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Simple Summary: In this study, we aimed to determine the correlation between pyroptosis-related
lncRNAs and gastric cancer prognoses. A novel predictive signature including six pyroptosis-related
lncRNAs was established for the purposes of gastric cancer and immune status prognoses, which were
achieved by using bioinformatics tools. After multiple validations, we confirmed that this signature
possessed a good predictive performance. We found that high risk was associated with increased immune
cell infiltration, increased immune function scores, and up-regulated expressions of immune checkpoints;
in other words, the high-risk gastric cancer patients were more likely to benefit from the combination of
immunotherapy and chemotherapy. Then, we performed quantitative reverse transcription polymerase
chain reactions in order to verify the risk model. Further, the results indicated that pyroptosis-related
genes play a crucial role in tumor progression and prognosis. In summary, the six pyroptosis-related
lncRNAs in this study can be used as novel biomarkers for the prognosis and treatment of gastric cancer.

Abstract: Gastric cancer (GC) is a malignant tumor with a low survival rate, high recurrence rate,
and poor prognosis. With respect to this, pyroptosis is a type of programmed cell death that can
affect the occurrence and development of tumors. Indeed, long non-coding RNAs (lncRNAs) were
broadly applied for the purposes of early diagnosis, treatment, and prognostic analysis in regard
to cancer. Based on the association of these three purposes, we developed a novel prognosis risk
model based on pyroptosis-related lncRNAs (PRlncRNAs) for GC. The PRlncRNAs were obtained via
univariate and multivariate Cox regression in order to build the predictive signatures. The Kaplan–
Meier and gene set enrichment analysis (GSEA) methods were used to evaluate the overall survival
(OS) and functional differences between the high- and low-risk groups. Moreover, the correlation of the
signatures with immune cell infiltration was determined through single-sample gene set enrichment
analysis (ssGSEA). Finally, we analyzed this correlation with the treatment responses in the GC patients;
then, we performed quantitative reverse transcription polymerase chain reactions (qRT-PCRs) in order
to verify the risk model. The high-risk group received a worse performance in terms of prognosis and
OS when compared to the low-risk group. With respect to this, the area under the receiver operating
characteristic curve (ROC) was found to be 0.808. Through conducting the GSEA, it was found
that the high-risk groups possessed a significant enrichment in terms of tumor–immunity pathways.
Furthermore, the ssGSEA revealed that the predictive features possessed strong associations with
immune cell infiltration in regard to GC. In addition, we highlighted that anti-immune checkpoint
therapy, combined with conventional chemotherapy drugs, may be more suitable for high-risk patients.
The expression levels of LINC01315, AP003392.1, AP000695.2, and HAGLR were significantly different
between the GC cell lines and the normal cell lines. As such, the six PRlncRNAs could be regarded as
important prognostic biomarkers for the purposes of subsequent diagnoses, treatments, prognostic
predictions, and the mechanism research of GC.
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1. Introduction

Despite the steady decline in the global incidence of GC over the past few decades,
GC remains the most significant cancer worldwide. Indeed, as of 2020, GC was, statistically,
ranked fifth in terms of incidence and fourth in terms of mortality worldwide. This is
with more than 1 million new patients and about 769 thousand deaths in one year [1].
Furthermore, due to the high heterogeneity and the deficiency with respect to the spe-
cific symptoms of GC, it is often undiscovered until the condition of the affected patient
deteriorates [2,3]. At present, the first choice of GC patients with respect to treatment is
still surgical resection combined with adjuvant chemoradiotherapy [4]. However, the high
recurrence rate and low survival rate of patients with advanced gastric cancer still led to a
large number of deaths [5]. Although the combined application of chemo-immunotherapy
has significantly prolonged the OS of GC patients, the development of multidrug resistance
(MDR) of GC cells often leads to poor patient prognoses.

Pyroptosis is a multifactorial and catalyzed form of cell death. In 2018, the Cell
Death Nomenclature Committee (NCCD) proposed to define cell pyroptosis as a type of
regulatory cell death (RCD), which is usually caused by the activation of inflammatory
caspase. The activation of the gasdermin (GSDM) protein family members, as well as
the formation of plasma membrane pores on the cell membrane surface, is a key step
in the process [6]. Hence, pyroptosis is also defined as GSDM-mediated programmed
necrosis [7]. The cleavage of GSDMs leads to continuous cell expansion until rupture, and
the release of cell content causes a robust inflammatory response [8]. The major inducers
are found in the canonical caspase-1 inflammasome or caspase-4, -5, and -11, which are
activated by cytosolic lipopolysaccharides [9]. Recent studies report that pyroptosis can
impact all of the stages of carcinogenesis, and inducing pyroptotic cellular death could be
a promising therapeutic option for managing and regulating multiple cancers [10,11]. It
was reported that the down-regulation of gasdermin D (GSDMD) protein expression, a
key factor triggering pyroptosis, could induce the proliferation of GC cells by regulating
cell cycle-related proteins [12]. After chemotherapy, the drug-induced cleavage of GSDME
by caspase-3 would mediate apoptosis into pyroptosis in some cancer cells expressing
GSDME [13]. In addition, studies have found that a variety of drugs play anti-tumor effects
through pyroptosis-related pathways [14,15].

LncRNAs are molecules with a transcript length of more than 200 nts. They do not
encode proteins but only participate in their regulation in the form of RNA. Many studies
have revealed that lncRNAs are an essential part of the normal functioning of biological
mechanisms and are involved in a variety of pathophysiological activities, including
psychiatric disorders, tumors, and cardiovascular diseases, as well as aging [16–19]. More
importantly, lncRNAs possess an abnormal expression in GC, which can affect the progression,
metastasis, treatment, and prognosis of gastric cancer through multiple pathways [20–23].
Therefore, lncRNAs act as biomarkers for the purposes of early GC detection [24,25]. Moreover,
recent studies have found that certain lncRNAs may regulate pyroptosis in order to affect
tumor proliferation, invasion, and metastasis [26,27]. Meanwhile, increasing evidence shows
that LncRNAs and related mRNAs can induce drug resistance in gastric cancer [28–30],
indicating the potential clinical significance of ncRNAs as a new therapeutic target and
prognostic biomarker for gastric cancer.

Having said this, the prognostic significance, as well as the diagnostic and therapeutic
value of PRlncRNAs in GC, have rarely been studied. It is still unclear whether they
could be a prognostic indicator of GC or whether they are related to the immune functions
of GC and drug treatments. Therefore, we established a prediction signature based on
PRlncRNAs in order to provide new treatment guidance for GC, ameliorate the worst
outcome of GC, and further explore its working mechanism. We also employed two external
cohorts to validate the prognostic, predictive ability of the risk model. Then, we combined
predictable clinicopathological features and risk scores to construct an efficient nomogram
to predict the survival rate of GC patients. Furthermore, the molecular characteristics,
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clinical significances, tumor microenvironment, immune checkpoint profiles, and benefits
of chemotherapy regarding the PRlncRNA signature were also explored.

2. Materials and Methods
2.1. Patients and Datasets

The RNA-seq (i.e., 32 normal samples and 375 tumor samples) and the clinical data
of GC were acquired from the TCGA website (https://portal.gdc.cancer.gov/, accessed
on 13 January 2022), based on the gene annotated GTF files from the GENCODE website
(https://www.gencodegenes.org/human/, accessed on 17 June 2021). We identified 14,142
lncRNA and 19,658 protein-coding genes. To fully verify the differential expression of the
LncRNAs in gastric cancer and normal tissues, the genotypic tissue expression data of
359 normal gastric tissues were downloaded from GTEx website (https://gtexportal.org/
home/, accessed on 21 February 2023). By taking the intersection of identified protein-
coding genes and 255 pyroptosis-related genes, which were downloaded from GeneCards
(https://www.genecards.org/, accessed on 25 January 2022), 239 pyroptosis-related genes
of GC patients were determined. Moreover, Cytoscape (version 3.6.1, https://cytoscape.
org/, accessed on 9 March 2022) was used in order to visualize the co-expression networks
between PRlncRNAs and genes.

2.2. Establishment and Validation of the PRlncRNAs Risk Model

Pearson correlation analysis was performed using R software (version 4.1.3, https:
//www.r-project.org/, accessed on 30 January 2022) in order to calculate the correlations
between the 14,142 lncRNAs and 239 pyroptosis-related genes. The 1310 lncRNAs associ-
ated with pyroptosis were identified with correlation coefficients |R2| > 0.3 and p < 0.001.
Patients with an overall survival of <30 days were excluded. In addition, we successively
used univariate and multivariate Cox regression analysis in order to obtain six selected
PRlncRNAs, which were then used to confirm the prediction feature. The formula was as
follows: Risk score = ∑n

i=1(Coe f i × Xi). Coef: coefficient value; X: expression of lncRNAs.
This PRlncRNAs risk model was further validated in two GEO cohorts (GSE15459 and
GSE62254). Subsequently, the decision curve analysis (DCA) was performed to evaluate
the intended clinical effectiveness of this model with two published related models [31,32].

2.3. Prediction of OS in GC Patients by Establishing A Prognostic Nomogram

A nomogram was built using the rms package in R 4.1.3 to predict the one-, three-, and
five-year survival rates of GC patients by combining risk scores with the clinicopathologic
features of: age, sex, grade, and disease stage. Meanwhile, a calibration curve tested the
agreement between prediction and reality.

2.4. Differences in Functional Enrichment and Immune Infiltration within the Two Risk Groups

We grouped the GC patients into high- and low-risk groups according to their median
risk score. We analyzed the significantly enriched pathway genes through GSEA4.1.0
(https://www.gsea-msigdb.org/gsea/index.jsp, accessed on 5 April 2022). The threshold
criteria were set with a statistical significance of p < 0.05 and FDR < 0.25. Subsequently, we
used the "GSVA" package in order to perform the ssGSEA [33].

2.5. Evaluation of Immunotherapy and Drug Therapy

Conventional chemotherapy drugs for GC were used to calculate the half-maximal
inhibitory concentration (IC50). Then, this was compared between the two groups through
a Wilcoxon signed-rank test in R 4.1.3 package pRRophetic.

2.6. Cell Culture and qRT-PCR

Normal gastric epithelial cell lines (GES-1) and 5 human gastric cancer cell lines (AGS,
MKN45, MKN28, HGC27, and SGC-7901) were preserved in our laboratory. These cells
were cultured in an RPMI-1640 medium (Gibco, Billings, MT, USA) containing a 10% fetal

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org/human/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.genecards.org/
https://cytoscape.org/
https://cytoscape.org/
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bovine serum (FBS, Gibco, Billings, MT, USA) of penicillin and streptomycin (Gibco, Billings,
MT, USA, 1 U/mL and 0.1 mg/mL, respectively), which were incubated at 37 ◦C in a
humidified atmosphere of 5% CO2. The total RNA was isolated from the cells by using an SV
Total RNA Isolation System (Promega, Madison, WI, USA). The quality and concentration
of RNA samples were examined by using NanoDrop™ 2000/2000c Spectrophotometers
(Thermo Fisher Scientific, Waltham, Massachusetts, USA). Moreover, the RNA (2µg) was
reversely transcribed into cDNA using a GoScript Reverse Transcription System (Promega,
Madison, WI, USA), according to the manufacturer’s instructions. The quantitative RT–PCR
was performed using a TaKaRa SYBR®Premix Ex Taq™ (TaKaRa, Dalian, China) on a CFX
Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The volume was
adjusted by: 20 µL of the total reaction volume; 10 µL of the SYBR Premix Ex Taq II (2×);
2 µL of cDNA; 0.8 µL of the upstream and downstream primers; and the addition of sterile
purified water. The amplification conditions were: 95 ◦C for 30 s, 95 ◦C for 5 s, 60 ◦C for
30 s, and 40 cycles. Furthermore, 2–∆∆Cq was used to analyze the data, and the experiment
was repeated three times. All primers used in the PCR are listed in Table 1. Lastly, the
expression levels of the risk lncRNAs were normalized to the expression levels of GADPH.

Table 1. The sequences of primers used in this study.

Primers Gene Sequence (5′–3′)Forward Primer Reverse Primer

LINC01315 TCCGCGCTCTGAAGGATCTC CTTGACCACCCCCGGATTC
HAGLR TCCCCACCTTCCCCAAAGTA GGAGGGTCTACCTCGTTTGC
AP000695.2 GGACACTCTGAAGGAACTC GATGACCATTAGCCAACAAG
AP003392.1 GAATTCACCCACCTCAGCC GTGTGCGTTTTCCCACTGTC
GAPDH GGAGTCCACTGGCGTCTTCA GTCATGAGTCCTTCCACGATACC

2.7. Statistical Analysis

The latest version of R software (version 4.1.3) was used as the statistical analysis tool.
The final PRlncRNA, as well as the relationship between PRlncRNA and OS, were screened
using univariate and multivariate Cox regression analysis. The OS of the patients in the
two groups were analyzed by the Kaplan–Meier method and log-rank test. In addition, the
ROC curve was drawn by the survival ROC package. Lastly, the ssGSEA was performed
via the GSVA package.

3. Results
3.1. Identification of Significant Prognostic Values of PRlncRNAs in GC

A complete workflow for our research process is depicted in Figure 1. By analyzing
the correlation coefficient of the pyroptosis-related coding genes (mRNAs) and lncRNAs,
we identified 1310 PRlncRNAs. Through the univariate Cox regression analysis, we ob-
tained 28 PRlncRNAs for the GC patients with a hazard ratio (HR) < 1, which means
low risk, and an HR > 1, which means high risk (Figure 2A). After completing the mul-
tivariate Cox regression analysis, six PRlncRNAs were confirmed in order to establish a
forecasting model; namely, LINC01315, AL161785.1, AP003392.1, AP000695.2, HAGLR,
and AL590666.2 (Table 2). The expressions of the six PRlncRNAs in GC are shown in
Figure 2B. Then, we compared the expression level of the LncRNAs in gastric cancer and
normal adjacent tissues. We found that there were significant differences in the expression
levels of 6 LncRNAs regardless of the single TCGA data set (Tumer = 375, Normal = 32)
or TCGA combined with GTEx data set (Tumer = 375, Normal = 391). Among them,
LINC01315, AP003392.1, AL590666.2, and HAGLR were highly expressed in gastric can-
cer tissues, while the expression levels of AP000695.2 and AL161785.1 in gastric cancer
tissues were lower than those in normal tissues (Supplementary Figure S1). The lncRNAs
were visualized by Cytoscape and the ggalluvial in the R software package. The 16 pairs
of the lncRNA-mRNA co-expression network are displayed in Figure 2C (|R2| > 0.3
and p < 0.001). Moreover, AP003392.1 possessed a co-expressive relationship with nine
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pyroptosis-related genes (i.e., NLRP1, CARD8, DPP8, MALAT1, AGER, KLF3-AS1, MEG3,
CHMP4A, and TIRAP). Furthermore, AP000695.2 possessed a co-expressive relationship
with two pyroptosis-related genes (IL18 and ANXA2). Indeed, AL590666.2 possessed a
co-expressive relationship with two pyroptosis-related genes (E2F4 and CDC37). Simi-
larly, LINC01315 was co-expressed with ASIC1, AL161785.1 with FNDC4, and HAGLR
was co-expressed with GSDMA. However, LINC01315, AP003392.1, and AL590666.2 were
found to be protective factors. Further, AL161785.1, AP000695.2, and HAGLR were es-
tablished as the risk factors (Figure 2D). The risk score = (−0.448 × LINC01315 exp)
+ (0.581 × AL161785.1 exp) + (−0.673 × AP003392. 1 exp) + (0.564 × AP000695.2 exp) +
(−0.449 × HAGLR exp) + (−0.217 × AL590666.2 exp), exp: expression.
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Figure 1. Workflow of the prognostic risk model analysis.

Table 2. The risk model of six pyroptosis-related lncRNAs with prognostic values in GC.

LncRNA Coef HR HR.95L HR.95H p-Value Risk

LINC01315 −0.44778677 0.639040932 0.397446603 1.027492273 0.064597435 Low
AL161785.1 0.581346496 1.788444945 1.078224415 2.966483855 0.024342675 High
AP003392.1 −0.673152024 0.5100982 0.303220602 0.858121684 0.011195944 Low
AP000695.2 0.564391358 1.758377234 1.065509457 2.901795454 0.027228282 High
HAGLR 0.449545667 1.567599812 1.163590693 2.111884517 0.003113121 High
AL590666.2 −0.216868363 0.805035935 0.669152194 0.968513385 0.021497057 Low

Coef: the coefficient of lncRNAs correlated with survival, HR: hazard ratio, HR.95L: low 95% CI of HR, and
HR.95H: high 95% CI of HR.
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Figure 2. Screening of PRlncRNAs, which were significantly associated with a prognosis of GC.
(A) A univariate Cox proportional hazards analysis revealed the HR (95% CI) and p-value of the
selected lncRNAs in the forest plot. (B) Heat map of the differential expression of six PRlncRNAs
with a prognostic value in regard to gastric cancer and normal tissues. (C) The prognostic pyroptosis-
related lncRNA co-expression network. (D) The visualized Sankey diagram. N: nomal; T: tumer;
NLRP1, CHMP4A, MEG3, KLF3-AS1, IL 18, ANXA2, CDC37, E2F4, GSDMA, ASIC1, FNDC4,
MALAT1, DPP8, CARD8, TIRAP, AGER: Pyroptosis-related mRNAs.

3.2. Exploring the Value of Six Prlncrnas as Independent Risk Models in Terms of Predicting the
Outcome of GC Patients

Patients were divided into high- and low-risk groups in accordance with the median
calculated risk score. The results indicated, as determined by the Kaplan–Meier method’s
analysis, that the OS of the high-risk group was significantly shorter than that of the
low-risk group (Figure 3a, p < 0.001). The risk scores of the two groups are shown in
Figure 3b. Moreover, the mortality of the patients was positively correlated with the risk
score (Figure 3c). The expressions of AL161785.1, AP000695.2, and HAGLR were up-
regulated in the high-risk group, whereas in regard to the low-risk group, the LINC01315,
AP003392.1, and AL590666.2 were up-regulated (Figure 3d). The value of a predictive
characteristic in terms of a GC prognosis was assessed by conducting a Cox regression
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analysis. Furthermore, by conducting a univariate Cox regression analysis, it was shown
that the risk score, age, and tumor size, nodal status, and metastases(TNM) stage, as well
as the T and N stage of GC patients, were all closely correlated with the OS in GC patients
(Figure 4A). As per the multivariate Cox regression, only age and risk score were closely
correlated with the OS (Figure 4B). Indeed, the area under the ROC curve (AUC) of the risk
score was 0.808, thereby indicating that the predictive signature possessed a good predictive
performance (Figure 4C). Furthermore, the AUCs for the one-, three-, and five-year survival
were 0.734, 0.709, and 0.775, respectively (Figure 4D). DCA is a method for evaluating and
comparing multiple clinical prediction models. The decision curves showed the highest net
benefit for the PRlncRNAs’ signature (“This model”) compared with the default strategies
(“All” and “None”) and clinical traits with prognostic significance (“854785” represented
the model from [31]; “816153” represented the model from [32]) (Figure 4E–G). The results
showed that the N and T stage, TNM stage, age, and vital status were significantly different
between the two groups (Figure 5).
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Figure 3. Evaluation of the prognostic value regarding the six PRlncRNAs’ risk models. (a) Kaplan–
Meier OS curves with respect to the high- and low-risk groups. (b) The risk curves, as based on the
patient risk scores. (c) Scatter plot, which was established according to the patients’ survival statuses.
The blue dots represent survival, and the orange dots represent death. (d) A heatmap that shows the
differential expression levels of PRlncRNAs with respect to the high- and low-risk groups.
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Figure 4. Correlation of risk models regarding the six PRlncRNAs with a prognosis in GC. (A) The
univariate Cox regression analysis. (B) The multivariate Cox regression analysis. (C) The ROC curves,
which showed the AUC for the risk scores and clinicopathological variables. The clinicopathological
variables were as follows: age, sex, grade, TNM stage, T, and tumor. Abbreviations—M: metastasis
and N: lymph node. (D) The ROC curves and AUCs for the one-, three-, and five-year survival rates,
as per the risk model. (E–G) Decision curve analysis (DCA) curves for overall survival at 1, 3, and
5 years to evaluate the efficacy of different clinical models, and the red line represents this model;
the orange line represents the model from [31]; the blue line represents the model from [32]. RCL:
random guessing line, the baseline of a ROC curve.
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In order to further assess the effect of the predictive features, we created a nomogram
integrating the risk score and clinical factors of age, stage, and grade for comprehensively
predicting the GC patients’ OS at 1, 3, and 5 years (Figure 6A). We showed the use of the
nomogram in the supplementary document, and compared the efficiency of the nomogram
made by the model with the traditional prognostic indicators through DCA (Supplementary
Figure S2). Our nomogram displayed better accuracy in predicting both short- and long-
term survival. In addition, the calibration plot of the nomogram for 1, 3, and 5 years showed
optimal agreement between the prediction by the nomogram and the actual observation
outcome (Figure 6B–D).
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Figure 6. Establishment of the nomogram of the predicted signatures, as well as the verification of its
reliability. (A) The one-, three-, and five-year OS in patients with GC, as forecasted by the nomogram
containing the clinicopathological variables and risk scores. (B–D) The calibration curves that were
used in order to explore whether the actual OS rates were consistent with the predicted survival rates.
Perfect prediction would correspond to the grey line. The blue dots represent the actual incidence.
The red line is the predicted fitting line obtained by bias correction.

3.3. Assessing the Effect of Different Clinicopathological Variables on the Performance of Predictive
Signatures in GC Patients

In order to determine the influence of the different clinicopathological variables with
respect to the predictive signature efficiency in the GC patients, the GC patients were thus
grouped according to their clinical manifestation. In all the groups, the OS of the low-risk
group was significantly longer than that of the high-risk group (Figure 7). Furthermore, the
results suggested that the predictive signature remained valid, as well as independent of
the clinicopathological variables.

3.4. Verification of the Risk Model

A total of 294 GC samples were randomly assigned to the training and testing sets
(n = 147) in order to verify the applicability of the predicted signatures based on the entire
TCGA dataset. The clinical statistics of the 294 patients are shown in Table 3. The results of
the two sets were aligned with the entire set, thus showing that the low-risk group possessed
a higher OS rate than that of the high-risk group (Figure 8A, p = 5.03 × 10−8; Figure 8C,
p = 1.805 × 10−4). The AUCs of the 5-year survival group with respect to the training
and testing sets were 0.795 and 0.74, respectively—thereby demonstrating good prediction
performance (Figure 8B,D). To evaluate the accuracy of the model’s prediction results, the
predictive ability of the risk model was also validated in GSE62254 and GSE15459. The
AUCs for predicting OS at 1, 3, and 5 years were 0.622, 0.705, and 0.714 in GSE15459 and
0.682, 0.617, and 0.630 in GSE62254, respectively (Figure 8E–H). In line with the TCGA
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cohorts, our risk model could independently predict the prognosis of GC patients in two
external test cohorts.
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Table 3. Clinical features of stomach adenocarcinoma (STAD) patients in TCGA database.

Feature N (294) %

Age (years)
≤65 135 45.9
>65 159 54.1
Vital status
Alive 188 63.9
Dead 106 36.1
Gender
Female 109 37.1
Male 185 62.9
Grade
G1 7 2.4
G2 101 34.4
G3 186 63.2
TNM stage
Stage I 37 12.6
Stage II 97 33
Stage III 130 44.2
Stage IV 30 10.2
T stage
T1 13 4.4
T2 60 20.4
T3 144 49
T4 77 26.2
M stage
M0 276 93.9
M1 18 6.1
N stage
N0 89 30.3
N1 80 27.2
N2 63 21.4
N3 62 21.1

3.5. Differences in Immune Cell Infiltration and Immune-Related Pathways between the Two
Groups

The differences regarding the tumor immune cell infiltration and immune function
were analyzed with the use of ssGSEA between the different risk groups. In terms of
the immune cells, there were significant differences between the two risk groups in the
activated dendritic cells (aDCs), B cells, CD8+ T cells, DCs, immature dendritic cells (iDCs),
macrophages, mast cells, neutrophils, plasmacytoid dendritic cells (pDCs), T helper cells,
tumor-infiltrating lymphocytes (TILs), and regulatory T cells (Tregs) (Figure 9A). Regarding
the immune function score, the scores of the antigen-presenting cell (APC) co-inhibition,
APC co-stimulation, chemokine receptor (CCR), checkpoint, human leukocyte antigen
(HLA), para-inflammation, type II interferon response, T cell co-stimulation, and T cell
co-inhibition in the high-risk group were significantly higher than those found in the low-
risk group (Figure 9B). In other words, the immune function of the high-risk groups was
found to be more active. Given the importance of current immunotherapy for patients
with GC, we further analyzed the distribution of immune checkpoints in the two risk
groups. The results indicated that most of the immune checkpoints were significantly up-
regulated in the high-risk group, whereas only TNFRSF25 and TNFRSF14 were significantly
up-regulated in the low-risk group (Figure 9C).
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Figure 8. Internal and external validation of the performance regarding the predicted signatures.
(A) The Kaplan–Meier survival curves of the training set. (B) The ROC curves and AUCs for the one-,
three-, and five-year survival groups of the training set. (C) The Kaplan–Meier survival curve of
the testing set. (D) The ROC curve and AUCs for the one-, three-, and five-year survival groups of
the testing set. (E) The Kaplan–Meier survival curves of the GSE15459 set. (F) The ROC curves and
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survival curves of the GSE62254 set. (H) The ROC curves and AUCs for the one-, three-, and five-year
survival groups of the GSE62254 set. RCL: random guessing line, the baseline of a ROC curve.
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3.6. Functional Enrichment Analysis Conducted via GSEA between Different Risk Patients

The possible discrepancies in the signaling pathways between the two risk groups
were investigated via the use of GSEA. The results showed that the extracellular matrix
(ECM) receptor interaction, cytokine receptor interaction, lysosome, complement and co-
agulation cascades, calcium signaling pathways, and cell adhesion molecule cams were
significantly enriched in the high-risk group. In contrast, the RNA degradation, spliceo-
some, base excision repair, basal transcription factors, and aminoacyl tRNA biosynthesis
were significantly enriched in the low-risk group (Figure 10A).

3.7. Relationships between the Predictive Signature and Treatment of GC

Several commonly used GC chemotherapy drugs were selected in order to evaluate
the correlation between chemotherapy and the predictive signature, as well as to then
develop better treatment plans. The results suggested that Bryostatin.1, Cisplatin, Dasatinib,
Docetaxel, Gemcitabine, Parthenolide, Pazopanib, Rapamycin, Sunitinib, Temsirolimus,
and Vinblastine possessed lower IC50s in the high-risk group, while Mitomycin C possessed
higher IC50s in the low-risk group (Figure 10B–M).
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Figure 10. Functional enrichment and drug susceptibility analysis of the predicted signatures. (A) The
function of pathways associated with the predicted signatures, as determined via GAEA. (B–M) The
IC50 of Bryostatin.1, Cisplatin, Dasatinib, Docetaxel, Gemcitabine, Parthenolide, Pazopanib, Rapamycin,
Sunitinib, Temsirolimus, Vinblastine, and Mitomycin C in the high- and low-risk groups.

3.8. Differential Expression of the Six PRlncRNAs

Moreover, we selected four PRlncRNAs (LINC01315, AP003392.1, AP000695.2, and
HAGLR) with known sequences in the model to validate the expression of PRlncRNAs in
the gastric epithelial cell line, GES-1, and the GC cell lines, AGS, MKN45, MKN28, HGC27,
and SGC-7901, by qRT-PCR. As shown in Figure 11A–D, we could observe that LINC01315,
AP003392.1, and HAGLR were significantly upregulated in the GC cell lines compared
to those in the GES-1 cells. Meanwhile, the expressions of AP000695.2 were significantly
lower in the GC cell lines, and it is consistent with the results of our bioinformatics analysis
and lays a foundation for our further institutional research.
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4. Discussion

GC often occurs in atrophic gastritis and intestinal metaplasia; furthermore, it mostly
originates from the chronic infection of the gastric mucosa [34]. As a multifactorial disease,
GC possesses the characteristics of a low OS rate, high recurrence rate, and poor progno-
sis [35]. Due to the issue of poor prognosis, targeted therapy and prognostic evaluation are
particularly important in order to improve the prognosis and life happiness index of GC
patients. Therefore, it is necessary to develop a high-quality and powerful prognostic risk
assessment model for GC.

Pyroptosis usually involves the occurrence and development of malignant tumors;
further, this issue may be a double-edged sword with respect to the pathogenesis of tumors.
Pyroptosis activates multiple signaling pathways and releases inflammatory mediators
in order to induce tumorigenesis, as well as to cause chemotherapy resistance [36]. In
addition, pyroptosis can inhibit tumor progression through cell death [37].

As a research hotspot and difficulty in the era of biological genomics, many studies
have shown that tumor occurrence, metastasis, and tumor stage are closely related to the
abnormal expression and mutation of lncRNAs [38,39]. Interestingly, recent studies have
reported that lncRNAs also have some influence on tumor recurrence [40,41]. Therefore,
due to their specific phrase in certain types of cancer, lncRNAs could represent a potential
new class of prognostic, diagnostic, and therapeutic targets for treating cancer.

The roles of lncRNAs and pyroptosis in the progression of GC have been described
above in this study. With the development of biomedicine, PRlncRNAs are widely used in
the diagnosis and treatment of tumors, including GC [31,32,42,43]. Therefore, it is necessary
to generate a PRlncRNA predictive signature in order to predict the prognosis of GC. In
this study, we identified six PRlncRNAs (LINC01315, AL161785.1, AP003392.1, AP000695.2,
HAGLR, and AL590666.2) and included them in the predictive risk model. Previous studies
have shown that AP003392.1 was used to establish a ferroptosis-related risk model in
order to predict the prognosis of GC [44]. Similarly, Wang et al. reported that AP000695.2
acts as a novel prognostic biomarker and regulates the cell growth and migration of lung
adenocarcinoma [45]. As such, HAGLR and LINC01315 have become diagnostic and
prognostic markers for various cancers due to their close relationship with malignant
tumors. In addition, HAGLR sponges, miR-338-3p, could promote 5-Fu resistance in gastric
cancer by targeting the LDHA-glycolysis pathway [46]. Instead, the overexpression of
LINC01315 predicted a worse outcome of triple-negative breast cancer [47]. Additionally,
LncRNA AL161785.1 was used to construct a prognostic model of gastric adenocarcinoma
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related to glycolysis [48]. The previous findings indirectly confirmed the reliability of the
prediction model in this study. Having said that, AL590666.2 was first identified as a new
biomarker in order to predict the prognosis of GC patients. We also found that the mRNAs
(i.e., the encoded NLRP1, CARD8, DPP8, MALAT1, AGER, KLF3-AS1, MEG3, CHMP4A,
IL18, E2F4, FNDC4, GSDMA, CDC37, ANXA2, TIRAP, and ASIC1) were significantly co-
expressed with these lncRNAs. Moreover, NLRP1 and CARD8 are inflammasome-related
pattern recognition receptors; further, they activate inflammatory cytokines and induce
pyroptosis in order to respond to intracellular risk-related signals [49]. The inhibition of
Dpp8/9 activates the Nlrp1b and CARD8 in inflammasomes and results in pro-caspase-1-
mediated pyroptosis [50]. Moreover, ANXA2 can promote the progression and metastasis
of GC through the EphA2-YES1-ANXA2 signaling pathway [51]. ASIC1 promotes NLRP3
inflammasome activation and IL-1β release in order to induce pyroptosis [52]. FNDC4
inhibits pyroptosis by blunting the inflammasome activation of GSDMD-processing and
the IL-1β release [53]. In addition, GSDMA is an essential mediator in the process of
cell pyroptosis [54]. Here, we built a predictive model based on six pyroptosis-related
lncRNA signatures for the purposes of GC prognosis. The prognostic pyroptosis signature
can successfully categorize patients into subtypes with different survival outcomes. The
predictive signature is established in TCGA dataset and verified by GEO external dataset.
At the same time, it is screened by large-scale co-expression of LncRNA and the genes
related to pyroptosis. The strict screening criterion is correlation coefficients | R2 | > 0.3 and
p < 0.001. Big data analysis of bioinformatics and in vitro cells were carried out to verify the
differential expression of the model between normal and cancer tissues, and the prospect of
the model in tumor immune microenvironment and immunotherapy was deeply analyzed.
Due to the differences in screening methods, identification criteria, and sources of data sets,
the genes we identified are different from those of existing models, but the verification
results show some advantages of the model The result of internal and external verification
showed that the predictive signature possessed an excellent performance and was not
disturbed by clinicopathological variables. Moreover, we also compared the effectiveness
of the existing prognosis model with ours through the DCA decision curve, and the results
confirmed that the model constructed in this study is obviously superior to other models
in predicting survival. Then, we constructed the nomograph based on the multi-factor
regression analysis. According to the contribution of each influencing factor in the model to
the outcome variable, the predicted value of the individual outcome event can be calculated
intuitively so as to facilitate the evaluation of patients.

Regarding the results of ssGSEA, we found that several pathways were positively
associated with risk scores, including ECM receptor interaction, lysosome, cytokine re-
ceptor interaction, cell adhesion molecules, and calcium signaling pathways. Previous
studies have showed that αvβ6, as an abnormal expression of the ECM receptor in GC, is
associated with decreased survival rate and is recommended as a prognostic marker for
early tumors [55]. Other evidence suggests that cell adhesion molecules on malignant cells
are involved in invasion, metastasis, and immunosuppression [56,57]. The above results
indicate that high-risk patients are strongly associated with tumor-immune pathways, and
more of them are immunosuppressive pathways.

Through conducting the ssGSEA, it was revealed that the infiltration of Treg cells, mast
cells, and macrophages had increased in the high-risk group. With respect to this, recent
studies have indicated that mast cell infiltration in GC patients is increased and positively
related to tumor progression, thus indicating a poor prognosis [58]. The high infiltration of
Treg cells and Treg-mediated immune escape are correlated with poor survival in regard to
various cancers [59]. In this study, the high-risk group showed a stronger immune response
to HLA, para-inflammation, Type I Interferon (IFN), and Type II IFN; in other words, the
decline in anti-tumor immune function may lead to a poor prognosis.

In order to further explore the guiding role of the model in the chemotherapy and
immunotherapy of patients with different subtypes of gastric cancer, we analyzed the
difference in the expression of the immune checkpoints and the sensitivity to general



Biomolecules 2023, 13, 469 18 of 21

chemotherapy drugs in different groups. According to our results, most immune check-
points are highly expressed in high-risk groups such as CD27, CD28, and CD40, indicating
that immune checkpoint inhibitors may be more beneficial to high-risk groups for the
up-regulation of immune checkpoint-related genes [60–62]. Meanwhile, we highlighted
the fact that high-risk patients exhibited higher sensitivities to conventional chemotherapy
drugs, such as Bryostatin.1, Cisplatin, Dasatinib, Docetaxel, Gemcitabine, Parthenolide,
Pazopanib, Rapamycin, Sunitinib, Temsirolimus, and Vinblastine, the only exception be-
ing Mitomycin C. This conclusion is also largely consistent with clinical dosing habits,
where surgery combined with radiotherapy is usually used for patients evaluated for poor
prognosis [63]. Therefore, the present model for patient stratification is more applicable
to clinical treatment. Taken together, high-risk patients, after assessment by this model,
may be better candidates for the combination of immunotherapy and chemotherapy. In
addition, we detected the expression levels of these four PRLs in the gastric epithelial cells
and gastric cancer cell lines via qRT-PCR, which increased the credibility of our study. The
results are consistent with our analysis, and in future studies, we intend to use AP003392.1
and AP000695.2 as targets to investigate their mechanistic pathways in gastric cancer devel-
opment in depth, analyze their potential use as diagnostic markers, and explore the value
of prediction models for recurrence risk assessment.

In summary, a newly pyroptosis-related long non-coding RNA prognostic model has
been constructed, which may provide a better treatment strategy and clinical management
for GC. The six PRlncRNAs’ signatures showed high stability through multiple validations
on different data platforms. Compared with other models in the same period, it has certain
advantages in prediction validity. Through exploration of the multi-omics alterations,
immunological profiles, and pharmacological landscape of the six PRlncRNAs, the accuracy
and clinical applicability of the model were proved. Nevertheless, our research possesses
certain limitations. The actual application effect of the prediction model in clinical practice
is still unknown, and its internal mechanism remains to be further studied, which are two
topics we need to explore in the future.

5. Conclusions

In this study, we identified six PRlncRNAs that were associated with GC prognosis
and then built a prognosis-predictive risk model. The model possesses a good predictive
performance and may become a neoadjuvant tool for the purposes of the clinical prognostic
analysis and treatment of GC. These six PRlncRNAs are potential prognostic biomarkers
and may provide a reference for the study of GC pyroptosis.
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