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Abstract: Camelid heavy-chain antibody variable domains (VHH), nanobodies, are the smallest-
known functional antibody fragments with high therapeutic potential. In this study, we investigate
a VHH binding to hen egg-white lysozyme (HEL). We structurally and dynamically characterized
the conformational diversity of four VHH variants to elucidate the antigen-binding process. For
two of these antibodies, not only are the dissociation constants known, but also the experimentally
determined crystal structures of the VHH in complex with HEL are available. We performed well-
tempered metadynamics simulations in combination with molecular dynamics simulations to capture
a broad conformational space and to reconstruct the thermodynamics and kinetics of conformational
transitions in the antigen-binding site, the paratope. By kinetically characterizing the loop movements
of the paratope, we found that, with an increase in affinity, the state populations shift towards the
binding competent conformation. The contacts contributing to antigen binding, and those who
contribute to the overall stability, show a clear trend towards less variable but more intense contacts.
Additionally, these investigated nanobodies clearly follow the conformational selection paradigm, as
the binding competent conformation pre-exists within the structural ensembles without the presence
of the antigen.

Keywords: camelid VHH antibodies; affinity maturation; molecular dynamics; enhanced sampling;
Markov-state model

1. Introduction

Camelidae, similar to cartilaginous fish, are equipped with heavy-chain-only antibodies
(HCAbs). The variable domains of antibodies are also referred to as nanobodies or single-
domain VHH. [1–3]. In contrast to Elasmobranches, where the HCAbs diversified at least
220 million years ago, the development of camelid HCAbs is much more recent [4].

Structurally, camelid HCAbs consist of only two heavy chains, which can be sub-
divided into two constant domains and one variable domain. Nanobodies lack the hy-
drophobic interface, which is usually found in IgG-type antibodies. Nevertheless, they are
functional without their light-chain counterparts due to the introduction of five, mainly
hydrophilic, residues [5]. These substitutions, namely Leu11Ser, Val37Phe; Tyr, Gly44Glu,
Leu45Arg; or Cys, Trp47Gly (Kabat nomenclature), are conserved among all nanobodies
and are located at the surface of the variable domain [6,7]. The introduced amino acids
minimize the risk of aggregation, which is one of several reasons why nanobodies are a
valuable alternative to conventional antibodies as pharmaceuticals [3,8–11]. A structural
comparison between a conventional IgG-type antibody and a camelid antibody with its
variable domain is illustrated in Figure 1. The missing first constant domain, referred to
as CH1, and the missing light chains cause a reduction in the molecular weight, as shown
in this figure. The upper tip of the domain has a weight of about 15 kDa and represents
the binding site of a camelid VHH. This part also known as the paratope, consists of three
complementarity determining regions (CDR) named CDR 1, CDR 2 and CDR 3, which
are illustrated in light blue in Figure 2, together with the hypervariable region 4 (HV4).
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In conventional antibodies, the CDR 3 loop is located in a central position of the binding
interface and is known to be predominantly responsible for polypeptide recognition [12].
This loop has been widely studied and discussed in multiple papers and is known to
play a significant role in antigen binding. Its promiscuity has been linked to its flexibility,
although the correlation between specificity and flexibility seems to be only one of several
mechanisms that contribute to an increased binding affinity [13–15].
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Figure 1. Overview showing the different sizes of antibodies and their derivates. A structural 
comparison between a conventional IgG-type antibody and a camelid heavy chain antibody with 
its variable fragment is shown. Next to the schematic representation of the VHH, the structure of the 
respective single domain is depicted and the CDR 3 and the CDR1 loops highlighted in blue. 
Additionally, the molecular weights of the structures are shown, which range from 150 kDa for the 
conventional IgG-type antibody, to only 15 kDa for the VHH single domain. 

Figure 1. Overview showing the different sizes of antibodies and their derivates. A structural
comparison between a conventional IgG-type antibody and a camelid heavy chain antibody with
its variable fragment is shown. Next to the schematic representation of the VHH, the structure of
the respective single domain is depicted and the CDR 3 and the CDR1 loops highlighted in blue.
Additionally, the molecular weights of the structures are shown, which range from 150 kDa for the
conventional IgG-type antibody, to only 15 kDa for the VHH single domain.

Biomolecules 2023, 13, x FOR PEER REVIEW 3 of 17 
 

 
Figure 2. Tabular overview of the introduced point mutations (left). The introduced point mutations 
and respective positions are color-coded and shown as sticks for the cAB-lys3-gl2 (PDB: 1XFP) 
(right). The CDR loop regions CDR1, CDR2, CDR3 and the hypervariable region HV4 are 
highlighted in light blue and labeled. 

In this paper, the influence of point mutations on conformational diversity was 
characterized for a dataset of camelid VHH domains with different binding affinity [22–
24]. A total of four sequences with respective binding affinities were available differing in 
up to five mutations within the CDR 1 and CDR 2 loops. 

This work aims to investigate mechanisms of antigen recognition through a kinetic 
and thermodynamic description of the conformational diversity of the antigen binding 
loops. Therefore, conventional molecular dynamics simulations have been performed in 
combination with enhanced sampling techniques, in order to overcome limitations in the 
timescale, and for being able to reconstruct the free-energy surfaces. In particular, well-
tempered metadynamics simulations turned out to be a well-suited sampling technique 
for these comparably small systems. 

2. Materials and Methods 
The investigated dataset consists of two experimentally determined crystal structures 

(PDB codes: 1JTT, 1XFP) and two sequences which were modeled using the crystal 
structures as templates. Each of the four variants were simulated with and without the 
antigen present, resulting in a total of eight starting structures for molecular dynamics 
simulations, namely cAb-gl1+2, cAb-gl1, cAb-gl2 and cAb as the unbound structures, and 
cAb-lys3-gl1+2, cAb-lys3-gl1, cAb-lys3-gl2 (1XFP) and cAb-lys3 (1JTT) as the structures in 
complex with the HEL. 

All starting structures were carefully prepared by use of the MOE (Molecular 
Operating Environment, Chemical Computing Group, version 2020.09) Protonate3D tool 
[25,26]. Therefore, the C-terminal ends were capped with N-methylamine (NME) and the 
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Figure 2. Tabular overview of the introduced point mutations (left). The introduced point mutations
and respective positions are color-coded and shown as sticks for the cAB-lys3-gl2 (PDB: 1XFP) (right).
The CDR loop regions CDR1, CDR2, CDR3 and the hypervariable region HV4 are highlighted in light
blue and labeled.

Recent studies suggest alternative mechanisms for an increase in affinity. Jeliazkov et al.
focused on the CDR-H3 loop of antibodies, and observed that affinity maturation does
not necessarily result in a decrease in flexibility [13]. Nevertheless, the CDR-H3 loop was
shown to be particularly flexible compared to other paratope regions, and its diversity
was suggested to be one responsible characteristic for antibodies’ promiscuity [14]. In
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antibodies belonging to the VHH class, an even higher importance is attributed to the CDR
3 loop as it is particularly long and allows the detection of buried binding sites on the
antigen (epitope) [16,17]. The shape complementarity of this loop to the structure of the
epitope allows binding with similar affinity compared to much larger antibodies having
more extended paratope regions [18,19]. In the present case, the Camelid VHH domain is
captured in complex with the hen egg-white lysozyme (HEL), a bacteriolytic enzyme. The
HEL has been intensively studied and numerous crystal structures are available, making it
a good model system [20,21].

In this paper, the influence of point mutations on conformational diversity was charac-
terized for a dataset of camelid VHH domains with different binding affinity [22–24]. A
total of four sequences with respective binding affinities were available differing in up to
five mutations within the CDR 1 and CDR 2 loops.

This work aims to investigate mechanisms of antigen recognition through a kinetic
and thermodynamic description of the conformational diversity of the antigen binding
loops. Therefore, conventional molecular dynamics simulations have been performed in
combination with enhanced sampling techniques, in order to overcome limitations in the
timescale, and for being able to reconstruct the free-energy surfaces. In particular, well-
tempered metadynamics simulations turned out to be a well-suited sampling technique for
these comparably small systems.

2. Materials and Methods

The investigated dataset consists of two experimentally determined crystal struc-
tures (PDB codes: 1JTT, 1XFP) and two sequences which were modeled using the crystal
structures as templates. Each of the four variants were simulated with and without the
antigen present, resulting in a total of eight starting structures for molecular dynamics
simulations, namely cAb-gl1+2, cAb-gl1, cAb-gl2 and cAb as the unbound structures, and
cAb-lys3-gl1+2, cAb-lys3-gl1, cAb-lys3-gl2 (1XFP) and cAb-lys3 (1JTT) as the structures in
complex with the HEL.

All starting structures were carefully prepared by use of the MOE (Molecular Operat-
ing Environment, Chemical Computing Group, version 2020.09) Protonate3D tool [25,26].
Therefore, the C-terminal ends were capped with N-methylamine (NME) and the charges
were neutralized by the use of a uniform background charge [27]. The proteins were then
soaked in cubic water boxes of TIP3P water molecules with a minimum wall distance of
10 Å [28,29].

For all simulations, parameters of the AMBER force field 14SB were used [30]. Equi-
librations were performed by adopting a well-established multi-step equilibration proto-
col [31].

All images were created by use of the PyMOL molecular graphics system, ver-
sion 2.4.1 [32].

2.1. Metadynamics Simulations

In order to sample a broad conformational space, we performed metadynamics simu-
lations to investigate the conformational diversity of all available single-domain variants.
In particular, well-tempered metadynamics simulations were chosen, which allowed us to
enhance the sampling on a particular pre-defined set of collective variables (CVs) [33–37].

All metadynamics simulations were performed in GROMACS by use of the PLUMED
2 implementation [38–40]. Since CDR loops 2 and 3 are the ones mainly involved in binding,
we chose as CVs a linear combination of the sine and cosine of the ψ torsion angles of
the residues of these two CDR loops. Those were computed using the MATHEVAL and
the COMBINE implementations of PLUMED 2 [40]. The ψ angles are able to capture all
crucial conformational movements comprehensively [40–42]. We used a Gaussian height of
10.0 kJ/mol and a width of 0.3 rad. The deposition occurred every 1000 steps, while a bias
factor of 10 was used.
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The simulations were performed at a temperature of 300 K in an NpT ensemble. The
conservation of a constant temperature was achieved by use of a Langevin thermostat [43].
The atmospheric pressure was set by use of a Berendsen weak-coupled external bath [44].
Additionally, all bonds to hydrogen atoms were restrained by the use of the SHAKE
algorithm, in order to allow a time step of 2 fs [45,46].

2.2. Molecular Dynamics Simulations

The obtained enhanced sampling simulation trajectories were clustered by the use
of the CPPTRAJ implementation of the AMBER software package [47,48]. Therefore, a
hierarchical average linkage approach was chosen, and it was clustered on the Cα-atoms of
the three CDR loops using a distance cut-off criterion of 1.2 Å.

The resulting cluster representatives were then used as starting structures for con-
ventional and unbiased molecular dynamics simulations (cMDs). Each starting structure
was simulated for a total of 200 ns in an NpT ensemble at a temperature of 300 K. As for
the metadynamics simulations, the Langevin thermostat and a Berendsen manostat were
used and the bonds involving hydrogen atoms were restrained by the use of the SHAKE
algorithm [43–46].

2.3. Analysis of the Simulation Trajectories

The local flexibility of the single residues during the cMD simulations was determined
by calculating the root mean square fluctuations (RMSF). This was achieved by the use of
AMBER’s CPPTRAJ implementation [47]. The structures of the antibody variable fragments
without considering the antigens, were therefore aligned on all Cα-atoms of the crystal
structure and the fluctuations calculated on the Cα-atoms in a mass-weighted manner [47].

The obtained simulation trajectories were analyzed with a principal component anal-
ysis (PCA) on the Cα-atoms of the CDR 2 loop, and of the binding residues of the CDR
3 loop, as those are the regions directly in contact with the antigen. For this analyses, the
PyEMMA 2 python library was used. Additionally, the PCA spaces, using as input features
the backbone torsions, and the Cα-atoms of all hypervariable loops individually, were
investigated (Supplementary Figures S3–S5).

For the reduction in the dimensionality and the subsequent construction of a Markov
State Model (MSM), a time-lagged independent component analysis (tICA) was performed
again using the PyEMMA 2 python library. tICA was applied to identify the slowest
degrees of freedom [49–51].

The obtained tICA space was therefore clustered geometrically by a k-means clustering
algorithm in order to define a set of microstates [52]. For each simulation, a total number
of 120 k-means clusters was defined. These microstates were then coarse-grained into
macrostates by use of a fuzzy PCCA+ clustering algorithm, implemented in the used
PyEMMA 2 library [49,53]. This way, kinetically relevant states were defined and transition
probabilities between them could be calculated. To construct the Markov-state models we
applied a lag-time of 15 ns and evaluated the reliability of the constructed MSM with the
so-called Chapman–Kolmogorov test [54,55].

For the calculation of the contacts between antibody and antigen, as well as for the
intermolecular contacts, the GetContacts tool provided by the University of Stanford was
used (https://getcontacts.github.io/, accessed on 21 October 2022) [56]. This software is
able to compute interactions based on pre-defined criteria. For the purpose of this study,
the hydrogen bonds beneath a distance cut-off of 3.5 Å between all atoms were computed.
Therefore the evolution of contacts for different stages of maturation could be quantified,
and the contacts could be directly compared using a flare plot visualization.

3. Results

A well-established simulation protocol was applied to characterize the influence
of point mutations on antigen recognition [31]. Therefore, the two crystal structures
(PDB accession codes 1JTT and 1XFP) were simulated each for 1 µs with well-tempered

https://getcontacts.github.io/
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metadynamics simulations. Based on the experimentally measured structures, additional
point mutations were introduced according to the available sequence data, with the MOE
modeling software package. The obtained structure models were simulated following the
same protocol as the crystal structures.

For all four nanobody variants, experimentally determined dissociation constants
were available. The investigated variants with their respective dissociation constants and
point mutations are summarized in Figure 2.

The dataset is composed of a highly matured VHH variant (cAb-lys3, PDB acces-
sion code 1JTT) and three variants including mutations, which are required to obtain
the germline antibody (cAb-lys3-gl1+2). Mutations were introduced in the CDR 2 loop
(cAb-lys3-gl2, PDB accession code 1XFP), in the CDR 1 loop (cAb-lys3-gl1) and in both
loops (cAb-lys3-gl1+2). As a direct result of the introduced mutations, the experimentally
determined dissociation constants increase from about 16 nM up to 4470 nM. The avail-
able experimental data are summarized in Figure 2, where the mutations are illustrated
structurally [22].

The CDR 3 loop consists of 24 residues and is stabilized by a disulfide bridge, joining
a cysteine situated in the middle of the CDR 3 loop with a cysteine in the anchor region
of the CDR 1 loop according to the Chothia enumeration scheme [57]. Additionally, a
fourth hypervariable loop—the HV 4—is highlighted in Figure 2. This region is not directly
involved in binding the antigen, but due to the strong structural correlations between the
CDR loops, it can still influence the binding properties of the paratope, as was shown in the
previous studies of T-cell receptors [58]. By analyzing the flexibility of individual residues
using the Root Mean Square Fluctuation (RMSF) of the various variants, it was observed
that the HV 4 loop becomes more rigid during the process of affinity maturation, as seen in
the Supplementary Figure S1. Only for the cAb-lys3-gl2 variant a slightly higher flexibility
compared to the most matured variant was found.

All variants were simulated with and without the hen egg-white lysozyme anti-
gen present.

The resulting metadynamics trajectories were clustered on the Cα- atoms of the three
CDR loops with the use of a hierarchical average linkage clustering algorithm, applying a
distance cut-off criterion of 1.2 Å. Subsequently, the cluster representatives were simulated
each for 200 ns. Thus, the overall sampling is dependent on the obtained number of clusters.
The respective aggregated simulation times of the cMD trajectories are summarized in
Table 1.

Table 1. Number of clusters obtained by clustering the metadynamics trajectories on the CDR loops
1, 2 and 3 and the resulting aggregated simulation time.

Description Bound Unbound

Number of Clusters/Simulation Time (µs)

cAb-lys3 179/35.8 240/48.0
cAb-lys3-gl2 145/29.0 321/64.2
cAb-lys3-gl1 156/31.2 223/44.6

cAb-lys3-gl1&2 177/35.4 213/42.6

Time-Lagged Independent Component Analysis (tICA) and Markov-State Models

We constructed a tICA, using the backbone torsions of the CDR 3 and CDR 2 loops
as input features. In particular, of the CDR 3 loop, only the region directly involved in
binding was considered (namely the sequence including residues D99-E108), since this
loop is particularly long with a total of 24 residues and only this small fraction binds into
the cleft of the antigen’s epitope. In Figure 3, the trajectories of the cAb-gl1+2 variant
is compared to the cAb-gl1 variant, together with the two bound structures, namely
cAb-lys3-gl1+2 and cAb-lys3-gl1 in the same tICA coordinate space. Analogously, this
comparison was performed also for the cAb-gl1+2 variant with the cAb-gl2, with and
without antigen present (Figure 4), and for the cAb-gl1+2 variant compared to the most
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matured variant, cAb, respectively, with and without antigen (Figure 5). The obtained tICA
spaces were clustered by performing a k-means clustering, subdividing the trajectories in
every 120 microstates. From the resulting microstates, a MSM was built for all unbound
simulations individually, with the application of a lag time of 15 ns. The previously
mentioned pairwise comparisons of the resulting macrostates with the affiliated combined
tICA spaces are shown in Figures 3–5 as well.
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percentages and reflected in the thickness of the respective circles. Faster transition timescales are
represented as thicker arrows connecting the respective states. For each trajectory, the conformational
tICA spaces are shown, projected into the same coordinate system together with the simulations
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Figure 5. Markov-state models for the germline variant cAb-gl1+2 and for the cAb variant. The
simulations were performed without antigen present. The respective state probabilities are shown as
percentages and reflected in the thickness of the respective circles. Faster transition timescales are
represented as thicker arrows connecting the respective states. For each trajectory, the conformational
tICA spaces are shown, projected into the same coordinate system together with the simulations of
the bound structures (cAb-lys3-gl1+2 and cAb-lys3). The projection of the available crystal structure
(PDB: 1JTT) is shown in the same coordinate system.

From the MSMs, we obtained the transition probabilities and kinetics between different
minima in the solution. As previously mentioned, the germline variant with the lowest
binding affinity was compared pairwise to each of the remaining trajectories. The tICA
spaces, which were combined in one coordinate system together with the respective bound
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counterparts, showed no significant reduction in the sampled conformational space, but a
clear change in the distributions of the Markov state probabilities was found.

For each of the trajectories, cAb-gl1+2, cAb-gl2 and cAb, a total of three macrostates
was found, while an additional fourth state could be observed for the cAb-gl2 variant.
Interestingly, the binding competent conformation was observed as the dominant state
(61%) in the solution for the antibody with the highest affinity, namely the cAb variant,
corresponding to the PDB entry 1JTT. For the cAb-gl1 structure, this conformation was
observed with a state probability of only 25%, for the cAb-gl2 with only 9% and for the
germline antibody, the binding competent conformation had a probability of 19%. This
is particularly exciting because the binding competent conformation was present in the
other variant as well, but with a much lower state probability compared to the most
matured variant.

Therefore, we suggest a conformational selection binding mechanism for the VHH
variants, as the structure capable of binding the antigen is pre-existing, even in absence of
the antigen [59].

This statement can be improved even more by examining the coordinate systems in
Figure 6. Here, the conformational ensembles of the cAb-gl2 variant with and without the
presence of the antigen are shown (a), as well as the ensembles of the cAb variant with and
without antigens (b). Both of the simulations performed with the antigen present, result
in a reduced conformational space. Additionally, we find that the dominant minimum in
solution is shifted upon antigen binding for the case of the cAb-gl2, and thus, we suggest
that the structure follows the conformation-selection binding mechanism.

For the cAb variant (PDB accession code 1JTT), the dominant minimum in solution
in the tICA space of the unbound simulation corresponds to the crystal structure in the
complex with the HEL. Therefore, a “lock and key” binding mechanism is suggested.
The binding conformation is present also in absence of the antigen beneath many other
conformations, but only with the binding partner present, the conformation capable of
binding is “locked” and no other conformations are detectable (Figure 6b).

The conformational spaces are mainly characterized by the movements of the binding
region of the CDR 3 loop. This can be clarified when looking at the tICA spaces of the loops
individually. The major reduction in the extent can clearly be observed for the binding
region of the CDR 3 loop (Supplementary Figure S6).

In order to structurally characterize the different VHH variants, the interactions of
the structures in complex with the HEL were calculated using the GetContacts tool [56].
The results were then depicted as flare plots by use of an in-house python script. As the
mutated residues mainly include OH-groups, all inter- and intramolecular hydrogen bond
interactions were calculated. From the flare plots, it is visible which residues interact with
each other, and also the frequency of these interactions is visible: with the thickness of
the lines, the occurrence of the contact over the simulation time increases. Furthermore,
the regions which belong to the HEL, and the hypervariable loops are highlighted and
color-coded.

From Figure 7, it is possible to deduct that the number of interacting residues is
minor, but the intensities of the remaining contacts are increased. In particular, one strong
contact between the isoleucine in position 102 (CDR 3 loop residue) of the VHH domain
and asparagine in position 237 of the HEL is found with a much higher probability in the
matured variant. Serine 53 was mutated to methionine and therewith the bond to the serine
in position 31 of the CDR 1 loop is not present anymore. The stronger and more frequent
interloop contacts seem to stabilize the protein, making it entropically favored compared to
the variant with lower binding affinity.
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4. Discussion

During the last decades, the development of antibodies and other biologics as thera-
peutics has experienced a rapid upswing. Still, many problems are encountered with the
handling of such large proteins, which results in the contemporary development of novel
and more exotic antibody formats, which are easier to handle. The list of those formats is
topped by the smallest alternatives, namely single-domain antibodies comprising only one
domain [60,61]. In contrast to conventional IgG antibodies, shark or camelid heavy chain
antibodies lack the interface resulting from the pairing of a heavy chain with a light chain.
Since the hydrophobic interactions between heavy and light chains are missing, the risk of
aggregations is reduced [11,62]. With a size of about 15 kDa, it is even possible for some to
pass through the blood–brain barrier (BBB). Thus, VHH domains can be applied as carrier
molecules as well [63].

The pharmaceutical industry is driven to further improve binding affinities, stabilities
and other biophysical properties to optimize antibody–antigen binding and to reduce
the risk of developability issues [61,64]. Therefore, it is important to understand and
properly characterize structure–function relationships, which help to elucidate the antigen-
binding process.

For this purpose, we investigate the conformational diversity of a dataset composed
of different VHH domains. We chose these single-domain antibodies as two experimen-
tally determined structures were available and the respective dissociation constants have
been reported.

To capture a broad conformational space and to overcome high-energy barriers be-
tween distinct conformational states, we employed metadynamics as the enhanced sam-
pling technique. Previous studies already discussed the prominent role of the CDR loops
in driving antigen recognition [65]. Furthermore, the CDR loops are characterized by their
high flexibility. Due to the correlated movements of these loops, single-point mutations in
the neighboring loop regions can substantially influence the captured dynamics [66–69]. It
has also been shown how conformational entropy can contribute to the improvement of
biophysical properties: stabilizing interactions between loop residues can force the anti-
body in conformations capable of antigen recognition and binding and they can increase
binding affinities. These rigidifications can also decrease the affinity, and with conforma-
tional entropy, they have to be considered and optimized in the development process of
therapeutic antibodies [70].
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In particular, special attention has to be paid to the CDR 3 loop, since this loop is
known to play a major role in antigen recognition in conventional antibodies, as well as
in T-cell receptors [14,22,71,72]. For the present dataset, conformational spaces have been
shown to be determined mainly by the movements of the binding region of the CDR 3 loop.

Dynamics are fundamental for protein recognition, especially the diverse conforma-
tional loop ensembles are known to determine antigen binding [14]. It has been previously
reported, how protein–ligand binding is mediated by conformational entropy [73]. With the
present study, we show the need of taking care of local and global changes in flexibility, but also
to consider the respective population probabilities of the obtained conformational ensembles.

Transition timescales and state probabilities of conformational ensembles can directly
reflect the chances to allow the antibody–antigen binding process. Furthermore, dynamics
can be constrained or also increased because of contacts which contribute to the antibody–
antigen recognition and binding process. In the present study, all these factors have been
taken into account.

Even though the global flexibility does not change substantially for the analyzed anti-
body domains, we find a significant population shift of the dominant solution structures in
both the PCA and tICA spaces as a consequence of the decrease in the dissociation constant.

The free-energy surfaces have a similar extent, but the deepness of the free-energy
surface varies drastically considering the fact that only five residues were mutated within
the investigated nanobodies, which consist of approximately 130 residues.

To assess local flexibility, we calculated the root mean square fluctuations (Supplementary
Figures S1 and S2). The highest flexibility could be identified for the CDR loop regions,
as well as for the HV 4 loop. Astonishingly, with a decrease in the dissociation constants,
we find a rigidification of the HV 4 loop (Supplementary Figure S1), even though it is not
directly involved in antigen binding, as it is a neighboring loop of the paratope. The HV
4 loop has recently been discussed to play an important role in shaping the antigen binding
site and in contributing to antigen recognition [58,74]. This loop can be responsible for
stabilizing the binding competent conformation and therefore reducing the conformational
diversity of the CDR loops.

By investigating the free-energy surfaces more in detail, we observed that the binding
competent conformation was shown to be the most probable structure in the simulation of
the variant having the highest binding affinity. Despite this, the binding conformation was
also observed in all other simulations, although with lower state probability. This suggests
that conformational selection is the binding mechanism on the considered timescale.

The impact of the mutated residues was analyzed: all removed sidechains comprise
hydroxy groups, leading to the assumption that hydrogen bonds which originally existed
are removed and giving the antibody the opportunity to move towards the binding confor-
mation. Therefore, the deletion of hydrophilic residues could contribute to the recognition
of the antigen. The frequency of the contacts increases upon affinity maturation, but the
number of different interactions decreases. This indicates an enthalpically favored structure
thanks to the introduced mutations, which increase the strength of selected interactions
rigidifying the protein in binding competent conformations.

5. Conclusions

In this work, we investigated the evolution of maturation of a germline camelid VHH
domain, including the examination of two intermediate structures. A major objective in the
development of therapeutic antibodies is the improvement, or at least the maintenance, of
the respective binding affinities. Therefore, it is key to carefully introduce point mutations
in order to find the best binding properties.

In this study, we could identify the HV 4 loop region of camelid variable domains
as crucial for the stabilization of the binding competent conformation, even if this loop is
not directly involved in binding. Of the CDR 3 loop, which is particularly long in VHH
domains, only a small portion is involved in antigen recognition.
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We find strong population shifts upon insertion of up to five point mutations which
result in the variant with the highest binding affinity in a stabilization of the binding
competent state. This can be explained by changes in the intramolecular hydrogen bond
network which was highly variable and flexible for the germline antibody, while the
matured variant has a decreased number of overall contacts, which are more frequent and
therewith stronger. Thus, our result supports the idea, that upon maturation the antibody
is optimized to recognize the antigen.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13020380/s1. Figure S1: RMSF plots to compare the flexibility
of the different loop regions of bound and unbound variants; Figure S2: RMSF plots to compare the
local flexibilities of the different variants individually; Figure S3: PCA analyses using the dihedral
torsions of the CDR2 loop and the binding part of the CDR3 loop as input features.; Figure S4: PCA
plots using the backbone-torsions of the individual hypervariable loops as input features.; Figure S5:
PCA plots using the cartesian coordinates of the individual hypervariable loops as input features.;
Figure S6: tICA plots using the backbone-torsions of the individual hypervariable loops as input
features.; Figure S7: Contact analysis of the different bound trajectories.
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