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Abstract: Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including
anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state,
pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or
a consequence of maladaptive orientations of these behaviors, many of which associated with
psychiatric disorders. To address this question, we used a unique genetic model in which the brain-
specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive
neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE
depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the
dopamine β-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive
behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of
central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and
antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the
locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement
(NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working
memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this
model to identify genes that could be up- or down-regulated in the absence of NE release. We found
an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain
regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker
of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved
in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific
role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening
future direction to understand NE role in health and disease.

Keywords: noradrenaline; depression; anxiety; cocaine sensitization; circadian rhythms; sleep; SV2c

1. Introduction

Monoaminergic neurotransmitter systems, namely dopamine (DA), noradrenaline
(NE), and serotonin (5HT), have similar general organization and share common molecular
properties. These brainstem neuromodulatory systems extensively regulate behavioral
states including mood, motivation, stress, arousal, vigilance, and attention and their role
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in neuropsychiatric disorders has been clearly established [1]. However, a better under-
standing of the relative contribution of each one of these systems in regulating behavioral
state remains unclear and is complicated by their large anatomical, pharmacological, and
functional overlaps. At the molecular level, monoamines fluxes in the brain are primarily
controlled by two types of transporters: (1) a single vesicular monoamine transporter-2
(VMAT2) [2–4] that actively transports all monoamines in presynaptic vesicles and (2) a spe-
cific plasma membrane transporter [5] that re-uptakes the monoamines from the synaptic
cleft.

Within the central nervous system (CNS), NE neurons are localized in compact nuclei
with the locus coeruleus (LC) as the largest. The LC receives inputs from and sends
projections to nearly all regions of the brain [6–9]. The NE system is complex given
that adrenoreceptors are ubiquitously present post-synaptically and pre-synaptically on
neurons, glia, and blood vessels. According to the adrenoreceptor targeted, NE can have
excitatory (α1 and β1, β2, β3) or inhibitory (α2 and in some cases β2) effects on neural
activity by acting through Gα-mediated signaling. However, the NE modulatory effect
is more complex compared to simply triggering an excitatory or inhibitory response. In
numerous target areas, NE enhances the efficacy of synaptic transmission (either excitatory
or inhibitory), while decreasing the spontaneous activity of the same neuron [10,11]. This
complexity makes it difficult to predict how NE modulates the activity of brain circuits.

Given the extensive projections of NE neurons throughout the CNS, NE response has
been shown to modulate many behaviors. For example, NE projections to the thalamus
and the cortex play a role in arousal and sensory processing [12–14]. NE signaling in the
hippocampus (HPC) regulates synaptic plasticity [15] and together with projections to the
amygdala influences memory consolidation [16]. In the prefrontal cortex (PFC), NE has been
shown to regulate working memory, attention, and shifting behavior [17–19]. Moreover,
NE also plays a role in regulatory networks of fear/anxiety and pain modulation [20,21].
This is consistent with the implication of NE neurons in controlling arousal and their
activity across the sleep–wake cycle [22–24].

Our knowledge of how NE acts in the brain to modulate behavioral states is still
incomplete. Multiple methodological approaches have been used to study NE role on brain
function and behavior, including lesions (adrenalectomy and/or adrenergic denervation
via surgical, immunological, or chemical lesions), pharmacological agents (stimulation or
blockage of NE receptors via selective agonist or antagonists), and transgenic technology
(knockout mice for NE synthesis enzyme dopamine β-hydroxylase (DBH) or tyrosine
hydroxylase (TH)) combined with behavioral analysis and electrophysiological recording
in target regions. All these techniques have contributed to the understanding of how
NE participates in several regulatory networks in the brain, albeit there are limitations
associated with each approach. Enzyme inhibition or chemical lesion only decreases 70%
of NE levels [25,26], preferentially lesions neurons of the dorsal noradrenergic bundle or
deplete all monoamines or co-transmitters as well as NE [27–29]. Moreover, given that
DA is a precursor of NE synthesis, manipulating NE production without influencing DA
concentrations is difficult (i.e., TH/DBH knockout mice, AMPT lesions) [30–32]. Moreover,
given the key role of NE role in the peripheral nervous system, the use of drugs interacting
with NE receptors or the genetic deletion of its synthesizing enzyme DBH [32] is compli-
cated due to potentially severe side effects. Recently developed approaches, including
optogenetic and chemogenetic, has the advantage of targeting NE neurons in a time- and
cell-specific manner. While these technics do not induce adaptive mechanisms that can
be observed in genetic models, they are mainly targeting the LC as the main NE nucleus,
precluding other brainstem nuclei.

To overcome these limitations and investigate the exact role of whole central NE
neurotransmission, we engineered a mouse model with selective and brain-specific NE de-
pletion [33]. In this VMAT2DBHcre mouse model, the vesicular monoamine transporter-2
(VMAT2) gene was specifically spliced-out in NE neurons by the Cre-recombinase ex-
pressed under the control of the DBH promoter. VMAT2 is essentially expressed in the
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CNS, whereas at the periphery NE and adrenaline (E) vesicle accumulation is under the
control of the VMAT1 subtype [2,5]. This makes the VMAT2DBHcre model able to fully
preserve peripheral NE and E transmission. This model has been previously validated and
the efficiency of VMAT2 splicing has been confirmed by in situ hybridization labeling in NE
nuclei as well as by its consequences on NE metabolism [33]. To preclude any confounding
effect on more complex behavior, we ensured that no alteration in the survival rate, growth,
and motor abilities of animals was observed [33]. Here, we performed a detailed charac-
terization of this mouse model in order to assess the role of CNS NE in regulating specific
behavioral states. In parallel, we conducted a large transcriptomic analysis to identify
genes whose expression was impacted by NE depletion in various brain regions, including
both the LC and its projection areas.

2. Materials and Methods
2.1. Housing and Breeding

Animal care and handling were performed according to the Canadian Council on
Animal Care guidelines (CCAC; http://ccac.ca/en/guidelines-and-policies) and approved
by the Animal Care Committee of the Douglas Research Center.

The floxed VMAT2 mouse strain was produced at the Mouse Clinical Institute (In-
stitut Clinique de la Souris, MCI/ICS, Illkirch, France). DBH-cre [B6.FVB(Cg)-Tg(Dbh-
cre)KH212Gsat/Mmucd, stock number 036778-UCD] mice were obtained from the Mutant
Mouse Regional Resource Center (MMRRC).

Heterozygous VMAT2 floxed mice (VMAT2lox/+) were crossed with heterozygous
DBHcre/+ mice to obtain double heterozygote mice, which were then crossed to gen-
erate the WT (VMAT2+/+DBHcre/+) and KO (VMAT2lox/loxDBHcre/+) mice. Thereafter,
VMAT2lox/loxDBHcre/+ KO mice are designated VMAT2DBHcre. All heterozygotes founders
have more than ten generations of backcross breeding on C57Bl/6J background. After
weaning and sexing, males and females were separately housed in groups of 4–5 animals
per cage and maintained under standard laboratory conditions: 22 ± 1 ◦C, 60% relative
humidity, and a regular 12–12 h light-dark cycle (7:00–19:00 light period) with free access to
food and water. The mice were used for behavioral screening at 2–4 months of age. When
statistical analysis of sex revealed no differences, data for males and females were analyzed
together. For corticosterone, nociception, circadian cycle, and sleep analysis, only male
mice were used.

2.2. Anxiety- and Depression-Like Parameters
2.2.1. Elevated Plus Maze (EPM)

The EPM was designed in a cross shape of four branching arms, with two opposing
open arms (30 × 5 cm) and two opposing arms enclosed by a dark wall (30 × 5 × 11 cm).
The arms radiated from a central platform (5 cm2), and the apparatus was 50 cm above
the ground. The mice were placed in the central platform, facing an open arm, and were
allowed to explore the maze for 5 min. An entry into the open or closed arm was defined
when all four paws were inside the arm. The percentage of time spent in open arms was
recorded as a behavioral parameter.

2.2.2. Novelty-Suppressed Feeding Test (NSF)

The test was conducted in an open field (45 × 45 × 45 cm) with a sawdust-covered
floor under white illumination (40 W; ~2400 lux) positioned above the center of the open
field. The mice were food-deprived for 24 h prior testing. A single food pellet was placed
on a round piece of white paper (12.5 cm diameter) at the center of the apparatus. Each
mouse was placed in a corner of the open field with its head directed toward the wall, and
the latency to eat was recorded up to a maximum testing period of 5 min. Immediately after,
each animal was transferred to its home cage for 3 min, and the amount of food consumed
was measured to assess changes in appetite as a confounding factor.

http://ccac.ca/en/guidelines-and-policies
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2.2.3. Marble Burying Test

Animals were placed in a cage filled with approximately 5 cm deep wood chip bedding,
containing a regular pattern of 12 glass marbles on the surface (15 mm diameter, arranged
in a 4 × 3 grid and spaced 4 cm apart). After 30 min, the number of marbles buried with
bedding (2/3 their depth) was counted.

2.2.4. Forced Swim Test (FST)

The mice were dropped into an acrylic glass cylinder (height 25 cm, diameter 9 cm)
filled with water at 21–23 ◦C. Despair behavior, measured as immobility time, was scored
during a 6-min test. Because little immobility is observed during the first 2 min of the
test, immobility was only recorded during the remaining 4 min. Immobility was scored
only when the mice ceased struggling and remained floating, motionless, and making only
the movements necessary to keep their heads above water. Mice were intraperitoneally
injected with either NaCl (0.9%), citalopram (diluted in NaCl 0.9%, 10 mg/kg), or reboxetine
(diluted in NaCl 0.9%, 20 mg/kg), 30 min before the beginning of the test.

2.2.5. Sucrose Preference Test

Sucrose preference testing was carried out in the animal’s home cage in which two
bottles were presented. The mice were habituated to the presence of two drinking water
bottles for 2 days before being given the free choice of drinking either a 1% sucrose solution
or regular water for a period of 4 days. Water and sucrose solution intake were measured
daily by weighing the bottles, and the locations of the two bottles were switched daily to
reduce any bias in side preference. Sucrose preference was calculated as a percentage of the
weight of the sucrose bottle over the total weight of both the water and sucrose bottles; this
was averaged over the 4 days of testing.

2.2.6. Chronic Social Defeat Stress Paradigm (CSDS)

Retired breeder CD-1 mice (4–6 months old), housed singly with free access to food and
water, were screened for aggressive behavior over three consecutive days. The screening
was performed by placing a C57BL/6J (8 to 12 weeks old) mouse directly into the home
cage of the CD1 for 180 s. The selection of CD-1 mice as aggressors, subsequently used
in the social defeat experiments, was based upon the following criteria: i) attacks in at
least two consecutive sessions; ii) a latency to attack under 60 s, and iii) consistent bouts
over 180s.

VMAT2DBHcre defeated mice were submitted to a daily 5-min physical interaction
with an aggressive CD1 mouse for 10 consecutive days. Following the defeat, the animal
remained in the other side of a perforated translucid plexiglass divider in the CD1 home
cage (800 cm2, 18 cm height) for sensorial interaction for 24 h until the next defeat. Every
day experimental mice were exposed to a new CD1 aggressive mouse. Control animals were
housed by pair, one on each side of a perforated plexiglass partition, and are handled daily.

Immediately at the end of the last defeat, VMAT2DBHcre mice were single housed and
tested in the social interaction test 24 h later. The mouse was introduced into an open field
(42 × 42 cm) and its trajectory was tracked for two consecutive sessions of 2.5 min. During
the first session (“no target”) the open field contained an empty wire mesh (10 × 6.5 cm)
while during the second session (“target”), an unfamiliar CD1 mouse was introduced into
the wire mesh. Between the two sessions, the experimental mouse is placed back into its
home cage for approximately 30 s. The time spent in the “interaction zone” (a 8 cm wide
corridor surrounding the wire mesh) and the “corners” of the open field opposite to the
location of the wire mesh were measured. Susceptible and resilient mice were segregated
according to their social interaction behavior, defined by the ratio of the time spent in the
interaction zone during “target” session over “No target” session.
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2.2.7. Restrain Stress and Saphenous Blood Collection

The conscious mouse was restrained in an uncapped 50 mL falcon tube that has air
holes drilled into the closed end. The mouse’s nose was at the closed end of the tube with
the back legs, rear, and tail of the animal exposed at the open end of the tube. The left hind
leg was extended and fixed by firmly holding the fold of skin between the tail and thigh.
To aid in the visualization of the saphenous vein, the hair was removed from the outer
surface of the fixed leg with a small, sharp scalpel blade. Pinching the skin between the
tail and thigh of the mouse restricts blood flow from the lower limb causing the saphenous
vein to protrude. The shaved skin was wiped clean with 70% ethanol and then dried with
a dry piece of gauze. In addition, a small amount of Vaseline was wiped onto the shaved
skin to reduce clotting and prevent the blood from collecting in the remaining hair on the
leg. A 25-gauge needle was held almost parallel to the saphenous vein and the vessel is
punctured. Drops of blood were collected into a 0.5 mL EDTA-containing tube. After the
first blood sampling (baseline), mice were kept in the falcon tube for 30 min before a second
sampling (restrain stress). The mice then returned to their home cage for 90 min before the
third sampling (return). Blood samples were centrifuged at 3000 rpm for 20 min and the
plasma supernatant was removed and kept at −80 ◦C until analysis of corticosterone level.
Blood samples were collected during the light phase between 9:00 and 12:00 h.

2.2.8. Dexamethasone Suppression Test

To assess the HPA axis negative feedback to corticosterone, mice received a single
intraperitoneal (i.p.) administration of either NaCl (0.9%) or of the glucocorticoid receptor
agonist dexamethasone-phosphate (DEX-P, Sigma-Aldrich, St. Louis, MO, USA) at a
concentration of 0.5 mg/kg (dissolved in a 0.9% NaCl). Mice were sacrificed 2 h after the
injection and trunk blood was collected in 0.5 mL EDTA-containing tubes. Samples were
centrifuged at 3000 rpm for 20 min and the plasma supernatant was removed and kept at
−80 ◦C until analysis of corticosterone level. Blood samples were collected during the light
phase between 14:00 and 17:00 h.

2.2.9. Corticosterone Level Measurement

Corticosterone plasma level was measured using commercially available immunoassay
kits (Immunodiagnostic Systems) according to the manufacturer’s instructions. The intra-
assay precision was ≤7%, the inter-assay precision was ≤9%, and the analytical sensitivity
was 0.55 ng/mL.

2.3. Learning and Memory
2.3.1. Contextual and Cued Fear Conditioning Task

The fear conditioning apparatus consisted of two different contexts: (1) a black Plexi-
glas chamber measuring 20 cm wide, 18 cm high, and 28 cm deep with a stainless-steel grid
floor (context A); and (2) a white Plexiglas chamber 20 cm wide, 18 cm high and 28 cm deep
with black Plexiglas floor (Context B). The apparatus was connected to a shock generator. A
15 W light bulb and a speaker to deliver the tone were located on the wall of the ceiling. The
administration of the footshock (US) and auditory tone (CS) was controlled by a computer.
In the conditioning session, performed in context A, mice were placed in the test chamber
and allowed to freely explore for a 2-min period. The adaptation period was followed
by two pairings (2 min inter-trial interval (ITI)) of a 30-sec white noise period (CS; 80 dB)
ending with a 2 sec 0.5 mA foot shock (US). Mice were removed from the conditioning
chamber 30 sec after the termination of the last US. About 24 h after the conditioning
session, mice were tested for freezing response to the context or the tone. During the
contextual test, performed in context A, mice were placed in the test chamber and their
behavior was scored for 3 min without the tone (CS) and the shock (US) presented. Three
hours after the context test, mice were tested for freezing response to the CS. The cued
test, performed in context B, consisted of a 2 min habituation period followed by 30 secs
of white noise (CS; 80 dB). Throughout conditioning and the context and cued tests, mice
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behaviors were video recorded, and the continuous recording of the time spent freezing
was scored. Freezing was defined as the absence of any visible movement but respiration.

2.3.2. Morris Water Maze (MWM)

The water maze consisted of a circular stainless-steel pool (150 cm diameter, 29 cm
height) filled with water maintained at 20–22 ◦C and made opaque using a white aqueous
emulsion. A circular escape platform (10 cm diameter) was submerged 1 cm below the
water surface.

During the training of the spatial version, mice were trained to find the fixed position
of the hidden platform, using extra-maze cues. Mice were released from pseudo-randomly
assigned start locations and allowed to swim for up to 90 s when they were manually
guided to the platform in the case of failures. Animals received one habituation trial on the
first day and then two trials per day for 5 days (90 min inter-trial interval). On the seventh
day, mice were given one additional training trial 90 min before the probe test, in which
mice were allowed to swim for 60 s in the absence of the platform. Latencies to find the
escape platform during training and the time spent in the active quadrant during the probe
test were analyzed.

Mice were tested for a reversal training 24 h after the probe test, in which the same
protocol is applied except that the hidden platform was moved to another location. Animals
received two trials per day for 5 consecutive days (90 min inter-trial interval) and an
additional training trial was performed on day 6 before the probe test. The time to find the
escape platform during the training and time spent in the active quadrant during the probe
test were analyzed.

During the rapid place learning version of the Morris water maze for working memory
test, mice received 4 daily trials (2 min inter-trial interval) for 4 consecutive days. Every
day, mice were trained to find the fixed position of the hidden platform using extra-maze
cues, and the mice starting point was pseudo-randomly placed in different locations across
the four trials. The position of the platform changed every day. Latencies to find the escape
platform during the 4 days were analyzed.

2.4. Executive Functions
Attentional Set-Shifting Task (ASST)

The attentional set-shifting task is used as a measure of cognitive flexibility in mice.
Prior testing, mice were individually housed and food restricted to maintain weight at
80–85% of their free-feeding body weight. The food restriction was maintained until the end
of the testing. For habituation, mice were placed in the testing cage (820 cm2, 15 cm height)
with two ramekins (7 cm diameter) containing the food reward (chocolate chips) and filled
with deep wood chip bedding. If a mouse failed to dig for the food reward after two
successive days, it was excluded from the experiment and marked as a “failed to dig” in the
experimental record. On the first day of testing, mice were given a simple discrimination
(SD) test in which the two ramekins were filled with the same medium (wood chip bedding)
and differed for the second relevant dimension (odor). For the compound discrimination
(CD) test, a second medium was introduced, and the relevant dimension remained the
odor. For the reversal (CDR), the relevant dimension odor remained unchanged, but the
previously correct stimulus was now incorrect. For the intra-dimensional shift (ID) and the
extra-dimensional shift (ED), new variants for both dimensions were used. In the ID shift,
the relevant dimension was the same as before (odor) whereas in the ED shift the mouse
had to shift attention to the previously irrelevant dimension (medium). On each day, mice
were trained on a new task. As the paradigm was designed to examine the mice’s ability to
shift from learning one task to another, the task learned on the previous day was repeated
before introducing the new task. In each task, if the mouse started to dig in the incorrect
ramekin, an error was recorded. The side of stimulus presentation varied pseudo-randomly.
Tests continued until the mouse reached the criterion of six consecutive correct trials.
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2.5. Addiction-Like Behavior
2.5.1. Locomotor Response

Locomotor activity was measured with an Omnitech digiscan activity monitor. To
evaluate the effects of cocaine (5, 10, 20 mg/kg) or amphetamine (1, 3, 5 mg/kg) on locomo-
tor behavior, the mice were first habituated for 1 h to an open field chamber (21cm × 21 cm)
equipped with photocells and plexiglass walls and floors and then recorded for 2 h after
i.p. drug administration. The animal’s horizontal movements were measured in 5-min
intervals for the 3 h experiment.

2.5.2. Behavioral Sensitization

To initiate sensitization, the mice were injected with cocaine (20 mg/kg, i.p.) or
amphetamine (3 mg/kg, i.p.) for six consecutive days. After 1 day of withdrawal, on day 8,
the mice were challenged with cocaine (20 mg/kg, i.p.) or amphetamine (3 mg/kg, i.p.) to
test the expression of sensitization. The mice were tested for locomotor activity on days
1 and 8. The mice were habituated to the activity monitor cage (21 × 21 cm2) for 1 h and
then recorded for 2 h after cocaine or amphetamine administration. Horizontal activity
measured at 5 min intervals was compared between days 1 and 8 for the first 15 min of the
cocaine challenge.

2.6. Nociception
Tail Immersion Test

Each mouse was placed in a 50 mL Falcon plastic tube with the tail protruding from
the opening side of the tube. The lower 5 cm section of mice tail was immersed in a bath
of circulating water maintained at 48 ◦C for a first session and then at 52 ◦C. Latency to
respond to the heat stimulus with vigorous flexion of the tail was recorded.

2.7. Circadian Analysis

For all experiments, animals were individually housed (330 cm2, 12 cm height cages)
with ad libitum access to food and water. For all genotypes and all conditions, seven
continuous days of recording were used to generate parameter estimates and averages.

2.7.1. Running Wheels

Animals were placed in cages equipped with running wheels in custom-built, light-
controlled cabinets. Running wheel revolutions were recorded continuously (ClockLab,
Actimetrics, Wilmette, IL, USA). Actograms, displaying binned running wheel revolutions
per 6 min (0.1 h), and the associated Chi-squared period estimates were generated using
ClockLab software as described [34].

2.7.2. Telemetry

Animals were housed in an isolated, climate-controlled room on a rack with both
genotypes interleaved to avoid any confounds due to variable lighting on different shelves.
Each mouse had ad libitum access to food and water in a standard cage placed atop
energizer/receiver units (ER-4000, Starr Life Science Corp., Oakmont, PA, USA). One week
before data collection, electromagnetic induction powered telemetry probes (G2 E-mitter,
Starr Life Science Corp.) were implanted intraperitoneally. Locomotion (counts) and core
body temperature (◦C), were collected in 6-min bins (0.1 h) using Vitalview software (Starr
Life Science Corp.). All telemetry data were exported into Clocklab for visualization and
analysis [34].
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2.8. Sleep Recording
2.8.1. Surgery

Under isoflurane anesthesia, mice were chronically implanted with stainless steel
electroencephalogram/electromyogram (EEG/EMG) electrodes. Cortical electrodes were
inserted into the skull bilaterally above the frontal (2 mm lateral and anterior to bregma) and
parietal cortices (2 mm lateral to the midline at the midpoint between bregma and lambda,
above the hippocampus). All cortical electrodes were fixed to the skull via SuperBond (Sun
Medical Co., Shiga, Japan) and acrylic cement. Following surgery, animals were housed
individually in their home cage (800 cm2, 18 cm height) for a recovery period of 15 days. Six
to 10 days before polysomnographic recordings, the mice were transferred to a recording
room and placed in individual recording cages where electrodes were connected to tether
cables for habituation and electrophysiological recordings.

2.8.2. Polysomnographic Recording and Data Acquisition

Twenty-four hour of baseline recordings were performed beginning at 20.00 h (dark
onset of the 12:12 light/dark cycle). EEG and EMG signals from electrodes were amplified
(Grass Instruments, West Warwick, RI, USA), digitized at a sampling rate of 512 Hz, and
collected on a PC within the recording room using VitalRecorder (Kissei Comtec Co., Ltd.,
Japan). EEG and EMG signals were processed with low and high pass filters of 0.5–80 Hz
and 20–40 Hz, respectively. Recordings were visually scored offline using SleepSign (Kissei
Comtec Co., Ltd., Japan), using 5-s epoch window, as either wake, Non-rapid eye movement
(NREM) sleep, or REM sleep, as previously described [35]. Briefly, the behavioral state was
determined according to the following criteria:

(1) Wake: High-frequency low-amplitude EEG oscillations accompanied by constant EMG
activity with phasic bursts.

(2) NREM sleep: Low frequency, high amplitude EEG oscillations with an increase in
slow delta wave activity (0.5–4.5 Hz) and a loss of phasic muscle activity.

(3) REM sleep: High frequency, low amplitude EEG oscillations with typical regular theta
rhythm (5–9 Hz) and a flat EMG.

2.8.3. Spectral Power Analysis

The cortical EEG signal of each behavioral state (wake, NREM, and REM sleep) was
subjected to spectral analysis using Fourier transform to calculate the EEG power spectrum
from 0.25–100 Hz. Power values were analyzed for the following frequency bands: delta
(0.5–4.5 Hz), theta (5–9 Hz), and alpha (9–12 Hz). Spectral power values reported were
normalized to the sum of all power values (V2) binned for every.025 Hz from 0.25–100 Hz.

2.9. Quantitative In Situ Hybridization

Three-month old VMAT2DBHcre WT and KO mice brains were collected after decap-
itation and frozen in isopentane at −30◦C. Brains were sliced in coronal sections (10 µm
thick) using a cryostat (Leica CM3050S) and rinsed in 0.1 M PBS, SSC 1,0M and treated
with 0.25% ethanol. [35S]-dATP oligonucleotides (SV2c: AS1: 5′- GAC TGT AGG ACC GCT
GGG TAT ATT CAT CCT GGG CC -3′; AS2: 5′- GAC TGT AGG ACC GCT GGG TAT ATT
CAT CCT GGG CC -3′; AS3: 5′- CTG CTG TAA CAG CTA GAG TGG CTG GCA GGC TGT
CT -3′) were synthesized with terminal transferase (Amersham, Biosciences) to obtain a
specific activity of 5 × 10−8 dpm/µg. Sections were covered with 70 µL of hybridization
mix and 5 × 10−5 dpm of each labeled oligonucleotide and incubated overnight at 42 ◦C in
a humid chamber. Following washes and dehydration, slides were air-dried and exposed
to a BAS-SR Fujifilm Imaging Plate for 5 days. The plates were scanned with a Fujifilm
BioImaging Analyzer BAS-5000. Regions identification was based on Franklin and Paxinos
Mouse Atlas [36].
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2.10. Microarray Transcriptome
2.10.1. Tissue Dissection, RNA Isolation

3-month-old VMAT2DBHcre KO and WT male mice were decapitated and brains flash
frozen in isopentane −30 ◦C and stored at −80 ◦C. LC, VTA, Raphe, NAc, PFC and DG
micropunch of 0.5 mm diameter were performed under −20 ◦C cryostat. Tissue from three
to five mice was pooled for WT (n = 4) and KO (n = 4) groups. RNA was isolated and
purified with miRNAeasy micro kits from Qiagen (Cat#217084) and processed at Genome
Quebec for RNA (Agilent-Mouse 60k) differential arrays.

2.10.2. Normalization, Quality Control, and Filtering of Microarrays Data

Microarrays data were processed using standard quality control tools to obtain normal-
ized, probeset-level expression data. The raw files were read, background corrected, and
normalized using the Limma (v_3.30.13) bioconductor package [37,38] as follows: the raw
files were read using the read.maimages function with the “agilent” option in the source
parameter; the backgroundCorrect function was run with the “normexp” method and an
offset of 18; then, we use the normalize between arrays with the “cyclicloess” method.
Before fitting the linear model on the expression matrix, the low expressed probes and
control probes were filtered out, for this, we compute the 95% percentile of the negative
control probes on each array and kept the probes that were at least 10% brighter than the
negative controls in at least four arrays since there were four replicates. Arrays quality
control and sample distribution were examined using boxplots, hierarchical clustering of
the Euclidean distance, and principal component analysis.

2.10.3. Removing Batch Effects

For clustering and unsupervised analysis, batch effects were removed from the expres-
sion matrix using the remove BatchEffect function with the chip identity as a batch indicator.

For the differential expression analysis, the batch factors (i.e., the chip identity) were
included in the linear model, for this, the correlation between measurements was calculated
with the duplicated Correlation function with the chip identity as input for the block
argument and this correlation was used in the linear model fit as input of the correlation
argument of the lmFit function.

2.10.4. Differential Expression Analysis

Each cerebral region was individually analyzed to identify the probes showing sig-
nificant differential expression (DEGs) between the wild type and the VMAT2BDHcre KO
samples. This analysis was performed using the linear model method implemented in the
Limma R package. The basic statistic was the moderated t-statistic with a Benjamini and
Hochberg’s multiple testing correction to control the false discovery rate (FDR) [39]. The
gene symbols and Entrez Ids were added using the agilent annotation file, then duplicated
genes were collapsed by keeping the one with the smallest adjusted p-value.

2.10.5. Gene Set Enrichment Analysis

Tables for each region from the differential gene expression analysis were ordered by
the t-statistics values allowing to rank the genes from the most upregulated to the most
down-regulated. Gene set collections from the mouse version of the Molecular Signatures
Database MSigDB v6 in R format were downloaded from Molecular Signatures Database
(http://bioinf.wehi.edu.au/software/MSigDB/).

The gene collections were used to perform enrichment analysis using two comple-
mentary approaches: first, an over-representation analysis (ORA) (Khatri et al., 2012) on
differentially expressed genes was performed using one-sided Fisher’s exact tests imple-
mented in R [40] with a Benjamini and Hochberg’s multiple testing correction; second, a
gene set enrichment analysis (GSEA) (functional scoring method (FSC) [41] was performed
on the ranked list (see above) of genes using the runGSA function in piano R package [42].

http://bioinf.wehi.edu.au/software/MSigDB/
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2.10.6. Visual Representation

Heatmaps were made using R package pheatmap (v_1.0.8), Venn diagrams were
generated by gplots R package (v_3.0.1), and other visual representations (barplot and PCA
biplot) were made using R package ggplot2 (v_2.2.1).

2.10.7. R Session Info

All analyses were performed using R (R Core Team, 2017) version 3.3.2 (31 October
2017), running on OS X El Capitan 10.11.6 on x86_64-apple-darwin13.4.0 (64-bit) platform.

2.11. Statistical Analysis

Statistical analyses were performed using Statistica software. The Shapiro–Wilk test
was used to check whether the sample distribution is normal and the Levene’s test was
used to evaluate the homogeneity of variances. The results are expressed as mean ± SEM
(standard error of the mean). According to the experimental design, multiple group
comparisons were performed using a two-way factorial ANOVA or a one-way repeated
measure ANOVA. The between-subject factors were: genotype (WT vs. KO), treatment
(FST: NaCl vs. Citalopram vs. reboxetine), tone (Fear conditioning: No tone vs. Tone),
temperature (Tail immersion test: 48 ◦C vs. 52 ◦C), concentration (Acute locomotor drugs
response: cocaine 5 mg/kg vs. 10 mg/kg vs. 20 mg/kg; amphetamine 1 mg/kg vs. 3 mg/kg
vs. 5 mg/kg), cycle (Circadian analysis: L:D vs. D:D), state (Wake vs. NREM vs. REM).
The within-subject factors were: Day (Sucrose preference test and drug sensitization), Time
(Corticosterone level analysis), Session (MWM training), Test (Set shifting), Hour (sleep
recording from 20 h to 8 h), and Frequency (Sleep recording from 0 to 12 Hz). A Fisher
LSD post-hoc test for pair-wise comparisons was then applied when appropriate. For
the comparison of two independent groups (VMAT2DBHcre WT vs. KO) in the EPM, NSF,
marble burying, dexamethasone suppression test, fear contextual test, the MWM probe
test, and the telemetric body temperature, we used a two-sided t-test by groups. Optic
density was quantified using MCID for SV2c mRNA labeling in the LC, VTA, and NAc.
A two-sided t-test by groups was used for comparison between WT and KO groups and
a one-way ANOVA followed by a Fisher LSD post-hoc test was used to compare SV2c
mRNA density between control, susceptible and resilient mice to chronic social defeat
stress. p < 0.05 was selected to reflect statistically significant differences between groups.

3. Results
3.1. Role of Central NE System in Anxiety and Depression

To determine NE implication in anxiety-like behavior, we used the elevated plus
maze, the novelty suppressed feeding test (NSF), and the marble burying test. While
VMAT2DBHcre KO mice showed a tendency to spend more time in the open arms in the
elevated plus maze compared to WT, this effect was not statistically significant (t56 = −1.5,
p = 0.14, ns; Figure 1A). However, significant effects were found in the NSF test and the
marble burying test. In the NSF test, the latency to chew the food pellet placed in the center
of an open field was significantly decreased in VMAT2DBHcre KO mice compared to their
WT littermate (t50 = 3.70, p = 0.0005; Figure 1B). However, the amount of food consumed
in the home cage at the end of the test was identical between genotypes (t50 = −1.51,
p = 0.14, ns, data not shown), indicating that change in appetite was not a confounding
effect on the observed decrease latency in VMAT2DBHcre KO mice. In the marble bury-
ing test, VMAT2DBHcre KO mice buried significantly less marbles than WT over 30 min
(t33 = 2.07, p = 0.047, Figure 1C). These results suggest that NE may play a critical role
in mediating anxiety-like behavior with an “anxiolytic-like” effect of NE depletion in
VMAT2DBHcre mice.
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Figure 1. Anxiety and depression-like behavior in VMAT2DBHcre mice. (A) Percentage of time spent
in the open arms of the elevated plus maze in VMAT2DBHcre WT (n = 29) and KO (n = 29) mice
(t56 = −1.5, p = 0.14, ns). (B). Latency (s) to eat the food pellet placed at the center of the open
field in the novelty-suppressed feeding test in VMAT2DBHcre WT (n = 25) and KO (n = 27) mice
(t50 = 3.70, *** p = 0.0005). (C) Number of buried marbles with bedding during 30 min in VMAT2DBHcre

WT (n = 18) and KO (n = 17) mice (t33 = 2.07, * p = 0.047). (D) Percentage of immobility time in
the forced swim test in VMAT2DBHcre WT and KO mice injected intraperitoneally with NaCl (0.9%;
WT n = 8, KO n = 8), citalopram (10 mg/kg; WT n = 6, KO n = 8) and reboxetine (20 mg/kg;
WT n = 8, KO n = 6; genotype × treatment: F(2,38) = 4.73, p = 0.015; post-hoc test: compared to the
NaCl group of the same genotype * p = 0.048 ** p = 0.002 *** p = 0.00004, compared to WT group
with the same treatment *** p = 0.0009). (E) Percentage of sucrose preference over drinking water
during 4 consecutive days in VMAT2DBHcre WT (n = 10) and KO (n = 9) mice (genotype × day: F(3,48)

= 0.81, p = 0.49, ns). (F) Plasma corticosterone level (ng/mL) at baseline, after 30 min of restrain
stress and 90 min after the end of the stress in VMAT2DBHcre WT (n = 18) and KO (n = 17) mice
(genotype × time: F(2,66) = 7.63, p = 0.001; post-hoc test: compared to the WT group at the same time
*** p = 0.00017). (G) Percentage of dexamethasone-induced suppression of plasma corticosterone
level in VMAT2DBHcre WT (n = 5) and KO (n = 5) (t8 = 2.72, * p = 0.026).

We next investigated the effect of NE depletion on depression-like behavior and
associated physiological changes. In the forced swim test, acute treatment with citalo-
pram (selective serotonin reuptake inhibitor, SSRI) and reboxetine (selective noradrenaline
reuptake inhibitor, SNRI) induced a significant decreased in immobility in WT animals
(F(2,38) = 4.73, p = 0.015; post-hoc: citalopram p = 0.00004, reboxetine p = 0.002; Figure 1D).
In contrast, while citalopram decreased immobility (post-hoc: p = 0.048), reboxetine had no
effect in VMAT2DBHcre KO mice (post-hoc test: p = 0.30, ns), consistent with the fact that
SNRI reboxetine is unable to induce behavioral changes in the absence of NE release in
KO. Moreover, KO mice had a significantly decreased immobility as compared to their WT
littermate, (post-hoc test: p = 0.0009, Figure 1D) indicating that NE depletion may have
antidepressant-like effects in this test. Finally, WT and KO mice showed no differences
in sucrose preference measured over four consecutive days (F(3,48) = 0.81, p = 0.49, ns,
Figure 1E). Physiological changes associated with depression were tested by measuring
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plasma corticosterone levels and quantifying the HPA axis negative feedback. The corti-
costerone level of KO mice in the basal condition and 30 min following the restrain stress
was unchanged compared to WT (F(2,66) = 7.63, p = 0.001; post-hoc test: basal: p = 0.72, ns,
restrain stress p = 0.47, ns). However, the decrease of corticosterone 90 min after the end of
the stress exposure was faster in KO than in WT mice (post-hoc test: p = 0.00017, Figure 1F),
which may reflect improved HPA axis negative feedback to control corticosterone release
in KO mice. To test this hypothesis, we performed the dexamethasone suppression test,
which allows assessing the integrity of the HPA axis negative feedback. We observed that
the percentage of dexamethasone-induced suppression of plasma corticosterone level was
increased in KO mice compared with WT (t8 = 2.72, p = 0.026, Figure 1G), indicating more
efficient negative feedback in KO mice with NE depletion. Overall, these suggest that
central NE depletion may have behavioral and physiological antidepressant-like effects in
basal conditions and in response to acute stress.

3.2. NE and Fear Conditioning

Considering that VMAT2DBHcre KO mice were less anxious on our behavioral mea-
sures and showed less vulnerability to acute stress, we tested the VMAT2DBHcre mice for
emotional memory with two components, contextual recall and cued memory (Figure 2A).
In the fear conditioning test, while no alteration was found in the cued test (F(1,13) = 0.053,
p = 0.82, ns), VMAT2DBHcre-KO mice exhibited a significant increase in freezing behavior
during the contextual recall test (t13 = 2.86, p = 0.013), indicating a specific impairment in
contextual emotional memory. This effect was not due to altered pain sensitivity threshold
as nociceptive reaction in VMAT2DBHcre mice was similar to that of WT mice using the tail
immersion test at both 48 ◦C and 52 ◦C (Figure 2B).
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Figure 2. Emotional memory and nociception in VMAT2DBHcre mice. (A) Percentage of immobility
time during the 2 min adaptation period and the two pairings (2 min ITI) of a 30-sec tone (80 dB)
ending with a 2 sec 0.5 mA foot shock in VMAT2DBHcre WT (n = 7) and KO (n = 8) mice (genotype:
F(1,13) = 0.17, p = 0.69; tone: F(2,26) = 76.20, ** p < 0.01, *** p < 0.001; genotype × tone: F(2,26) = 1.67,
p = 0.21; left). Percentage of immobility during the 3 min of the contextual fear memory test performed
24 h after the fear conditioning (t13 = 2.86, * p = 0.013; middle). Percentage of immobility during
the 2 min habituation and the 30 sec tone (80 dB) in the cued memory test performed 24 h after the
fear conditioning (genotype: F(1,13) = 1, p = 0.33; tone: F(1,13) = 365.25, p < 0.001; genotype × tone:
F(1,13) = 0.053, p = 0.82; right). (B) Latency (s) to respond to the heat stimulus with vigorous flexion
of the tail when the water temperature is maintained at 48 ◦C for a first session and then at 52 ◦C
in VMAT2DBHcre WT (n = 10) and KO (n = 9) mice (genotype: F(1,17) = 0.44, p = 0.52; temperature:
F(1,17) = 92.91, *** p < 0.001; genotype × temperature: F(1,17) = 0.57, p = 0.46).
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3.3. NE and Memory

We then evaluated the cognitive performance of the animals using a different version
of the Morris water maze paradigm (MWM; see Methods). In the long-term memory recall
of the spatial version of the MWM, no deficit was observed in the VMAT2DBHcre KO mice
in comparison to WT. The latency to reach the hidden platform using spatial cues along
the training sessions (F(6,108) = 1.25, p = 0.29, ns) and the time spent in the active quadrant
during the memory test (t18 = −0.34, p = 0.74, ns) were similar between WT and KO mice
(Figure 3A). In the rapid-place learning version of the MWM test, no working memory
deficit was found in VMAT2DBHcre KO mice compared to WT. Over the 3 days of training,
the latency to find the hidden platform using spatial cues was similar between genotypes
(day 1: F(3,54) = 0.55, p = 0.65, ns; day 2: F(3,54) = 0.90, p = 0.45, ns; day 3: F(3,54) = 0.67,
p = 0.57, ns) (Figure 3B).
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Figure 3. Learning, memory, and adaptative behavior in VMAT2DBHcre mice. (A) Mean escape latency
(s) in the spatial hidden-platform version of the Morris water maze in VMAT2DBHcre WT and KO (n = 10
per group, left) (genotype: F(1,18) = 0.012, p = 0.91; session: F(6,108) = 10.86, p < 0.001; genotype × session:



Biomolecules 2023, 13, 511 14 of 36

F(6,108) = 1.25, p = 0.29). Percentage of time spent in the active quadrant during the probe test of
the MWM in each genotype (WT vs. KO: t18 = −0.34, p = 0.74 (ns); difference to 25%: WT t9 = 2.45,
* p = 0.037; KO t9 = 2.17, * p = 0.05). (B) Escape latency (s) to retrieve the hidden platform dur-
ing 4 sessions per day for 3 days in the rapid place learning version of the Morris water maze
for working memory test in VMAT2DBHcre WT (n = 10) and KO (n = 10) mice (day 1: genotype
F(1,18) = 0.36, p = 0.56; session F(3,54) = 2.02, p = 0.12; genotype × session F(3,54) = 0.55, p = 0.65; day
2: genotype F(1,18) = 0.53, p = 0.47; session F(3,54) = 2.75, p = 0.051; genotype × session F(3,54) = 0.90,
p = 0.45; day 3: genotype F(1,18) = 1.24, p = 0.28; session F(3,54) = 4.33, p = 0.008; genotype × session
F(3,54) = 0.67, p = 0.57). (C) Mean escape latency (s) in the reversal training of the spatial hidden-
platform version of the Morris water maze in VMAT2DBHcre WT and KO (n = 10 per group, left)
(genotype: F(1,18) = 1.96, p = 0.18; sessions: F(5,90) = 5.69, p = 0.0001; genotype × session: F(5,90) = 0.35,
p = 0.88). Percentage of time spent in the active quadrant during the probe test in each genotype (WT
vs. KO: t18 =−2.77, ** p = 0.013; difference to 25%: WT t9 = 2.06, p = 0.069; KO t9 = 6.22, *** p = 0.00015).
(D) Illustration of the attentional set shifting task (ASST) in which mediums or odors are associated
with a reward during the compound discrimination test (CD), the reversal test, the intra-dimensional
(ID) shift and the extra-dimensional (ED) shift. Number of trials required to found the food reward
in order to reach the criteria of 6 consecutive correct trials during each test in VMAT2DBHcre WT
(n = 15) and KO (n = 17) mice (genotype: F(1,30) = 18.22, p = 0.00018, test: F(3,90) = 40.76, p < 0.0001,
genotype × test: F(3,90) = 3.51, p = 0.018; post-hoc test * p = 0.016, *** p < 0.001).

3.4. NE Depletion and Behavioral Flexibility

To investigate the adaptative behavior (executive function), we used the reversal
version of the MWM and the attentional set-shifting task. In the reversal version of the
MWM, the latency to find the platform using spatial cues during the training (F(6,108) = 1.25,
p = 0.29, ns) was identical between genotypes. However, KO mice spend more time in the
active quadrant than WT mice during the probe test (t18 = 2.77, p = 0.0.013) (Figure 3C). In
contrast, VMAT2DBHcre KO mice required an increased number of trials to reach the criteria
compared with WT in both the reversal (F(3,90) = 3.51, p = 0.018; post-hoc test p = 0.016) and
in the extra-dimensional shift stage (post-hoc test p < 0.001) of the attentional set-shifting
test (Figure 3D).

3.5. Role of NE Depletion in Drugs Locomotor Response

Following an acute cocaine injection, KO and WT mice had a similar locomotor re-
sponse regardless of the concentration of cocaine used (F(2,30) = 1.01, p = 0.38, ns; Figure 4A).
In contrast, acute administration of amphetamine led to hyper-locomotion in WT but not
in the VMAT2DBHcre KO, at all concentrations tested (F(1,35) = 6.87, p = 0.013; Figure 4C). To
measure the motor characteristics following chronic drug treatment, mice were subjected
to a cocaine or amphetamine sensitization paradigm. Cocaine (i.p. 20 mg/kg; Figure 4B)
or amphetamine (i.p. 3 mg/kg; Figure 4D) was injected daily over six consecutive days.
Two days after the last injection, the mice were challenged with the same dose of cocaine
or amphetamine respectively. This paradigm consistently resulted in a significant height-
ened locomotor response to the challenge dose of cocaine or amphetamine in both the
WT and the KO animals (days effect: cocaine F(1,18) = 54.04, p < 0.001; amphetamine day:
F(1,16) = 55.92, p < 0.001); however, no difference was observed between genotypes (cocaine:
F(1,18) = 0.64, p = 0.43, ns; amphetamine F(1,16) = 0.0081, p = 0.93, ns).
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Figure 4. Addiction-like behavior in VMAT2DBHcre mice. (A) Acute locomotor response (horizontal
activity) to cocaine for 2 h following i.p. injection of 5, 10, or 20 mg/kg in the WT and KO mice of
the VMAT2DBHcre (n = 6 per group; genotype: F(1,30) = 0.04, p = 0.84; concentration: F(2,30) = 19.6,
p < 0.001; genotype × concentration: F(2,30) = 1.01, p = 0.38). (B) Locomotor sensitization after
repeated i.p., administration of 20 mg/kg cocaine over 6 days followed by 48 h of withdrawal in
the WT and KO mice of the VMAT2DBHcre (n = 10 per group; genotype: F(1,18) = 0.003, p = 0.95; day:
F(1,18) = 54.04, *** p < 0.001, genotype × day: F(1,18) = 0.64, p = 0.43). (C) Acute locomotor response
(horizontal activity) to amphetamine for 1 h following i.p. injection of 1, 3, or 5 mg/kg in the WT
(1 mg/kg n = 5, 3 mg/kg n = 9, 5 mg/kg n = 6) and KO (1 mg/kg n = 6, 3 mg/kg n = 9, 5 mg/kg
n = 6) mice of the VMAT2DBHcre (genotype: F(1,35) = 6.87, * p = 0.013; concentration: F(2,35) = 19.2,
p < 0.001; genotype × concentration: F(2,35) = 1.13, p = 0.33). (D) Locomotor sensitization after
repeated i.p. administration of 3 mg/kg amphetamine over 6 days followed by 48 h of withdrawal in
the WT and KO mice of the VMAT2DBHcre (n = 9 per group; genotype: F(1,16) = 4.11, p = 0.06; day:
F(1,16) = 55.92, *** p < 0.001, genotype × day: F(1,16) = 0.0081, p = 0.93).

3.6. NE and Circadian Rhythms

We studied the circadian behavior of the VMAT2DBHcre mice by monitoring their activity
in wheel-running cages or by telemetry. Mice were entrained to a 12 h/12 h light/dark (L:D)
cycle for 7 days and then transferred to constant darkness (D:D). Regardless of the mode of
locomotor activity recording (running wheels/telemetry), the circadian locomotor periods of
KO and WT mice were indifferent during both L:D and in constant darkness (D:D) (running
wheel: F(1,16) = 0.22, p = 0.64, ns; telemetry: F(1,10) = 0.0, p = 1, ns; Figure 5A). The 7-day
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average body temperature measured by telemetry during L:D was similar between WT and
KO mice (t10 =−0.18, p = 0.86, ns; Figure 5B), a result confirming that VMAT2 removal in DBH
positive neurons does not affect peripheral NE release controlling the autonomic nervous
system. However, total daily activity derived from wheel running was significantly decreased
in KO when compared to WT regardless of the lighting condition (F(1,16) = 11.39, p = 0.0039;
Figure 5C,D), while total daily telemetry-derived activities were similar between genotypes
during both L:D and D:D (F(1,10) = 0.0071, p = 0.93, ns; Figure 5E,F).
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Figure 5. Circadian rhythmicity in VMAT2DBHcre mice. (A) Average circadian locomotor period
derived from chi-squared periodogram analysis of 7-day time-spans during light/dark (L:D) cycles
and constant darkness (D:D) derived from home cage running wheel activity (genotype: F(1,16) = 0.77,
p = 0.39, cycle: F(1,16) = 0.01, p = 0.91, genotype × cycle: F(1,16) = 0.22, p = 0.64) or telemetry implants
(genotype: F(1,10) = 0.0, p = 1, cycle: F(1,10) = 11.6, ** p = 0.006, genotype × cycle: F(1,10) = 0.0, p = 1).
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(B) Average core body temperature (◦C) in WT (n = 6) and KO (n = 6) VMAT2DBHcre mice mea-
sured by telemetry over 7 days (t10 = −0.18, p = 0.86). (C) Representative double-plotted ac-
tograms of running wheel activity in VMAT2DBHcre WT (right) and KO (left) mice. The yel-
low shadows indicate the light phases over the 24 h cycle. (D) Mean running wheel activity
over 7 days during L:D and D:D in VMAT2DBHcre WT (n = 9) and KO (n = 9) mice (genotype:
F(1,16) = 11.39, ** p = 0.0039; cycle: F(1,16) = 17.43, p < 0.001; genotype × cycle: F(1,16) = 0.32,
p = 0.58). (E) Representative double-plotted actograms of telemetric activity in VMAT2DBHcre

WT (right) and KO (left) mice. The yellow shadows indicate the light phases over the 24 h cy-
cle. (F) Mean telemetric activity over 7 days of L:D and D:D in VMAT2DBHcre WT (n = 6) and KO
(n = 6) mice (genotype: F(1,10) = 0.055, p = 0.82; cycle: F(1,0) = 0.00, p = 0.99; genotype × cycle:
F(1,10) = 0.0071, p = 0.93).

3.7. NE Control of Sleep and Arousal

Since NE is one of the major arousal modulators in the brain, we characterized the
sleep–wake cycle of the VMAT2DBHcre KO mice. We observed that the overall duration
of wake, NREM, and REM sleep were unchanged between the two genotypes despite
a decreased percentage of time spent awake in KO mice at 1 h and 4 h during the dark
phase (F(23,138) = 1.73, p = 0.028; post-hoc test * p < 0,036, ** p < 0,003), concomitant with an
increase in NREM sleep (F(23,138) = 1.62, p = 0.047; post-hoc test * p < 0,043, ** p < 0,0037)
and no change in REM sleep (Figure 6A). Furthermore, the number of waking, NREM, and
REM sleep bouts during both the light phase (F(2,27) = 0.39, p = 0.68) and the dark phase
(F(1,10) = 0.042, p = 0.96) were similar between WT and KO mice (Figure 6B), as well as the
duration of bouts ((left; genotype: F(1,27) = 1.33, p = 0.26; state: F(2,27) = 99.72, p < 0.001;
genotype × state: F(2,27) = 0.40, p = 0.68) and the dark cycle (right; genotype: F(1,27) = 0.27, p
= 0.61; state: F(2,27) = 34.03, p < 0.001; genotype × state: F(2,27) = 0.043, p = 0.96); Figure 6C).
Upon examination of the power spectrum of the cortical EEG during NREM episodes, we
found a significant increase in slow-wave activity (0.5–4.5 Hz) in KO mice compared to
WT, both during the light (curve: F(48,384) = 2.5, p < 0.001; post-hoc test * p< 0.05, ** p < 0.01,
*** p < 0.001; Histo: F(2,24) = 9.31, p = 0.001; post-hoc test *** p < 0,00032) and the dark phases
(Curve: F(48,384) = 3.64, p < 0.001; post-hoc test * p < 0.05, ** p < 0.01, *** p < 0.001; Histo:
F(2,24) = 4.70, p = 0.019; post-hoc test * p < 0,015; Figure 7A), indicative of a deeper sleep
intensity (i.e., higher slow waves amplitude) during NREM in NE-depleted mice. Minor,
yet significant, changes in the power spectrum of cortical EEG analysis included a decrease
in slow wave activity (Delta: 0.5–4.5 Hz) during the dark phase (F(2,24) = 9.2, p = 0.001,
post-hoc test *** p = 0.0005; Figure 7B) for awake episodes and an increase in theta rhythms
(5–9 Hz; F(2,24) = 4.37, p = 0.024, post-hoc test *** p = 0.0086; Figure 7C) restricted to the light
phase of REM sleep episodes.

3.8. Transcriptional Effect of NE Differential Gene Expression Signature of Brain-Specific NE
Depleted Mice
3.8.1. Profiling Gene Expression Changes across Brain Regions

To investigate the potential role of NE at the molecular level in maintaining a genetic
Fihomeostatic pressure on gene expression, we performed microarray transcriptome pro-
filing in six key cerebral regions including the LC, VTA, Raphe, NAc, PFC, and DG of
VMAT2DBHcre KO and WT mice.

We first profiled differential gene expression in each brain region of 3-month-old KO
versus WT naïve male mice. Table 1 summarizes the number of upregulated (Ups) and
downregulated (DNs) differentially expressed genes (DEGs) at different thresholds. When
using a low stringency filtering by taking only the adjusted p-value ≤ 0.05 to identify
DEGs. The range of DEGs varies from the highest number in the raphe (≈4000) to the
smallest number observed in the DG (≈1300). When a more stringent filtering is applied
by combining a logFC ≥ 1, in addition to the adjusted p-value ≤ 0.05, the number of DEGs
decreases dramatically, with the DG exhibiting the most DEGs (53, 38 Ups and 15 DNs)
while the VTA displays 12 DEGs (8 Ups, 4 DNs).
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Figure 6. Sleep architecture analysis in VMAT2DBHcre mice. (A) Hourly percentage of time over a 24 h
period during the dark (grey) and the light cycle (white) spent in wake (top; genotype: F(1,138) = 0.46,
p = 0.52; hour: F(23,138) = 7.03, p < 0.001; genotype × hour: F(23,138) = 1.73, p = 0.028; post-hoc test
* p < 0,036, ** p < 0,003), non-rapid eye movement (NREM, middle; genotype: F(1,138) = 0.35, p = 0.57;
hour: F(23,138) = 6.34, p < 0.001; genotype × hour: F(23,138) = 1.62, p = 0.047; post-hoc test * p < 0.043,
** p < 0.0037) and REM (bottom; genotype: F(1,138) = 2.1, p = 0.2; hour: F(23,138) = 7.01, p < 0.001;
genotype × hour: F(23,138) = 1.56, p = 0.062) in WT (n = 6) and KO (n = 5) VMAT2DBHcre mice. (B)
Number of bouts spent in wake, NREM and REM during the light (left; genotype: F(1,27) = 1.33,
p = 0.26; state: F(2,27) = 99.72, p < 0.001; genotype x state: F(2,27) = 0.39, p = 0.68) and the dark
cycle (right; genotype: F(1,27) = 0.26, p = 0.61; state: F(2,27) = 34.03, p < 0.001; genotype × state:
F(1,10) = 0.042, p = 0.96) in WT (n = 6) and KO (n = 5) VMAT2DBHcre mice. (C) Average bouts
duration in wake, NREM and REM during the light (top; genotype: F(1,27) = 1.33, p = 0.26; state:
F(2,27) = 99.72, p < 0.001; genotype× state: F(2,27) = 0.40, p = 0.68) and the dark cycle (bottom; genotype:
F(1,27) = 0.27, p = 0.61; state: F(2,27) = 34.03, p < 0.001; genotype × state: F(2,27) = 0.043, p = 0.96) in WT
(n = 6) and KO (n = 5) VMAT2DBHcre mice.
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Figure 7. Sleep recording analysis in VMAT2DBHcre mice: power spectrum frequency. (A) Average spectral
distribution of cortical EEG power spectrum during NREM in WT (n = 6) and KO (n = 4) VMAT2DBHcre

mice during the light cycle (left; genotype: F(1,384) = 13.59, p = 0.006; frequency: F(48,384) = 37.49, p < 0.001;
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genotype × frequency: F(48,384) = 2.50, p < 0.001; post-hoc test * p < 0.05, ** p < 0.01, *** p < 0.001)
and the dark cycle (right; genotype: F(1,384) = 8.15, p = 0.021; state: F(48,384) = 77.11, p < 0.001;
genotype × state: F(48,384) = 3.64, p < 0.001; post-hoc test * p < 0.05, ** p < 0.01, *** p < 0.001). The
power analysis by frequency ranges (delta: 0.5–4.5 Hz; theta: 5–9 Hz; alpha: 9–12 Hz) is shown in
the top right corner of each NREM power spectrum distribution curve during the light cycle (top;
genotype: F(1,24) = 1.39, p = 0.25; state: F(2,24) = 360.19, p < 0.001; genotype × state: F(2,24) = 9.31,
p = 0.001; post-hoc test *** p < 0.00032) and the dark cycle (bottom; genotype: F(1,24) = 0.052, p = 0.82;
state: F(2,24) = 280.88, p < 0.001; genotype × state: F(2,24) = 4.70, p = 0.019; post-hoc test * p < 0.015).
(B) Wake period power spectrum analysis by frequency ranges (delta: 0.5–4.5 Hz; theta: 5–9 Hz; alpha:
9–12 Hz) in WT (n = 6) and KO (n = 4) VMAT2DBHcre mice during the light cycle (left; genotype:
F(1,24) = 0.091, p = 0.76; frequency: F(2,24) = 67.79, p < 0.001; genotype × frequency: F(2,24) = 1.28,
p = 0.30) and the dark cycle (right; genotype: F(1,24) = 0.74, p = 0.40; frequency: F(2,24) = 57.88,
p < 0.001; genotype × frequency: F(2,24) = 9.20, p = 0.0011; post-hoc test *** p = 0.00055). (C) REM
period power spectrum analysis by frequency ranges (delta: 0.5–4.5 Hz; theta: 5–9 Hz; alpha: 9–12 Hz)
in WT (n = 6) and KO (n = 4) VMAT2DBHcre mice during the light cycle (left; genotype: F(1,24) = 0.75,
p = 0.39; frequency: F(2,24) = 239.31, p < 0.001; genotype × frequency: F(2,24) = 4.37, p = 0.024; post-hoc
test ** p = 0,086) and the dark cycle (right; genotype: F(1,24) = 0.207, p = 0.65; frequency: F(2,24) = 144.02,
p < 0.001; genotype × frequency: F(2,24) = 2.15, p = 0.14).

Table 1. Summary of differentially expressed genes (DEGs) in the different brain regions for different
levels of stringency.

Region DEG Adj.p.value < 0.05 Adj.p.value < 0.05
& l logFC l > 0.5

Adj.p.value < 0.05
& l logFC l > 1

UP 982 387 8

DOWN 1019 222 6Locus
coeruleus

TOTAL 2001 616 14

UP 1462 345 14

DOWN 1627 343 8Nucleus
accumbens

TOTAL 3089 688 22

UP 1034 242 8

DOWN 1190 210 4
Ventral

tegmental
area TOTAL 2224 452 12

UP 1006 186 9

DOWN 946 164 8Prefrontal
cortex

TOTAL 1952 350 17

UP 1985 186 10

DOWN 2048 164 12Raphe

TOTAL 4033 350 22

UP 784 382 38

DOWN 545 230 15Dentate girus

TOTAL 1329 612 53

For each region the number of up-regulated, down-regulated, and total DEGs are
indicated for different levels of stringency from the less stringent where only the adjusted p-
value ≤ 0.05) is taken into account, to the most stringent where the adjusted p-value ≤ 0.05
is combined to an absolute value of log-fold (logFC) ≥ 1.

Figure 8 shows the heatmaps of the DEGs for each region using the most stringent
filtering. From this analysis, the SV2c gene with a high potential for neuronal activity
regulation was found in four out of the six analyzed regions as the most up-regulated
gene in the VMAT2DBHcre KO compared with WT. Hence, this gene was chosen for further
validation (see below: probing the biological significance of NE-specific DEGs).
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Figure 8. Heatmaps of differentially expressed gene in six brain areas in VMAT2DBHcre mice. Columns
represent the differentially expressed genes (i.e., adjusted p-value ≥ 0.05 and |log fold| ≥ 1), with
gene symbol on top, and rows represent the samples with the four rows corresponding to WT samples
rows color-coded in black and the four rows corresponding to VMAT2DBHCre KO in grey. The color
temperature varying from blue (low) to red (high) indicates the intensity of expression. As indication,
below each heatmap, a single line heatmap displays log fold information with shades of pink for
positive values (i.e., genes up-regulated in the KO) and shades of green for negative values (i.e., genes
down-regulated in KO). The log fold heat map is not scaled with one another and numbers below
each extremity (positive and negative) indicates the range of values for each region.

The Gene Set Enrichment Analysis (GSEA) allows using not only the DEGs but all the
expressed genes [43], ordered by the t-statistic from the moderate t-test performed, with
the most up-regulated genes at the top of the list and the most down-regulated genes at the
bottom of the list. This type of analysis has the advantage to be threshold-free, since all the
genes are taken into consideration, with the weight of the gene reflected by its position in
the ranked list. We used this method to determine whether preexisting gene collections
(Hallmark, GO) were affected by NE depletion. Binary heatmaps in Figure 9 show that the
effect of the KO has a limited effect on the studied pathways; not all the regions displayed
notable alterations and those few affected pathways were related to global metabolism
and not neuronal specific (except GO neuropeptide receptor binding, up-regulated in the
locus coeruleus).
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Figure 9. Enriched gene sets across individual brain regions. Enriched (over-represented) gene
Scheme 2. DBHCre KO are shown in red; enriched gene sets with down-regulated genes in
VMAT2DBHCre KO are shown in blue.

Gene set enrichment profiles using the Hallmark or Gene Ontology Biological Process
(GO BP), or Gene Ontology Molecular Function (GO MF) gene collections, each row
corresponds to a gene set, and each column corresponds to a brain region.

Taken together, these observations indicate a counterintuitively mild effect at the
transcriptomic level of the VMAT2DBHcre KO, despite the absence of any paralog that could
substitute for VMAT2 deletion. Genetic and cerebral plasticity might have taken place
during the development and adolescence phases compensating for the VMAT2 loss in
DBH-positive neurons.
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3.8.2. Probing the Biological Significance of NE-Specific DEGs

The transcriptome mapping used in this study could offer a template to identify NE
targets that can be exploited for a better understanding of NE involvement in brain function
and behavior. To probe the significance of NE-specific DEGs as novel targets to understand
NE signaling function in NE-specific behavioral alteration, we selected the SV2c gene,
both because it was the most up-regulated DEG in 3 of the 6 regions sampled (including
the LC, VTA, and NAc) and given its previously demonstrated role in neurotransmitters
release and action. SV2c radioactive in situ hybridization in the LC, VTA, and NAc of
VMAT2DBHcre KO and WT mice allowed us to confirm the increased expression of the SV2c
gene in the LC as observed by microarray (t6 = −4.25, p = 0.0054, Figure 10A,B).
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Figure 10. SV2c in situ hybridization. (A) Illustration of SV2c mRNA radioactive in situ labeling in
the locus coeruleus (Left), ventral tegmental area (center), and nucleus accumbens (right). (B) Density
(nCi/mg) of SV2c mRNA expression in the locus coeruleus (left), ventral tegmental area (center),
and nucleus accumbens (right), measured by radioactive in situ hybridization, in WT (n = 4) and
KO (n = 4) VMAT2BDHcre mice (t6 = −4.25, ** p = 0.0054). (C) Schematic representation of the chronic
social defeat stress paradigm. (D) Density (nCi/mg) of SV2c mRNA expression in the locus coeruleus,
measured by radioactive in situ hybridization, in control (n = 5), susceptible (n = 4), and resilient
(n = 4) mice to the chronic social defeat stress paradigm (F(2,10) = 5.41, p = 0.026; Post hoc test: CTL vs.
SUSC: * p = 0.012, SUSC vs. RES: * p = 0.025, CTL vs. RES: p = 0.79, ns).

Our previous results show that KO mice with NE-depletion demonstrate a strong
susceptible phenotype in response to chronic social defeat stress (CSDS, Figure 10C) [44].
We hypothesized that the expression of SV2c (a putative marker of NE depletion) would
be increased in the LC of susceptible mice but not in resilience. We thus looked at SV2c
expression by in situ hybridization in the LC of control, susceptible, and resilient mice to
10-day CSDS. Remarkably, we found a specific increase in the expression of SV2c in the
LC of susceptible mice compared to control and resilient animals (F(2,10) = 5.41, p = 0.026;
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Post hoc test: CTL vs. SUSC: * p = 0.012, SUSC vs. RES: * p = 0.025, CTL vs. RES: p = 0.79,
ns; Figure 10D).

4. Discussion

The present study addressed the implication of central NE in regulating/modulating
specific behavior and identified the brain networks and molecular mechanisms underlying
NE-associated behavioral functions. Table 2 summarizes the overall behavioral results that
are discussed below.

Table 2. Behavioral results summary in VMAT2DBHcre mice.

NE-Depletion EffectsTested
Modalities

Behavioral Paradigms Measured Outcome
Behavioral Results Interpretations

Elevated plus maze Time spend in the
open arm Ø

Novelty suppressed feeding test Eating latency ↘ eating latency

Marble burying Number of buried
marbles

↘ number of
buried marbles

Force swim test Immobility time ↘ immobility
time

Sucrose preference Percentage of
preference Ø

CORT level CORT level (ng/mL) ↗ CORT level
return

Anxiety- and
depression-like

parameters

Dexamethasone suppression Percentage of CORT
level suppression

↗ suppression of
CORT level

Anxiolitic and
antidepressant

effect

Analgesia Tail immersion Latency of tail
removal Ø No effect on

analgesia

Contextual fear conditioning Freezing time ↗ freezing time

Cued fear
conditioning Freezing time Ø

Spatial

- Latency to find the
platform

- Time spend in the
active quadrant

Ø
Ø

Reversal

- Latency to find the
platform

- Time spend in the
target quadrant

Ø
↗ time in target

quadrant

Learning and
memory

Morris water maze

Rapid place
learning

- Latency to find the
platform

- Time spend in the
active quadrant

Ø
Ø

Enhance
contextual fear

memory

Executive
function

Attentional set
shifting

Reversal
Number of trials to

reach criteria

Ø Alteration of
cognitive
flexibility

ID Ø

ED ↗ trials number

Cocaine Ø

Amphetamine
Horizontal activity ↘ locomotor

response

Locomotor drug’s
response

Cocaine Ø

Decrease
amphetamine-

induced
hyperlocomotion

Addiction

Drug’s
sensitization Amphetamine

15-min Horizontal
activity Ø
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Table 2. Cont.

NE-Depletion EffectsTested
Modalities

Behavioral Paradigms Measured Outcome
Behavioral Results Interpretations

Circadian cycle

Running wheel
- Circadian period

- Body temperature
- Daily activity

Ø
Ø

↘ revolution Decrease running
wheel activity

Telemetry
- Circadian period

- Body temperature
- Daily activity

Ø
Ø
Ø

Awake ↘ time awake
(Dark phase)

% Time
NREM ↗ time in NREM

(Dark phase)

REM Ø

Awake Ø

NREM ØSleep analysis Bouts number and
duration

REM Ø

Awake ↘ Delta (Dark
phase)

Changes in sleep
quality

NREM ↗ Delta (Dark and
light phases)

Power spectrum

REM ↗ Theta (Light
phase)

The advantage of the VMAT2DBHcre KO model is to induce specific and whole brain
NE depletion without affecting other monoamines systems. However, we cannot preclude
adaptative or compensatory mechanisms occurring at developmental stages or adolescent
life-span, which can explain effect or lack of effect induced by NE depletion at adulthood
and reduced the specificity of results obtained in this study. However, in degenerative
disease, given that NE loss occur at adulthood, such compensatory mechanisms could be
interesting to decipher as they could be used to compensate NE loss effects at adulthood
in neurodegenerative disease. It also recently emerged that modularity of NE-LC circuits
could underlie dissociated and sometime antagonistic effects [45–47], something that could
not be easily captured in the VMAT2DBHcre KO model that extinct all possibility of release
from these neurons, including dopamine release that have been also proposed in some
tissues [48–51].

4.1. Anxiolytic and Antidepressant Effects of NE Depletion

Together with neuronal and hormonal systems, the NE system is activated by stress
to induce various physiological and behavioral changes [21,52,53]. The central NE system
shares common reciprocal functional connections with both the monoaminergic systems
(DA and 5HT) and with the paraventricular nucleus (PVN) of the hypothalamus, a major
actor of the HPA axis. Thus, dysregulation of the NE system can alter the normal regulation
of these systems and precipitate stress-related psychopathologies such as anxiety- and
depression-like disorders. Several studies have found dysregulation of the NE system in
both anxiety and depressive disorders. For example, anxiety disorders and depression
are associated with increased NE plasma concentrations [54,55]. Postmortem studies
have demonstrated increased NE levels in the brains of unipolar and bipolar suicide
victims [56,57].To investigate whether NE dysregulation in anxiety and depression is a
cause or a consequence of the pathology, we investigated the implication of NE in anxiety
and depression-like behavior in basal conditions (i.e., not under chronic stress).
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Studies looking at NE function in animal models of anxiety/depression-like behavior
report heterogeneous findings based to the approach used to manipulate NE synthesis or
release. Using either genetic approaches of decreased NE transmission (DBH KO, α1R
deletion mice) or pharmacological, neurotoxins and immunotoxin lesions, absence of effect,
anxiogenic or anxiolytic effects have been associated with alterations in NE transmission in
the EPM, light/dark test, open-field, and FST [58–63]. Similarly, increasing NE release via
blockade of the NET induced antidepressant effect and pharmacological blockade of the
a2 autoreceptors produced an anxiogenic behavior [26,64]. Here, we reported anxiolytic
and antidepressant-like effects of central NE depletion in the FST, marble-burying test,
and novelty-suppressed feeding test (Figure 1A–D). This suggests that an excess of NE
without stress exposure can have adverse effects on mood and anxiety. This deleterious
effect of excessive NE, proposed as the “noradrenaline paradox” [65], is confirmed by
studies reporting that photostimulation of LC-NE neurons projecting to the BLA produced
anxiety-like behavior [66]. The absence of effect of NE depletion in the sucrose preference
test (Figure 1E) is in line with the observations that tricyclic antidepressant blockade in
non-stressed animals does not induce changes in anhedonia [67]. Acute stress is known to
rapidly increase circulating adrenaline/noradrenaline, triggering increased corticosterone
levels in rodents [53,68]. Interestingly, cortisol responses to physiological stressors in
patients with MDD have been found to be significantly higher than for healthy individuals
during the recovery period. This suggests that MDD is associated with an inability to
turn off the production of cortisol via negative feedback of the HPA axis [69]. In our
VMAT2DBHcre KO mice, the blood corticosterone increase following acute stress was similar
to WT mice (Figure 1F), because in this model, E and NE releases are fully preserved at
the periphery. Very interestingly, the rapid decrease of circulating corticosterone one hour
after the end of the acute stress and the increase in dexamethasone-induced corticosterone
suppression in VMAT2DBHcre KO (Figure 1F–G) suggested an improvement of the HPA
axis negative feedback to control corticosterone release upon NE depletion. These results
suggest a direct control of central NE upon its homeostatic regulation at the periphery.

4.2. NE Regulation of Emotional Memory

Controversial studies of NE signaling manipulation demonstrated that reduced NE
transmission could either blunt fear acquisition [70–72] or have no effect [73–76]. Regarding
fear expression, studies of decreasing NE transmission showed the same discrepancy with
a reduction [77] or no effect on cued fear expression [73–76,78]. Whereas these studies
used a single shock conditioning trial, it has been shown that NE blockade had no effects
on single-trial conditioning, but is necessary for multi-trial enhancement of learning and
subsequent expression of that memory [79]. Weaker conditioning protocols are less likely
to recruit LC-NE given that they appear insensitive to NE manipulations.

In our study, we demonstrated that fear acquisition was intact in mice lacking NE
signaling; however, NE depletion was increasing contextual fear expression without af-
fecting cue fear expression (Figure 2). Interestingly, it has been recently reported that
in mice with a global decreased expression of VMAT2 (VMAT2lo), the same increase in
contextual fear expression occurs [80]. Therefore, these behavioral changes may be due
to VMAT2 decrease in NE neurons. It has been also reported that 6-OHDA lesions of the
dorsal noradrenergic bundle (but not the ventral) that produce a very strong decrease of
NE projections, also enhanced contextual fear [81,82]. Future studies should be done to test
different conditioning protocol intensity in order to identify when the NE system becomes
involved in fear acquisition and cued fear expression in VMAT2DBHcre KO mice.

4.3. Absence of NE Implication on Spatial and Working Memory

Evidence for a role of NE in memory processes comes mainly from pharmacological
studies in which noradrenergic transmission is manipulated after memory acquisition.
Pharmacological studies have also revealed a late stage of memory formation that is
dependent on β-noradrenergic receptors: rats injected intracerebrally with a β-receptor
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antagonist 2 h after learning showed amnesia when tested 48 h later. If the injection was
administered immediately after learning there was no effect, suggesting that there is a
time window after a learning experience during which the NE system is activated to
reinforce long-term memory processing [83,84]. Many studies using neurotoxic, electrolytic,
or pharmacological lesions of the LC have found effects on various aspects of learning
and memory including fear learning, extinction and reversal learning, avoidance, and
working memory [85–92]. However, this role of LC neurons in many different types of
learning and memory has not been replicated consistently [82,86,93–95]. This variability
can be explained by the type and size of the lesion and the behavioral outcome but also by
compensatory mechanisms.

Remarkably, we demonstrated that NE depletion does not induce learning and mem-
ory deficit since performances of mice lacking NE signaling are equal and even better (or
faster) compared to control mice in multiple versions of the Morris water maze test (spatial
version, reversal, and working memory, Figure 3A–C). Because in the VMAT2DBHcre KO
mice, NE neurons do not degenerate following lesions but rather unable to release DA
as it has been recently suggested [49,50], it remains possible that other neurotransmitters
present in LC-NE neurons, including Galanin or NPY for example [96], could balance NE
loss in the memory performances.

4.4. NE Depletion in Executive Functions and Behavioral Flexibility

Behavioral (or cognitive) flexibility is a brain mechanism allowing one individual
to adapt to a changing environment. We used the two most classical rodent tests to
evaluate behavioral flexibility, a reversal learning test using the Morris water maze and
the Attentional Set-Shifting Test (ASST) which is a rodent adaptation [97] of the Wisconsin
Card Sorting Test in human. Whereas 5HT and DA transmission are clearly implicated in
behavioral flexibility mechanisms [98,99], a role for noradrenergic transmission has been
also proposed [100]. In the reversal learning test, the VMAT2DBHcre KO mice showed better
performance, they can shift their learning for a new platform location more efficiently
than WT mice (Figure 3C). Even though this observation seems to contradict the identified
role of NE projection to the frontal cortex in the reinforcing learning mechanisms [101],
the disappearance of NE transmission could favor the role of DA in this process [102]. In
the ASST, mice learned to retrieve a reward by focusing on a sole perceptual feature of
a complex stimulus. KO mice were able to perform the task as well as WT mice in the
simpler trials of the task (i.e., when the reward was associated with only an odor, or only a
medium). However, when the difficulty of the task increased (extra-dimensional shift), the
KO mice showed a deficit in performance as they were not able to unlearn the previous
association and learn a new one (Figure 3D). The same deficit in the ED shift was found
when silencing LC-NE neurons using optogenetics [103]. This highlights the functional
role of NE transmission in task shifting behaviors.

4.5. Role of NE Depletion in Locomotor Response and Behavioral Sensitization to Psychostimulants

Psychostimulant drugs are directly targeting the three aminergic transporters, DAT,
SERT, and NET, with an overall effect of locomotor increase and addictive properties [5,104].
Even if the DAT is the main target of cocaine and amphetamine [105,106], NE increase
by NET inhibition plays a functional role [107,108]. The acute effect of cocaine on loco-
motion was the same between WT and VMAT2DBHcre KO mice, showing the main role
of DAT blockade in that case (Figure 4A). For amphetamine, interestingly we observed
a lesser effect for all doses on locomotion (Figure 4C). Amphetamine, in addition to its
transporter inhibition properties, also directly targets VMAT2 and is responsible for a
non-exocytic release of amines [109]. Therefore, NE releases following amphetamine ad-
ministration is likely partially responsible for the locomotor increase observed in WT mice,
as it has been also observed in the NETKO mice in which VMAT2 could still be targeted by
amphetamine [108] and where amphetamine has significant locomotor effects.
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Interestingly, we observed no differences in behavioral sensitization to cocaine or
amphetamine after one week of chronic administration (Figure 4B,D). This seems to rule
out a role for NE transmission in this process, as has been earlier suggested using the
a1-adrenergic antagonist prazosin administration in the PFC upon amphetamine adminis-
tration [110], but not replicated in self-administration studies [111]. Besides the explanation
of developmental adaptation in our model, another possible reason for the lack of effect
could be that a1-adrenergic receptors are co-localized with D1 dopamine receptors [112],
and therefore the effect of prazosin could likely occur even in the absence of NE release, a
hypothesis that remains to be investigated in the VMAT2DBHcre KO mice.

4.6. Circadian Rhythms

The 24-h rhythms in physiology and behavior are governed by the master circadian
clock which resides in the suprachiasmatic nuclei (SCN) of the hypothalamus, but other
clock gene-expressing brain regions may contribute as well [113,114].

Accumulating evidence suggests that the clock system is interconnected with the HPA
axis via synaptic connections between the SCN and the PVN [115–117]. Interestingly, the
stress system, through the HPA axis, communicates with the clock system; therefore, any
uncoupling or dysregulation could potentially cause several disorders, such as metabolic,
autoimmune, and mood disorders [118]. Disruption of the physiological circadian rhythms
induces an increase in NE level both in the LC and in the PVN [119]. A meta-analysis look-
ing at the level of NE in different projection areas during the light/dark cycle highlighted a
higher NE level during the dark phase and a stable or lower level during the light phase.
Some studies reported NE to peak between 1 and 3 h after the dark period onset, especially
in the PVN. Sleep deprivation induces an increase in NE level during the deprivation in
the medial PFC or an increase after the deprivation in the NAc [120].

We did not find any differences in locomotor activity rhythm periods between WT
and VMAT2DBHcre KO animals in constant darkness indicating that the NE deficit does not
affect circadian rhythm generation and thus SCN clock function (Figure 5A). We also found
total daily home cage activity derived from telemetry implant recordings to be normal;
however, VMAT2DBHcre KOs showed lower daily totals in running wheel activity, which
could reflect altered arousal regulation (Figure 5C–F).

4.7. NE and Sleep and Waves

LC-NE is implicated in arousal, as suggested by the original finding that LC neurons
are active during wake, decrease firing rate during NREM sleep, and are silent during REM
sleep [121]. Depletion of the dopamine-ß-hydroxylase (DBHKO mice) generates mice with
altered sleep and arousal patterns who tend to sleep more overall, but with less REM sleep
over a 24 h period [122,123]. Of importance, DBHKO mice have a total absence of NE and
E in the whole body [32] and most of them die early, due to the absence of peripheric NE
and E. Chemical rescue of DBHKO mice using L-threo-3,4-dihydroxyphenylserine (DOPS)
in the maternal drinking water did not rescue the survival rate of the animals (30 to 40%)
nor did it restore NE and E in all organs including several brain regions and the adrenal
glands [124]. Using CRISPR/Cas9 technology to disrupt the DBH gene selectively in adult
LC-NE neurons, NE-depleted mice have reduced wake length even in the presence of salient
stimuli and increased NREM sleep amount [125]. This study is in accordance with our data
which suggest that the lack of NE release led to a decrease in arousal concomitant with an
increase in sleep (only during some nocturnal hours), a sleep feature that becomes more
prevalent on the power spectrum analysis (Figure 6). Indeed, the slow wave activities in the
cortical EEG power spectrum during NREM were significantly increased in VMAT2DBHcre

KO mice as compared to controls (Figure 7). This increase was similar to what could be
observed in WT animals with optogenetic inhibition of neuronal activity in the LC [23].
It could appear contradictory to the princeps observation that NE activity is at its lower
during REM sleep [121]. However, whether it is down to zero has never been shown and
there is always some remaining NE activity [121,126]. It is therefore possible that the total
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absence of any residual NE tone (in our model and the previously cited) could have some
effect on the REM. There is therefore a logic to observe a “deeper” REM with elevated
theta rhythms. An alternative explanation would be a lack of potential DA release in the
LC-NE neurons in our model [48–50], that could affect the REM sleep. Collectively these
data indicate that the absence of NE release led to changes in sleep quality rather than
sleep quantity.

4.8. Transcriptomic Analyses

We used microarray technology to identify transcriptional changes occurring in the
absence of CNS NE, therefore genes that are likely under regulatory control of NE transmis-
sion. In addition to the LC which comprises most of the NE neurons in the brain, we also
investigated the brain regions formerly identified for receiving NE input [127–129]. These
regions implicated in cognitive and emotional functions, include the VTA, raphe nucleus,
DG of the hippocampus, NAc, and PFC. At the higher stringency threshold (log2 fold
change > 1; p < 0.05), the total number of differentially expressed genes (DEGs) revealed by
RNA microarray was not very high, with the lowest number of DEGs in the LC and the
VTA (14 and 12, respectively) and the highest number of DEGs in the dentate gyrus (54)
(Table 2). The fact that the LC appeared to be the least affected region was a striking finding
that could be associated with the absence of a “major” phenotype of the VMAT2DBHcre

KO mice, as compared to the phenotypes of the VMAT2DATcre KO mice and VMAT2SERTcre

KO mice [33,130–132]. This absence of NE role during brain early development is also in
agreement with the observation in humans with noradrenaline deficiency [133] or mice
with a constitutive deletion of DBH [32], of a cardiac, but not central, phenotype.

We also conducted a gene set enrichment analysis (GSEA) using the Hallmark, GO
molecular function, and GO biological process gene collections (Figure 9). Interestingly,
in the LC we mostly identified increased expression for several genes, including those
implicated in spindle organization or protein secretion, potentially linked to changes in
vesicular organization associated with the absence of VMAT2 in LC-NE neurons. Of
particular interest is the finding that the largest number of up- or down regulated genes
observed in GO classes was in the VTA, which could be a consequence of the direct
inhibitory role of NE on DA-VTA neurons as previously reported [44].

The heatmap representation of all individual up- or down-regulated genes revealed
the striking finding that for 4 of the 6 brain regions analyzed (LC, NAc, VTA, and raphe
nucleus), the same gene, SV2c, is the most highly up-regulated gene (Figure 8). We therefore
decided to validate the functional relevance of our differential transcriptomic analysis by
further functional investigation with the SV2c gene (Figure 10). It is interesting to highlight
other genes which expression is up-regulated in multiple areas (i.e., Hspa12a, a heat shock
protein family involved in ATP binding activity) or on the contrary genes with changes
specific to one structure. Surprisingly, when considering the most stringent analysis of the
transcriptomic profiling, changes in monoaminergic receptor genes expression were not
revealed in any structure. Interestingly, an upregulation of the tryptophan hydroxylase
gene expression, the synthesis enzyme of 5HT, as well as tyrosine hydroxylase and the
dopamine beta hydroxylase was observed in the raphe nucleus, confirming NE modulation
of 5HT and DA system. In the LC itself, gene involved in other neurotransmission systems,
including acetylcholine, orexin, and corticotropin-releasing hormone (i.e., Chrm1, Hcrt, and
crh, respectively) were up-regulated, indicating alteration of local circuitry and functionality
induced by NE depletion.

Overall, transcriptomic changes associated with NE neurotransmission alteration
represent powerful tools for further investigation of the molecular underpinning of NE
network implication in different behavioral states.
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4.9. SV2c Expression Is Regulated by NE Transmission and Chronic Stress

The synaptic vesicle glycoprotein 2c (SV2c) is a glycoprotein with twelve transmem-
brane domains found on vesicular membranes [134], and highly related to SV2a and SV2b.
While their functional roles are not yet clearly identified, SV2 proteins were found to be the
receptors for the Botulinum neurotoxin neuronal entry [135]. In contrast to SV2a and SV2b,
SV2c has a restricted localization in the brain, with no expression in the cortex and the
hippocampus [134,136,137], the two brain regions in our transcriptional analysis that did
not show any increased expression. Genetic deletion of SV2c has been shown to profoundly
affect DA neuron dynamics [138,139]. SV2c has been associated with the DA system in pre-
vious research. For example, a correlated decrease of SV2c was found in the post-mortem
brain of Parkinson’s patients [139], whereas in a 6OHDA mouse model, a DA lesion is
responsible for an increased expression of SV2c [138]; the difference in these observations
between animal models and human pathology could have several explanations, though it
remains strongly indicative of SV2c plasticity in these DA neurons. However, so far, its role
has not been investigated in the NE system.

First, we confirmed the increased expression of SV2c in VMAT2DBHcre KO mice using
quantitative in situ hybridization with radiolabeled probes (Figure 10A,B). Only in the LC,
we were able to verify a significant 20% increase in SV2c mRNA levels in the VMAT2DBHcre

KO mice. Previous work established that chronic social defeat stress (CSDS) induces
two phenotypes: mice that are susceptible to stress (∼70%) and exhibit social avoidance,
and those that are resilient against stress (∼30%) and continue to show a preference
for social interaction such as control mice [140]. In VMAT2DBHcre KO mice with brain-
specific NE depletion, we observed a profound increase proportion of susceptible animals
in response to chronic social defeat, KO mice have a strong susceptible phenotype [44].
We were able to confirm our hypothesis that an increase in SV2c expression could be
a marker of NE-depletion induced susceptibility to stress by demonstrating that there
was a 20% increase in SV2c expression in the LC of susceptible mice compared to control
mice, but not in resilient mice (Figure 10C,D). Although the presynaptic mechanisms
responsible for NE release alteration in stress susceptibility are unknown, the increased
SV2c expression observed in the LC of susceptible mice could either be the presynaptic
mechanisms responsible for the NE release dysregulation or serve as a compensatory
mechanism aimed at normalizing NE release in this condition. This functional correlation
fully validates the differential transcriptomic analysis that was conducted and could offer
interesting targets for further validation.

5. Conclusions

Despite the brain-wide distribution of NE that makes it a challenging system to target,
the NE system remains a viable target for new drug discovery. A better understanding
of NE influences in cognitive control and executive function could offer therapeutic op-
portunities for disorders such as attention-deficit hyperactivity and the cognitive deficits
observed in schizophrenia, bipolar disorders, and dementia. Moreover, unraveling the
exact implication of NE in anxiety, mood, and vulnerability to stress could help ameliorate
therapeutic strategies for anxiety and depressive disorders, especially when only 30%
of depressed patients achieve complete remission after a single antidepressant trial. In
VMAT2DBHcre KO mice with an unprecedented absence of central NE release, there is no
strong phenotype, neither developmental nor behavioral, even though NE plays a role in
several brain functions. The NE system appears to be quite silent at the constitutive level,
only when the system is challenged, by either acute or chronic stress, do differences emerge
due to central NE depletion pointing to its critical role in stress modulation.
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