to salt-induced expansion of
the first 40 amino acids in contrast to the salt-induced collapse of the other regions of the
protein seen in the FRET measurement.

3.4. Computational Strategies for Combining Multiple Experimental Measurements

Simulation models that are parameterized with experimental data are often considered
transferable. However, when applied to a new system of interest, they may not always
match the latest experimental data, requiring further improvement. Re-optimizing the
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model with new experimental data is a straightforward solution, but this is often performed
with CG models due to fewer built-in free parameters. Optimizing all-atom models to
match a new set of experimental data can be time-consuming. Nonetheless, two alternatives
include biased simulations with experimental data as restraints [207,208] and ensemble
fitting that reweights the conformations of existing ensembles to best fit experimental
data [152,209–214]. As integrative biophysics approaches are emerging [215], both methods
are critical for IDP characterization by integrating these various experimental inputs, as
depicted in Figure 3.

Figure 3. A schematic diagram for integrative biophysics combining various biophysical datasets.
Complementary restraints from experimental studies of small-angle X-ray scattering, site-specific
solvent accessibility, and various NMR techniques, as well as computations, are fed into ensemble-
fitting machinery to generate a comprehensive picture for the ensemble structures of highly flexible
biomolecules such as intrinsically disordered proteins. Reprinted with permission from Ref. [215].

Central to integrative biophysics is the development of “bridges” and “connectors”
between computations and experiments. These tools allow experimental measurements
to be calculated from the conformations of IDPs obtained using computational meth-
ods. Linking to SAXS data includes model-free coarse-grained computing [216–218] and
atomistic-level modeling [219,220]. HDX and HRPF analysis mainly utilize protection
factor analyses [18,41] to connect the solvent accessibility surface area. For NMR mea-
surements, PRE data can be analyzed via ensemble averaging over inverse sixth power
of distances [72], while solvent-PRE data can be analyzed via grid-based surface volume
calculations [81,221,222]. FRET efficiencies can be calculated from a distance between
the two labels using the Förster equation [47], and PET rates can be estimated using
an exponential function to the distance through all-atom modeling [53]. DEER spectra
are typically converted to distance distributions before being applied to computational
methods [50,223–225]. Such tools play a critical role in advancing integrative data analysis.

Experiment-restrained simulations. Experiment-restrained simulation methods have
succeeded in exploring new conformations or leading simulations toward conformational
changes of interest. However, unlike folded proteins, these methods are often not straight-
forward for IDPs. IDP measurements are the results of ensemble-averaged features, making
it difficult to determine how to design the biasing potential for simulations. This ambiguity
makes biased IDP simulations rely on the time-consuming processes of replica averag-
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ing [208], maximizing entropy, and extensive iterations [226–229]. Examples include mod-
eling strategies with experimental restraints from SAXS [230,231], DEER [232], HRPF [233],
FRET [234], and NMR observables [207,208,235,236]. Additionally, the overall results are
influenced by the accuracy of the physics-based model used. Improvements in all-atom
force fields and growing sources of experimental data are expected to alleviate some of
these concerns.

Ensemble fitting. As an alternative approach, ensemble fitting directly incorporates
experimental bias into ranking and scoring candidate structures obtained from compu-
tations. This ensemble approach is achieved by post-processing an ensemble of these
putative conformations, where weights are assigned to individual conformations and then
adjusted to best fit experimental observables. One prolific example of ensemble fitting
is the combination of SAXS data with various docking and modeling algorithms. This
SAXS-assisted method has been implemented and applied to various research areas, includ-
ing protein–protein interactions [237–243], high-order structures [213,214,244–247], protein
dynamics [248–257], RNA dynamics [258–261], and the study of IDPs [6,262–265].

Ensemble fitting is frequently combined with multiple experimental data types to
obtain a complete picture of protein behavior. By combining SAXS or FRET data about
global conformations with site-specific information on solvent accessibility (e.g., HRPF
and DFCS) or NMR distance data (e.g., PRE), insight has been gained into the behavior
of IDPs [72,212,214,264,266–269]. As shown in our recent publication [42], the amino acid
contact map of the ER disordered domain can be obtained through ensemble fitting of data
from SAXS, HRPF, and DFCS, which reveals previously unknown nonlocal contacts.

It is still an open question regarding how to best proceed with ensemble fitting to meet
all experimental measurements. Two different strategies have been employed to prepare
the basis set of initial conformations for fitting. One involves using a large pool of candidate
structures for maximum entropy analysis [270], while the other requires minimizing the
number of conformational clusters before fitting [250]. The first strategy involves handling
a large number of structures and applying the maximum entropy principle to prevent
overfitting, recognizing that some structures share similar experimental observables. The
second strategy conducts conformational clustering before fitting and requires well-defined
collective variables that can separate the pool of structures into distinct clusters, serving as
a basis set of conformations for ensemble fitting. A combined approach has been attempted
using a modest number of conformations and the maximum entropy method [6,271] that
has successfully made predictions that were subsequently validated. If the initial pool of
structures captures the majority of target conformations, then conformational clustering
based on experimental observables before fitting could be considered a method of choice
instead of imposing a statistical bias on the fly, where a minimum number of distinct
conformations is utilized as a de facto basis set to avoid a potential issue of double-counting
in ensemble fitting (i.e., using both a non-equal probability weight for individual confor-
mations and an entropy penalty for the overall density of conformations, simultaneously).
Nevertheless, this assertion requires further investigation in future studies.

4. Targeting Protein Intrinsic Disorder as a New Frontier of Drug Discovery

IDPs are emerging as a promising class of targets for small molecule binding [272–274].
Notable examples of these ligands include 10058-F4/sAJM589 targeting the transcription
factor c-Myc [275], EGCG against p53-NTD [276], Fasudil against α-synuclein [277], 10074-
G5 against Aβ42 [278], SJ403 against p27-Kip1 [279], EPI against AR-NTD [280], CLR01 as
a molecular tweezer against the disordered protein–protein interface of Cdc25C [281], and
NSC635437 against the fusion oncoprotein EWS-FLI1 [282], some of which are depicted in
Figure 4.
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Figure 4. Small molecule targeting against protein intrinsic disorder as a new frontier in drug
discovery. NTD: N-terminal domain; DBD: DNA-binding domain; LBD: ligand-binding domain; TET:
tetramerization domain; CTD: C-terminal domain. AR: androgen receptor; ER: estrogen receptor.
EGCG, a compound found in green tea, has been shown to interact with two specific amino acids
of p53-NTD, W23 and W53 [276]; EPI-001, isolated from marine sponges [283], has been found to
interact with A402 and T435 residues of AR-NTD [284]. CT7001 has been demonstrated to bind the
ATP-binding site of CDK7 (PDB id: 7B5O [91] and 6Z4X [285]), a serine/threonine kinase that can
phosphorylate Ser118 within the ER-NTD [286].

p53-NTD has been extensively studied using various biophysical techniques, including
SAXS [287], PRE [288], solvent-PRE [84], and PET coupled with fluorescence correlation
spectroscopy [54], as well as computations [178,287]. Knowledge accumulated over the
years has not only aided in understanding the binding mechanism between EGCG and
p53-NTD [276], but also provided the molecular basis for finding new binders.

AR-NTD was among the first IDPs selected as a therapeutic target for drug develop-
ment [280,289]. Unlike p53-NTD, small molecule binders were identified before biophysical
data of AR-NTD binding became available. EPI-001, one of the early compounds, was iso-
lated from marine sponges and found to inhibit AR-NTD transcriptional activity [283,290].
Subsequent binding characterization included chemical shift perturbation analysis [288]
as well as computational modeling [291]. Despite the wealth of biophysical data available
for p53-NTD, a comprehensive structural ensemble of p53-NTD (either in the absence
or presence of EGCG) is not currently available that explicitly accounts for the diverse
experimental restraints. Encouragingly, chemical shift perturbations have identified spe-
cific amino acids that are well separated in their primary amino acids for ligand–protein
interactions, as indicated in Figure 4.

Studies targeting ER-NTD have lagged behind AR-NTD, and there is currently no
small molecule inhibitor that directly binds ER-NTD. While ER-NTD and AR-NTD belong
to the same nuclear receptor superfamily, ER-NTD is shorter (184 amino acids) than AR-
NTD (558 amino acids) [292]. Despite being shorter than AR-NTD, it is longer than
p53-NTD (97 amino acids) [293], as illustrated in Figure 4. Counterintuitively, the structural
information for ER-NTD is limited [294,295] compared to AR-NTD and p53-NTD, whose
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chemical shifts have been mostly assigned. Maintaining protein stability and homogeneity
has posed difficulties in conducting NMR studies on ER-NTD. However, non-NMR studies
have provided early insights into its inner workings, including SAXS, HRPF, and DFCS
data and computational studies (5, 28).

While no small molecule directly targets ER-NTD, efforts are underway to develop
small molecule inhibitors that target its coregulatory proteins. As illustrated in Figure 4,
CDK7 is an upstream protein kinase that activates ER-NTD by phosphorylating serine at
position 118 [286], and CDK7 inhibitors have been developed to reduce ER-NTD activ-
ity [296,297]. One such inhibitor, CT7001, is currently undergoing clinical trials for the
therapeutics of ER-positive breast cancer (phase 2) and castrate-resistant prostate cancer
(phase 1 as of February 2023) [298]. However, the multifaceted role of CDK7 as an activation
initiator for multiple proteins involved in transcription and cell cycle regulation can lead to
cellular toxicity and off-target effects. As we gain more knowledge about ER-NTD at the
molecular level, a more direct strategy is approaching to target ER-NTD for the discovery
of novel binders.

These examples represent one approach of targeting protein intrinsic disorder
at specific protein regions or post-translational modifications to shift the equilibrium
of disordered conformations. Another strategy involves using small molecules or
peptides that mimic binding partner proteins to alter the disordered protein–protein
interface [299–302]. Notably, a significant portion of such protein–protein interactions
is mediated by so-called short linear motifs (SLiMs), commonly found within disor-
dered regions [303]. Typically, each SLiM is a small polypeptide stretch consisting of
3 to 15 residues [122,125] and can be grouped into six distinctive classes via the eukaryotic
linear motif (ELM) database [304,305], including the LIG class for covering the function
of protein interactions with ligand proteins, MOD for post-translational modifications
such as phosphorylation, CLV for proteolytic cleavage, TRG for subcellular targeting, DEG
for degradation with protein polyubiquitylation, and DOC for classic docking of enzyme
recruitment [306]. The classification of SLiMs into distinct classes provides a comprehensive
understanding of the multifaceted functions that many SLiMs can carry out, even within
the same disordered protein sequence. For instance, the discrimination between LIG and
MOD classes is an excellent example of how protein phosphorylation sites are distinct from
protein–protein interaction sites; the fact that phosphorylation sites are categorized as MOD
motifs and not LIG motifs indicates that they may not directly participate in protein–protein
interactions. This distinction has been demonstrated through the analysis of ELM search
results of, e.g., p53-NTD, AR-NTD, and ER-NTD, where their SLiMs spread over the amino
acid sequence with little overlap. Given that IDPs often engage in promiscuous interactions
with a vast array of partner proteins [1,307], a thorough investigation of the IDP of interest
is important to identify whether a particular SLiM dominates over or coordinates with
others in order to fully understand its potential as a drug target.

5. Perspectives: Chaotic Life of Protein Intrinsic Disorder at a Crossroads

Intrinsic disorder in proteins imposes difficulties for biophysical studies and chal-
lenges the conventional structure–function paradigm learned from folded proteins. As
IDPs are critical in many biological processes, such as transcription and signaling, un-
derstanding the inner workings of IDPs requires innovative use of available biophysical
tools and a proactive approach combining complementary techniques. The limited yet
growing knowledge provides a new perspective on the IDPs’ sequence–structure–function
relationship, thereby allowing for the study of protein intrinsic disorder to find new binders
against important therapeutic targets.
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