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Abstract: Cell-penetrating peptides (CPPs) have great potential to deliver bioactive agents into cells.
Although there have been many recent advances in CPP-related research, it is still important to
develop more efficient CPPs. The development of CPPs by in silico methods is a very useful addition
to experimental methods, but in many cases it can lead to a large number of false-positive results. In
this study, we developed a deep-learning-based CPP prediction method, AiCPP, to develop novel
CPPs. AiCPP uses a large number of peptide sequences derived from human-reference proteins as a
negative set to reduce false-positive predictions and adopts a method to learn small-length peptide
sequence motifs that may have CPP tendencies. Using AiCPP, we found that short peptide sequences
derived from amyloid precursor proteins are efficient new CPPs, and experimentally confirmed that
these CPP sequences can be further optimized.

Keywords: cell-penetrating peptides; CPP; deep learning; drug delivery system

1. Introduction

In drug delivery, intracellular delivery of therapeutic drug molecules is essential. For
drugs to exert their therapeutic effect in intracellular organelles such as the cytoplasm,
nucleus, lysosomes, and mitochondria, they must cross the cell membrane. However,
hydrophilic therapeutics or large biomolecules, such as proteins or nucleic acids, cannot
typically penetrate cells. Cell-penetrating peptides (CPPs) are typically 4–40 amino acids in
length, and they can penetrate cells to enhance the cellular uptake of various molecular
cargoes [1–7]. CPPs have also been the focus of increased research interest because they are
non-toxic and do not permanently damage cell membranes upon entry [7,8].

Remarkable progress has been made in the development of CPP-based drug delivery
systems in various preclinical studies over the past decade [9–13]. Hundreds of novel
CPPs and chemically modified analogs have been discovered, and several CPP-based
formulations are currently being evaluated for toxicity and safety in various stages of
clinical trials [7,8]. Although several efficient CPPs have been identified, they do not have a
wide range of possible applications. Consequently, their improvement and the discovery of
new and more efficient CPPs with increased bioavailability and reduced side effects for
safe drug delivery and therapeutic applications remains a challenge [14–16].

Experimental verification and optimization of CPPs is time consuming and labor
intensive, therefore, various in silico methods for CPP prediction have been devised as
alternative approaches [17–28]. Mining properties of peptides such as amino acid composi-
tion, biochemical properties, and methods of expression of numerous new functions have
been used in several in silico CPP prediction methods to achieve more than 80% accuracy.
Researchers have made significant progress in developing new prediction algorithms by
utilizing the physicochemical properties or distance information of a peptide sequence. For
instance, CellPPD [19] and machine learning-based prediction of CPP (MLCPP) [20] use
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various features such as amino acid composition, dipeptide composition, a binary profile
of patterns, and physicochemical properties as input features for CPP prediction. Recently,
CPPpred [21] utilizes an N-to-1 neural network to express the peptide sequence as a feature
of a fixed length.

However, current methods, including these studies, still have several problems that
could be improved to make them more useful for CPP research. For example, they are
based on relatively short CPP peptide sequences, which can make it difficult to pinpoint
which parts of a protein or peptide sequence have CPP properties, and they are trained
on a limited number of CPP data, which can lead to a large number of false-positive
CPP predictions.

In this study, we propose AiCPP, a deep learning-based model for predicting cell
permeation propensities of peptide sequences. In the development of AiCPP, we used a
large number of negative CPP dataset generated from a human reference protein sequence
database to reduce false positives and 9-mer peptide sequences as input to learn local-CPP
sequence patterns more efficiently. The AiCPP was able to significantly reduce false-positive
predictions and show more robust CPP sequence learning and prediction results.

As a model case for experimental performance verification of AiCPP, we predicted
and selected a novel CPP sequence from amyloid precursor protein (APP) sequence, and
confirmed that it is a good CPP through a cell permeability test in MCF-7 cells. Furthermore,
we found that AiCPP can be used to optimize the wild-type APP-derived CPP sequence
into a CPP sequence with higher CPP efficiency.

Figure 1 shows the schematic diagram describing the processes used to build the
AiCPP model.
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2. Materials and Methods
2.1. CPP Dataset Preparation

The data generation process is shown in Figure 2. We collected data for known cell-
penetrating peptides (CPPs) from several sources, including CellPPD [19], MLCPP [20],
CPPsite 2.0 [29], Lifetein (https://www.lifetein.com/ (accessed on 07 December 2021)),
and other publications [4,17,27]. From this collection, we selected 2798 unique peptides
that were between 5 and 38 amino acids long, after removing redundant peptides and
those with non-amino acid sequences. To test the performance of our model, we created a
separate set of 150 CPP peptides and 150 non-CPP peptides that were not used in the other
three models (MLCPP, CellPPD, CPPred). In total, we used 2346 peptides for the train set,
including 1249 CPPs and 1097 non-CPPs.
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Figure 2. Dataset preparation. Peptide sequences derived from the human reference protein are used
as the negative set.

To prepare the input data for our deep learning model, we used the sliding window
method to slice the peptide sequences into overlapping 9-amino acid segments, as shown in
Figure 3. Using the sliding window method to slice the curated peptides into overlapping
9-amino acid segments allows us to use more training data and capture local sequence pat-
terns or meaningful sequence context features. The sliding window approach is commonly
used in molecular sequence analysis to study the properties of individual residues.

To ensure that all peptides were of uniform length, we padded shorter sequences with
‘-’ characters to create 9-mer peptides. This step was necessary to maintain consistency
across the dataset for deep learning. We removed all duplicate 9-mer peptide sequences
from the dataset.

https://www.lifetein.com/
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Figure 3. Preparation of 9-mer peptide sequences using the sliding window method for training the
AiCPP model.

We generated 11,046,343 9-mer peptide fragments from 113,620 human reference
proteins to be used as the negative set in the training process. By including a large number
of negative datasets, we hoped to improve the model’s specificity, or its ability to correctly
identify non-CPPs, by reducing the bias toward predicting false positives.

Finally, after removing duplicates in 9-mers, the AiCPP model was trained on 21,573 pep-
tide fragments, including 7165 positive (CPP) 9-mer peptides, 14,408 negative (non-CPP)
9-mer peptides, and 11,046,343 negative 9-mer peptides derived from human reference
proteins (Figure 2).

2.2. Model Algorithms and Assessment

The AiCPP uses ensemble learning, which involves training multiple models and
combining their predictions to obtain a more accurate and robust result. Specifically, we
built five different deep-learning architectures, each including an embedding layer, a long
short-term memory (LSTM) layer, and attention layers. Figure S1 and Table 1 show more
detailed information about these architectures.

Table 1. Five different model architectures used in AiCPP.

Embedding
Dimension

Convolution
Layer

LSTM
Layer

Attention
Layer Parameters

Model 1 10 15 2 3 11,386
Model 2 10 15 0 2 5218
Model 3 10 15 3 6 7405
Model 4 3 0 0 1 1275
Model 5 6 0 0 1 1054

To generate the input for the model, we convert the peptide sequence into a dense
vector using an embedding layer. The resulting vector is used as the input for each of
the five models, which use the binary cross entropy loss function and are trained for
1000 epochs using the Adam optimizer.

To obtain a final prediction value for a given peptide sequence, we take the average of
the prediction values of each 9-mer obtained using a sliding window approach. Our model
was implemented using Python 3.8 and TensorFlow 2.4.0.

Several metrics were used to evaluate the performance of the AiCPP model, including
area under the curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), precision
(PRE), and Matthew’s correlation coefficient (MCC).

The area under the curve (AUC) measures the ability of the model to discriminate
between positive (CPP) and negative (non-CPP) samples. We calculated it by plotting
the true positive rate (sensitivity) against the false positive rate (specificity) for a range of
classification thresholds and then calculating the area under the resulting curve. A higher
AUC value indicates a better performing model.
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Accuracy (ACC) measures the proportion of correct predictions made by the model.
We calculated it as the number of correct predictions divided by the total number of predictions.

Sensitivity (SEN) measures the proportion of true positive predictions made by the
model. We calculated it as the number of true positive predictions divided by the total
number of actual positive samples.

Specificity (SPE) measures the proportion of true negative predictions made by the
model. We calculated it as the number of true negative predictions divided by the total
number of actual negative samples.

Precision (PRE) measures the proportion of correct positive predictions made by the
model. We calculated it as the number of true positive predictions divided by the total
number of predicted positive samples.

Matthew’s correlation coefficient (MCC) measures the ability of the model to correctly
predict positive and negative samples. We calculated it as the product of sensitivity and
specificity divided by the square root of the product of the true positive rate, the true
negative rate, the false positive rate, and the false negative rate. A higher MCC value
indicates a better performing model [30].

2.3. Calculation of Cell-Penetrating Propensity for Each Residue in the Peptide Sequence

To calculate the cell-penetrating propensity of each amino acid in the sequence, we
took the average score of overlapping 9-amino acid segments that contain the specific amino
acid. Figure 4 shows an example of this calculation, where the cell-penetrating propensity
of the Asp (D) residue in the red box is represented by the average of the predicted values
of nine peptide fragments containing Asp.
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2.4. Discovery and Optimization of CPP

We validated the AiCPP model using a 770-amino acid long amyloid precursor protein
(APP) as a test case. Using five different models (Model 1 to Model 5), we predicted the
cell-penetrating propensity of the APP protein using the AiCPP model. After analyzing
the prediction results, we identified the signal peptide, a 17-amino acid region of the APP
protein, as the wild-type (WT) CPP.

To find more optimized CPPs within the WT CPP, we generated a sequence space of
approximately 4.71 million peptides by substituting up to three amino acids in the WT CPP.
We then calculated the CPP prediction scores for each peptide using the AiCPP model. Our
goal was to identify the most efficient CPPs, so we selected nine optimized peptides with a
higher cell-penetrating propensity than the WT CPP based on the predicted values.
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2.5. Peptide Synthesis

Ten peptide sequences explained in Section 2.4 were synthesized by Fmoc-based solid
phase peptide synthesis using an automated ASP48S peptide synthesizer (Peptron, Daejeon,
Republic of Korea) and are listed in Table 2.

Table 2. Ten CPP-peptide sequences synthesized. Peptide 1 is the WT peptide.

Name Sequence m/z Ion Molecular Formula

Peptide 1 N′-MLPGLALLLLAAWTARA-C′ 2282.76 (M + H)+ C111H164N24O24S2
Peptide 2 N′-MLPGLALLKLAAWTARA-C′ 2297.83 (M + H)+ C111H165N25O24S2
Peptide 3 N′-MLPGLALLLLAAWKARA-C′ 2309.89 (M + H)+ C113H169N25O23S2
Peptide 4 N′-MLPGLALLLLAAWRARA-C′ 2337.84 (M + H)+ C113H169N27O23S2
Peptide 5 N′-MLKGLALLLLAAWKARA-C′ 2340.89 (M + H)+ C114H174N26O23S2
Peptide 6 N′-MLPKLALLLLAAWKARA-C′ 2380.95 (M + H)+ C117H178N26O23S2
Peptide 7 N′-MLKHLALLLLAAWKARA-C′ 2420.97 (M + H)+ C118H178N28O23S2
Peptide 8 N′-MLAKLALLLLAAWKARA-C′ 2354.91 (M + H)+ C115H176N26O23S2
Peptide 9 N′-MLKKLALLLLAAWKARA-C′ 2412.01 (M + H)+ C118H183N27O23S2
Peptide 10 N′-MKPGLALLLLAAKKARA-C′ 2266.81 (M + H)+ C108H172N26O23S2

All peptides are modified with N-terminal fluorescein isothiocyanate (FITC) and
C-terminal amidation. The synthesized peptides are purified by reversed-phase high-
performance liquid chromatography using a Vydac C18 column and gradient elution with
a mixture of water/acetonitrile containing 0.1% trifluoroacetic acid. The molecular weight
of each peptide is estimated and confirmed using mass spectrometry (MS) analysis using a
liquid chromatography-MS (LCMS)-2020 system (Shimadzu, Kyoto, Japan) (Table 2).

2.6. Cell Culture and Peptide Treatment

MCF-7 cells are maintained in Roswell Park Memorial Institute 1640 medium supple-
mented with 10% fetal bovine serum and 1% antibiotics at 37 ◦C in an atmosphere of 5%
CO2 in the air. Cells are cultured in a 35-mm plate at a density of 5 × 105 cells in growth
medium, incubated overnight, and then treated with 1 µM FITC-conjugated peptide for 1 h
at 37 ◦C in a CO2 incubator.

2.7. Cell Permeability Assay

The cultured cells are harvested, washed twice with phosphate-buffered saline (PBS),
treated with trypsin for 5 min, washed with PBS again, and then resuspended in 1 mL of
2% paraformaldehyde in PBS. Cells were then transferred to a fluorescence-activated cell
sorting tube and analyzed by flow cytometry using a Novocyte flow cytometer (Agilent,
Santa Clara, CA, USA).

3. Results
3.1. Performance of AiCPP in CPP Prediction

The AiCPP model is an ensemble model that combines the predictions of five different
classification models, labeled Model 1 through Model 5. These models have accuracies
ranging from 0.823 to 0.860, which are not significantly different from each other (Table 3).

However, the predictions of each model for the same peptide can vary. A pair plot
(Figure 5) illustrates the differences in prediction values between the models for the same
peptide. In this figure, the dots that are far from the x = y region represent the different
predictions made by the models. This indicates that although some peptides are well
predicted by each model, the predictions between them may differ slightly.

To compensate for the individual weaknesses of the models and improve the overall
performance of the AiCPP model, the ensemble averaging method is used. This combines
the predictions of the five models to produce a final prediction score. Ensemble averaging
takes into account the differences in the predictions made by each model and improves the
accuracy of the final prediction. This is reflected in the significantly increased AUC and
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MCC values for the AiCPP model, indicating a better performance than any individual
model alone.

Table 3. Performance evaluation of the CPP predictors. The best performance metrics are in bold.

AUC MCC ACC SEN SPE PRE

Model 1 0.893 0.711 0.853 0.800 0.907 0.896
Model 2 0.878 0.647 0.823 0.827 0.820 0.821
Model 3 0.878 0.674 0.837 0.813 0.860 0.853
Model 4 0.879 0.660 0.830 0.827 0.833 0.832
Model 5 0.891 0.660 0.830 0.827 0.833 0.832
AiCPP

(ensemble) 0.927 0.722 0.860 0.827 0.893 0.886

MLCPP 0.882 0.633 0.810 0.914 0.705 0.758
CellPPD 0.724 0.452 0.723 0.656 0.792 0.762
CPPred 0.845 0.564 0.780 0.722 0.839 0.820
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Table 3 shows that the AiCPP model outperforms the other models in terms of AUC,
MCC, and ACC. When evaluated using a test set, the AiCPP model outperforms MLCPP,
CellPPD, and CPPred, with values of 0.927, 0.722, and 0.860 for AUC, MCC, and ACC,
respectively. In addition, the AiCPP model has a higher specificity for non-CPPs (0.893)
compared to the three external models listed in Table 3. Overall, these results demonstrate
that the AiCPP model is a highly accurate and reliable method for predicting CPPs.

The improved specificity of AiCPP can be attributed to the use of a large number of
negative datasets derived from human reference proteins, which reduces the number of
false positives compared to other models. This feature makes AiCPP a valuable tool for
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large-scale CPP screening, as it can significantly reduce the potential number of CPPs for
experimental validation.

3.2. CPP Screening and Optimization Using AiCPP for Human APP Protein

The AiCPP model was utilized to identify potential cell-penetrating peptides (CPPs)
in the human amyloid precursor protein (APP), a 770-amino acid protein that is sometimes
mutated, leading to the aggregation of amyloid beta and the development of Alzheimer’s
disease [31]. Using the sliding window method, the AiCPP model calculates the cell
penetration propensity of each sequence in APP. The results show that sequences 1–17
(MLPGLALLLLAAWTARA) and 93–108 (TIQNWCKRGRKQCKTH) have a high proba-
bility of being CPPs (Figure 6). Of particular interest is sequence 1–17 (WT CPP), which
functions as a signal sequence to transport APP to the endoplasmic reticulum and was
selected for further experimental validation of the AiCPP model.
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To identify a more optimized CPP with improved cell permeability based on the WT
CPP, a sequence space consisting of 4.71 million sequences, including up to three mutations
in the WT CPP sequence, was searched. Figure 7 shows the histogram of the AiCPP scores.
Of the 4.71 million sequences generated, the AiCPP model predicted 5948 sequences with a
score ≥ 0.8.
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Figure 8 shows the position-specific amino acid propensity scores calculated by AiCPP
for the CPP. The logo plot shows the amino acid occurrence rate at each position along the
X-axis, while the Y-axis indicates the frequency of amino acid occurrence. Sequences with
a predicted AiCPP value of 0.8 or greater exhibit a high mutation frequency at positions 3,
4, and 14, corresponding to P, G, and T, respectively.
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We selected 10 CPP candidates, listed in Table 2, based on the sequence logo plot
(Figure 8) and AiCPP scores. Peptide 1 is the WT CPP sequence from the amyloid precursor
protein, whereas peptides 2–10 are peptides optimized by AiCPP. These peptides were
generated by modifying the 3rd, 4th, or 14th position of the WT peptide and replacing
the amino acids with K, R, or H, as indicated by the sequence logo plot. The optimized
peptides show significantly increased AiCPP scores compared to the WT peptide, with the
score of peptide 9 reaching 0.886 (Figure 9). The AiCPP score of the WT peptide was 0.542.
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3.3. Enhanced Cell-Permeability of Modifided Peptides in MCF-7 Cells by AiCPP Optimization

In our experiments, we tested the cell permeability of the wild-type peptide and of
nine optimized peptides in MCF-7 cells. As shown in Figure 10, peptide 3–9 exhibited
significantly improved permeability compared to the WT peptide (Peptide 1), which had
modifications at the 3rd, 4th, and 14th positions, as identified by the sequence logo plot
(Figure 8). These modifications involved the substitution of certain amino acids with K, R,
or H, which increased the cell-penetrating peptide (CPP) ability of the peptides.

However, peptide 2 and peptide 10, which were modified at the 2nd or 13th posi-
tion, exhibited lower cell permeability than the WT CPP (Figure 10). The results suggest
that simply replacing any position with K, R, or H does not necessarily increase the cell
permeability, but the sequence context is more important.
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4. Discussion

Machine learning is increasingly used to discover more efficient CPPs, but current
techniques face limitations due to insufficient and diverse data. Most existing models [19–21]
are trained on fewer than 1000 CPPs, which limits extrapolation of all possible sequences
of similar length. To compensate for the lack of experimentally validated non-CPP data,
many models use randomly generated sequences as negatives [19,20].

In this study, we adopted a sliding window approach that divided the collected CPP
data into nine amino acid segments, effectively increasing the amount of data available for
CPP training by about 10-fold. In addition, we reduced the number of false positives in
the CPP prediction model by adding sequences with low similarity to CPP sequences in
the human reference protein sequence as a negative set. The effect of using a large number
of negative datasets is obvious. When we trained and tested the AiCPP model without
using this large number of negative sets, the metrics for the measure of false-positive
predictions, such as MCC and SPE, were significantly reduced (see Figure S2 and Table S1
in the Supplementary Materials). Interestingly, despite using 11,046,343 negative 9-mer
data from human reference proteins, the AiCPP predicted that 770,435 9-mer peptides
(about 6.97%) were predicted as positive CPP (see Figure S3).

We also utilized the amino acid sequence context information of the CPP sequence
itself, which is commonly used in deep learning techniques such as LSTM and attention
methods, to learn and predict CPPs. This 9-mer sequence context-based approach resulted
in good CPP prediction performance compared to previous methods. With this approach,
we obtained improved results and hope that it can be used to identify more efficient CPPs
and further contribute to a more comprehensive understanding of CPPs based on the
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sequence information of CPPs and non-CPPs. As an experimental test case, we found a
CPP sequence predicted by AiCPP in the APP protein sequence and confirmed that the
sequence predicted by AiCPP was a novel CPP in MCF-7 cells. Furthermore, we found that
AiCPP can be used to optimize CPP sequences with higher CPP efficacy.

While this study and many previous in silico CPP prediction studies [17–21] have
shown great progress, they have not answered many important questions about the mecha-
nisms of cellular permeation and how each CPP sequence is important for cellular perme-
ation [32]. Furthermore, CPP permeability is known to be cell type dependent [33], so it is
unreasonable to extrapolate the results of the AiCPP optimization sequence and cell per-
meability experiments from one cell type, such as MCF-7, used in this study. However, as
more data becomes available for different cell types, in silico machine-learning-based CPP
detection methods, such as AiCPP, may offer promising opportunities for future research.

It is also known that some CPPs can self-assemble into oligomers and promote cellular
uptake. However, the mechanism of formation of CPP oligomers and their relationship
with monomers in cellular penetration are not yet fully understood [34]. Although CPP
peptides predicted by AiCPP would have a high propensity to enter cells, it is still unclear
whether these CPPs, including the APP-derived CPPs we found in this study, enter cells as
monomers or oligomers. We believe that further studies are needed to address this issue.

In summary, we present a novel in silico method for the discovery of cell-penetrating
peptides (CPPs) that incorporates deep learning-based natural language processing tech-
niques, such as long short-term memory (LSTM) and attention mechanisms, in a sliding
window approach. The results show that this approach can effectively overcome the limi-
tations of current machine learning methods for CPP discovery. The study also provides
valuable insights into the sequence patterns required to optimize CPPs, which can inform
the design of novel CPPs with enhanced cell penetration properties. By utilizing deep
learning-based techniques and the sliding window approach, our study demonstrates an
improved ability to predict CPP sequence patterns and identify novel CPPs with superior
cell penetration properties. These results have important implications for the development
of future CPP-based therapies and highlight the potential of our in silico approach to
accelerate the discovery of effective CPPs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom13030522/s1. Figure S1: Model architecture of the
5 models in AiCPP; Figure S2 and Table S1: Comparison of model performance with and without
a large number of negative dataset; Figure S3: AiCPP score of 9-mer segments from human refer-
ence proteins; Supplementary Spreadsheet S1: Test Set; Supplementary Spreadsheet S2: Train Set;
Supplementary Spreadsheet S3: 9-mer Set.
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