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Abstract: DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic
information is extracted from the required group of genes. The key to extracting genetic information is
chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-
density “euchromatin” and high-density “heterochromatin”, with various factors being involved in its
regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex,
which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B
chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In
budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators
SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role
in the formation of higher-order chromatin structures and transcriptional repression by binding to
Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate
chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further
analysis of nucleosome regulation within heterochromatin is expected in future studies.
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1. Introduction

Gene expression requires the binding of transcriptional activators that recognize and
bind specific upstream activating sequences of DNA on the promoter of each gene or
enhancer of distal sites [1–3]. In most cases, chromatin remodeling factors, histone chaper-
ones, and histone acetyl-transferase complexes are recruited by gene-specific transcriptional
activators to loosen the core promoter chromatin around the TATA-box and the transcrip-
tional start site for the formation of a preinitiation complex with the general transcription
factors, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II, adjacent to the
+1 nucleosome [4–8]. The sequential scheme of this transcription initiation indicates the
repressive feature of the chromatin structure itself against gene expression, and that the
regulatory mechanism of relaxing and closing the chromatin structure is closely related
to the regulation of gene expression [9,10]. The landscape of nucleosome occupancy is
analyzed by ChIP-seq or MNase-seq, continuously revealing the genome-wide positioning
of nucleosomes and profiling of gene expression [11–14]. In terms of chromatin structure,
there is euchromatin with a loose chromatin structure and heterochromatin with a complex
higher-order chromatin structure [15], with post-translational modifications of histone
proteins playing a key role in maintaining each structure [16,17]. It has been reported that
the SIR complex, Sir2, Sir3, and Sir4, is responsible for the heterochromatin formation of the
MAT locus, subtelomeres, and rDNA regions depend on a DNA element called “silencer”
in budding yeast [18,19]. The heterochromatin formed in this way is somewhat unique
and differs from the heterochromatin in other eukaryotes, which is epigenetically formed
and maintained by the post-translational modifications of histones. SIR complex-mediated
silencing is assumed to be more stably maintained by DNA-binding factors. In addition,
there have been no reports that FACT contributes to this SIR complex-dependent silencing

Biomolecules 2023, 13, 377. https://doi.org/10.3390/biom13020377 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13020377
https://doi.org/10.3390/biom13020377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom13020377
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13020377?type=check_update&version=2


Biomolecules 2023, 13, 377 2 of 15

of budding yeast heterochromatin so far. In fission yeast, heterochromatin is formed and
maintained through high-histone H3K9 methylation and low-histone H3K4 methylation
by histone H3K9 methyltransferase, histone H3K4 de-methylase, and HP1, as in mammal
cells [20–27]. A histone H3K9 methyltransferase and HP1 family proteins are conserved as
in other eukaryotes, and are responsible for the constitutive heterochromatin at the MAT
locus, pericentromeres, and subtelomeres [21]. In addition, recent studies reported that
H3K9me islands are scattered on chromosome arms [28,29]. The FACT complex has been
shown to stabilize the constitutive heterochromatin by working in concert with HP1/Swi6
in fission yeast [30–32]. While the chromatin remodeling models of FACT for transcriptional
stimulation on euchromatin have been proposed to date, a completely new mechanism of
chromatin silencing by FACT that represses nucleosome dynamics on heterochromatin will
become a subject of discussion.

2. FACT Plays Multifunctional Roles in Transcriptional Regulation

The FACT complex, a heterodimer of Spt16 and SSRP1, was isolated as an RNA
polymerase II transcriptional elongation factor required for efficient chromatin transcrip-
tion [33–36]. Unlike other chromatin remodeling factors, FACT has no ATPase domain
and performs chromatin remodeling in an ATP-independent manner. Recent studies
have reported that nucleosome regulation by interplay between FACT and Chd1, an ATP-
dependent chromatin remodeling factor, plays an important role in RNA polymerase II
transcriptional initiation at +1 nucleosome [37,38]. In addition to RNA polymerase II-
mediated transcription, TFIIIC/TFIIIB may be involved in a physical interaction with the
FACT complex for the RNA polymerase III transcribed tRNA genes in budding yeast [39].
The nucleosome-binding activity of human FACT is low in vitro, but through some destabi-
lization in the contact between core histones and nucleosomal DNA, FACT starts interacting
with the core region of the histone covered by DNA [40,41]. FACT is a highly conserved
histone chaperone between divergent eukaryotic species (Figure 1).
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(HMGB) protein Nhp6 [42–45]. Spt16 was originally isolated as CDC68, a gene responsible 
for causing G1 arrest [46]. Pob3 and Nhp6 are bipartite analogs of SSRP1 [47,48]. The in-
tracellular roles of FACT in budding and fission yeast appear to be somewhat different. 
First, the copy numbers of the budding yeast NHP6 gene and the fission yeast nhp6+ gene 
are different: there are two copies of NHP6 in budding yeast, NHP6A and NHP6B [49], 

Figure 1. Schematic structures of FACT complex in yeast and higher eukaryotes. N1: subdomain
of peptidase-like domain 1, N2: subdomain of peptidase-like domain 2, DD: dimerization domain,
Tandem PH: tandem pleckstrin homology domain, PH1: pleckstrin homology domain 1, PH2:
pleckstrin homology domain 2, Acidic: acidic amino acid cluster, HMGB: high-mobility group box.

In yeast, it consists of an Spt16/Pob3 heterodimer and the high-mobility group box
(HMGB) protein Nhp6 [42–45]. Spt16 was originally isolated as CDC68, a gene responsible
for causing G1 arrest [46]. Pob3 and Nhp6 are bipartite analogs of SSRP1 [47,48]. The
intracellular roles of FACT in budding and fission yeast appear to be somewhat different.
First, the copy numbers of the budding yeast NHP6 gene and the fission yeast nhp6+ gene
are different: there are two copies of NHP6 in budding yeast, NHP6A and NHP6B [49],
whereas there is a single copy of nhp6+ in fission yeast [50]. Second, SPT16 and POB3
are essential genes, whereas NHP6A/B are nonessential genes in budding yeast [44,51].
In fission yeast, spt16+ is an essential gene, whereas pob3+ and nhp6+ are nonessential



Biomolecules 2023, 13, 377 3 of 15

genes [50], allowing the disruption of pob3+ and nhp6+, which are functional bipartite
analogues of SSRP1 in multicellular organisms, exceptionally through eukaryotic species.
Considering that the function of Spt16 is required even in the absence of Pob3 and Nhp6, it
is likely that it exerts a certain chromatin regulatory role, which is specific to Spt16 in fission
yeast. In suggesting a role for each FACT component, human SSRP1 has Spt16-dependent
and independent roles in transcriptional regulation [52,53]. In budding yeast, Pob3 forms a
stable heterodimer with Spt16 via their dimerization domains [43,48]. Biochemical studies
have exhibited that Nhp6 plays an essential role in binding the Spt16/Pob3 heterodimer to
the nucleosome [45], with the required amount of Nhp6 appearing to be stoichiometrically
in excess to that of the Spt16/Pob3 heterodimer [54]. This might suggest that when the
HMGB DNA-binding domain is fused to the FACT, as in SSRP1, it enhances nucleosome
recognition for the efficient H2A/H2B dimer eviction from the nucleosome. Another
FACT isoform, in which Pob3 and Nhp6 are expressed as a fusion SSRP1 protein, has also
been analyzed in vivo. In budding yeast, Nhp6 is expressed from NHP6A and NHP6B,
and strains in which both NHP6A and NHP6B are simultaneously disrupted showed
growth defects. Under this condition, the expression of the POB3-NHP6 fusion gene was
found to complement the growth defect shown by the nhp6ab∆ strain [47]. Moreover, the
Pob3-Nhp6-fused FACT has been reported to be involved in nucleosome regulation, as
indicated by biochemical analyses. Single or multiple HMGB modules were fused to Pob3
to mimic SSRP1 for evaluating its nucleosome-binding capacity. Human SSRP1 and a
yeast Pob3-Nhp6 fusion both required free Nhp6 to support nucleosome reorganization.
This result indicated that a single intrinsic DNA-binding HMGB was not sufficient for
intact FACT nucleosome reorganizing activity, whereas triple HMGB modules at the C-
terminus of Pob3 supported FACT activity without free Nhp6. However, this FACT variant
was not efficiently released from nucleosomes, in turn exhibiting toxicity in yeast [55].
Recent cryo-EM structure analysis revealed that human Spt16 bound to histones in a
subnucleosome and tethered H2A/H2B through its C-terminal acidic tail by acting as a
placeholder for DNA, with no electron density being observed at the HMGB domain of
SSRP1 [56]. Phosphorylation of the Spt16 C-terminal acidic tail is required for its binding
to H2A/H2B in the nucleosome [57,58], suggesting the involvement of CKII [59,60]. FACT
was also reported to displace H2A/H2B dimers from the nucleosome through the tandem
PH domain of Spt16 and histone H3/H4-binding of the Spt16 peptidase-like domain with
the help of Nhp6 [61–63]. Apart from its DNA-binding activity, cryo-EM analysis revealed
that Nhp6 binds to both C-terminal acidic tails of Spt16 and Pob3 to unfold the FACT
complex structure for the activation of efficient nucleosome reorganization [64]. These
results suggested the importance of Nhp6 for chromatin remodeling [56].

3. Working Models of FACT for Nucleosome Dynamics in Fission Yeast

Various molecular models have been proposed to explain the means by which FACT
transforms the nucleosome [57,64,65], but few molecular models have been proposed for
how FACT regulates chromatin silencing. In the case of the fission yeast FACT, the histone
H3/H4-binding activity of the peptidase-like domain at the N-terminus of Spt16, the histone
H2A/H2B chaperone activity of the tandem PH domain in the central region of Spt16, the
histone H3/H4-binding activity of the tandem PH domain of Pob3, and the DNA-binding
activity of Nhp6 are thought to play key roles in nucleosome recognition [30,61,62,66]. Ac-
cordingly, two different models by which fission yeast FACT binds to the mononucleosome
or dinucleosome is shown in Figure 2. In the case of binding to the mononucleosome,
the peptidase-like domain of Spt16 and the tandem PH domain of Pob3 bind to the two
histone H3/H4 dimers present in the mononucleosome via their dimerization domains,
respectively (Figure 2A).
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domain, TPH: tandem PH domain, DD: dimerization domain, A: acidic cluster. (A) Yeast FACT
on mononucleosome. FACT functions as a histone chaperone in this scenario. (B) Yeast FACT on
dinucleosome. Whether FACT functions as a histone chaperone in this scenario remains unknown.

After binding of the Spt16/Pob3 heterodimer to the mononucleosome, the acidic tail
at the C-terminus of the two proteins competes with the nucleosomal DNA on the surface
of histone H2A/H2B. Following this competition, Nhp6 binds to the fluctuated DNA and
promotes the divergence of histone H2A/H2B from DNA in the nucleosome, with the
tandem PH domain of Spt16 depositing the histone H2A/H2B dimer from the octasome and
transforming it to a hexasome or tetrasome [67]. Studies have already reported the histone
chaperone activity of both human and yeast FACT for histone H2A/H2B [68], suggesting
the induction of a transient dynamic change in chromatin regulation by a similar process
of nucleosome conformational change. Meanwhile, the histone-binding properties of the
peptidase-like domain of Spt16 and the tandem PH domain of Pob3 have suggested their
binding to the dinucleosome (Figure 2B). In this case, the peptidase-like domain of Spt16
and the tandem PH domain of Pob3 are expected to act separately on two neighboring
nucleosomes to bridge them, such as HP1; however, the mechanism by which the tandem
PH domain of Spt16 acts on histone H2A/H2B in the nucleosome remains undetermined.
As we currently lack any biochemical or structural data on the mechanism of action of
FACT for the dinucleosome, therefore the histone H2A/H2B chaperone activity of FACT
should be determined in the dinucleosome regulatory case.

4. SBF Recruits FACT for Promoter Chromatin Activation in Budding Yeast

Previous studies have revealed that FACT dynamically alters the chromatin struc-
ture, transiently evicting nucleosomes for the passage of RNA polymerase II in vivo [63].
Following nucleosome eviction and the passage of RNA polymerase II, FACT deposits
nucleosomes to close the transiently loosened chromatin structure [69,70]. In addition to
functioning as a transcriptional elongation factor, previous studies have demonstrated that
FACT binds to the G1/S START transcription factors SBF and MBF (Figure 3A), which
are analogs of mammal E2F in budding yeast. SBF enters the nucleus in late M/early G1
phase [71–73] and binds to the G1 gene promoters. In turn, the SBF-recruited FACT tran-
siently evicts nucleosomes from the promoter of G1/S regulatory genes before initiation of
transcription by RNA polymerase II [74–76]. In budding yeast, SBF acts at the START check-
point in the G1/S phase, regulating the expression of the CLN1 and CLN2 genes [77–79]
(Figure 3A). Cell cycle-related gene transcription is regulated by the competition between
positive and negative regulators of chromatin. In early G1 phase, the activity of SBF is
repressed by Whi5 after binding to the “CACGAAAA” promoter element in the UAS
until it is activated to initiate transcription at the proper timing. Whi5 recruits the histone
deacetyl-transferase complex Rpd3(L) to keep the promoter chromatin in a silent state [74].
Cyclin kinase Cdk1/Cln1,2 phosphorylates Whi5 during the progression of the G1 phase
to remove it from SBF [80], which is then converted to its activated state [81,82]. After the
removal of Whi5 and Rpd3(L) from the promoter, the SBF-recruited FACT functions to
change the promoter chromatin structure [74]; however, the detailed molecular mechanism
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by which FACT recognizes SBF/MBF remains undetermined. The expression timing of
G1 genes during G1 phase is also different, with variations observed during the transition
from early G1 to late G1/S. Even though they are regulated by the same transcription factor,
SBF/MBF, it is assumed that the reason for this is the differences in the chromatin structure
of the promoters of each gene. In addition to the G1 cyclin gene, the chromatin structure of
the homothallic switching (HO) gene promoter is regulated by SFB and FACT (Figure 3B).
The HO gene on chromosome IV encodes the Ho endonuclease.
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transcription [76,90–94]. In addition to this asymmetric expression, the expression of HO 
needs to be strictly regulated in the mother cell. The promoter structure of the HO gene is 
relatively long and complex compared with that of common yeast genes, and consists of 
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Figure 3. Schematic diagrams of SBF-regulated gene promoter. UAS: upstream activating sequence,
URS1: upstream regulatory sequence 1, URS2: upstream regulatory sequence 2. (A) Promoter
structure of CLN1 and CLN2 genes. Three SBF-binding sites are annotated as arrows. Positive
and negative regulators of gene expression are shown below and above the schematic of the gene
structure, respectively. FACT is assigned an underline. (B) Promoter structure of the HO gene.
Two Swi5-binding sites, one SBF-binding site, and one Ash1-binding site are annotated in URS1.
Eight SBF-binding sites are annotated in URS2. Positive and negative regulators of gene expression
are shown below and above the schematic of the gene structure, respectively. FACT is assigned
an underline.

Budding yeast strains commonly used in laboratories contain a mutation that results
in defective nuclease activity in vitro and in vivo [83]. Wildtype Ho endonuclease induces
a double-strand break that targets a DNA element in the MAT locus, causing mating-type
switching via gene conversion of the MAT decision cassette [84–87]. This phenomenon
occurs asymmetrically during cell division, with expression of the HO gene in the mother
cell and transcriptional repression of the HO gene in the daughter cell. This asymmetry
is generated by Ash1, a component of Rpd3(L) HDAC [88,89] that is mainly expressed
in daughter cells, and binds to the promoter of the HO gene, thereby strongly repressing
transcription [76,90–94]. In addition to this asymmetric expression, the expression of
HO needs to be strictly regulated in the mother cell. The promoter structure of the HO
gene is relatively long and complex compared with that of common yeast genes, and
consists of two sequential regions, URS1 and URS2 (Figure 3B). The combination of URS1
and URS2, approximately 1.0 kbp each, regulates cell cycle-dependent transcriptional
initiation [75,95–98]. URS1 contains two binding sites for Swi5, which is expressed at the
M/G1 phase boundary. Swi5 is phosphorylated by the Cdk1 kinase and is transported into
the nucleus from the end of M to the early G1 phase [99–101]. An SBF-binding site has also
been identified at the 3′ side of URS1; however, mutation of this SBF-binding sequence does
not affect the expression of the HO gene, suggesting that it is not a functionally essential
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element [76]. The SAGA complex, Swi/Snf complex, and SRB mediator complex are then
recruited onto URS1 by Swi5 to loosen the chromatin structure of URS1. In turn, SBF
and FACT loosen the chromatin structure from the 3′ side of URS1 to the 5′ side of URS2
and recruit additional SBF activators for the recruitment of the SAGA complex, Swi/Snf
complex, and SRB mediator complex downstream of URS2 and TATA-box [74,75,95,96].
FACT is assumed to be the factor that causes the nucleosome eviction from the 3′ side of
URS1 to the 5′ side of URS2 in the sequence of chromatin conformational changes involved
in this transcriptional activation.

5. Wave of Nucleosome Eviction, and the Site Where FACT Functions in HO Promoter
in Budding Yeast

A schematic representation of the FACT working region in the HO promoter and
the dynamic changes in chromatin along cell cycle progression is shown in Figure 4. In
wildtype budding yeast strains, nucleosome eviction at URS1 is triggered by the Swi5
activator, and the recruited SAGA complex, Swi/Snf complex, and SRB mediators. FACT-
induced nucleosome eviction is then triggered from downstream URS1 to upstream URS2,
with the wave of nucleosome eviction being propagated downstream to URS2 and the
core promoter, where the chromatin around the TATA-box is finally opened to promote
the transcription of the HO gene by RNA polymerase II (Figure 4A). The nucleosomes
of URS1 are quickly repositioned, presumably due to polyubiquitination and proteolysis
of Swi5 [100]. However, in the FACT mutant yeast strain, nucleosomes are evicted from
URS1 by the Swi5 activator and the recruited SAGA complex, Swi/Snf complex, and SRB
mediators, as in wildtype, but this eviction is not propagated downstream from the URS2
to the TATA-box during cell cycle progression (Figure 4B). ChIP analysis of FACT exhibited
a biased binding pattern to the upstream of URS2 of the HO gene promoter, suggesting that
FACT does not bind to the promoter solely through the SBF recruitment [75]. The reason
for this biased promoter-binding activity of FACT remains unclear, and there might be a
characteristic chromatin structure upstream of URS2 that FACT prefers.

Biomolecules 2023, 13, 377 6 of 16 
 

nucleus from the end of M to the early G1 phase [99–101]. An SBF-binding site has also 
been identified at the 3′ side of URS1; however, mutation of this SBF-binding sequence 
does not affect the expression of the HO gene, suggesting that it is not a functionally es-
sential element [76]. The SAGA complex, Swi/Snf complex, and SRB mediator complex 
are then recruited onto URS1 by Swi5 to loosen the chromatin structure of URS1. In turn, 
SBF and FACT loosen the chromatin structure from the 3′ side of URS1 to the 5′ side of 
URS2 and recruit additional SBF activators for the recruitment of the SAGA complex, 
Swi/Snf complex, and SRB mediator complex downstream of URS2 and TATA-box 
[74,75,95,96]. FACT is assumed to be the factor that causes the nucleosome eviction from 
the 3′ side of URS1 to the 5′ side of URS2 in the sequence of chromatin conformational 
changes involved in this transcriptional activation. 

5. Wave of Nucleosome Eviction, and the Site Where FACT Functions in HO Promoter 
in Budding Yeast 

A schematic representation of the FACT working region in the HO promoter and the 
dynamic changes in chromatin along cell cycle progression is shown in Figure 4. In 
wildtype budding yeast strains, nucleosome eviction at URS1 is triggered by the Swi5 ac-
tivator, and the recruited SAGA complex, Swi/Snf complex, and SRB mediators. FACT-
induced nucleosome eviction is then triggered from downstream URS1 to upstream URS2, 
with the wave of nucleosome eviction being propagated downstream to URS2 and the 
core promoter, where the chromatin around the TATA-box is finally opened to promote 
the transcription of the HO gene by RNA polymerase II (Figure 4A). The nucleosomes of 
URS1 are quickly repositioned, presumably due to polyubiquitination and proteolysis of 
Swi5 [100]. However, in the FACT mutant yeast strain, nucleosomes are evicted from 
URS1 by the Swi5 activator and the recruited SAGA complex, Swi/Snf complex, and SRB 
mediators, as in wildtype, but this eviction is not propagated downstream from the URS2 
to the TATA-box during cell cycle progression (Figure 4B). ChIP analysis of FACT exhib-
ited a biased binding pattern to the upstream of URS2 of the HO gene promoter, suggest-
ing that FACT does not bind to the promoter solely through the SBF recruitment [75]. The 
reason for this biased promoter-binding activity of FACT remains unclear, and there 
might be a characteristic chromatin structure upstream of URS2 that FACT prefers. 

 

Figure 4. Wave of nucleosome deposition and reposition at the HO promoter during cell cycle
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sequence 1, URS2: upstream regulatory sequence 2. (A) Schematic representation of nucleosome
dynamics along the HO promoter in wildtype cells. (B) Schematic representation of nucleosome
dynamics along the HO promoter in FACT mutant cells.
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6. FACT-Dependent Heterochromatic Silencing in Fission Yeast

Similar to many other eukaryotes, heterochromatin in fission yeast is formed in a his-
tone H3K9 methylation-dependent manner. The mechanism of formation of constitutive het-
erochromatin at centromeres, subtelomeres, and the MAT locus is very complex [21,102–104],
with the molecular mechanism of heterochromatin formation being distinct in these three
regions [105]. Histone H3K9 methylation-dependent higher-order chromatin structures
cannot be stably maintained unless the various effector factors function at the correct timing.
Methylation of histone H3K9 is the most important factor for heterochromatin formation.
Although multicellular eukaryotes possess multiple histone H3K9 methyltransferases, in
fission yeast, Clr4 is the sole source of methylase of histone H3K9 via its SET domain [106].
A recent study revealed that automethylation of Clr4 stimulates its enzymatic activity and
maintains its epigenetic stability [107]. At least two recruitment mechanisms are known for
Clr4 in the establishment of pericentromeric heterochromatin. One is the direct association
of Clr4 with HP1/Swi6 [108], and the other is an RNAi-dependent recruitment onto hete-
rochromatin [109,110] (Figure 5). Although heterochromatin formation and transcription of
noncoding RNAs (ncRNAs) sound contradictory, HP1/Swi6 is strongly bound by Epe1, a
JmjC protein [111,112]. Epe1 carries the acidic activation domain at the N-terminus and
stimulates the transcription of heterochromatic ncRNAs by RNA polymerase II [112]. This
transcription in the heterochromatin is assumed to be slow and suspendable and creates a
scaffold retaining the nascent ncRNA on heterochromatin for RNAi-related effectors on
heterochromatin [113–116].
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In addition to the SET domain, Clr4 itself also has a chromodomain (CD) at its
N-terminus that recognizes histone H3K9me, and following recognition exerts its self-
propagation ability to methylate H3K9 on the adjacent nucleosome [25,117]. Swi6 and
Chp2 are known as fission yeast HP1, which bind to H3K9me-containing nucleosomes,
forming homodimers via their chromo-shadow domain (CSD) [118,119]. Heterochromatin
is stably maintained by two homodimers, Swi6 and Chp2 [120,121], which attract different
silencing effectors [122–124], with Swi6 being a more versatile HP1, potentially important
for the formation and maintenance of stable heterochromatin. In addition to the different
roles of the two HP1 family proteins in fission yeast, post-translational modifications of
HP1 also affect HP1 heterochromatin formation. For instance, Swi6 has been reported to
be phosphorylated, and mutations at the phosphorylation site were reported to disrupt
heterochromatin formation [125–127].
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Genetic analysis and ChIP-qPCR showed that fission yeast strains lacking pob3+
(pob3∆) had comparable levels of histone H3K9 methylation and Swi6 localization in
the heterochromatic region to those of the wildtype strain, but with high levels of hete-
rochromatic expression of ncRNAs. Phenotypic analysis of the pob3∆ strain indicated that
heterochromatic silencing was defective in heterochromatin without a significant loss of
levels of histone H3K9 methylation and HP1/Swi6-binding [30,128]. ChIP analysis of Spt16
exhibited that the binding level of Spt16 to the heterochromatic region in the pob3∆ strain
was decreased to half that of the wildtype, suggesting the existence of a Pob3-independent
recruitment mechanism of Spt16 onto heterochromatin. Genetic analysis also revealed that
pob3∆swi6∆ double disruption exhibited an additive silencing defect compared with that
shown in each of the pob3∆ and swi6∆ single-mutant strains [30]. Therefore, we assumed
that the recruitment of Spt16 onto heterochromatin is partially dependent on Swi6. To
test this hypothesis, we performed biochemical analysis using recombinant Spt16 and
the fission yeast HP1 family, Swi6 and Chp2. We found that the peptidase-like domain
of Spt16 directly binds to the dimerized chromo-shadow domain (CSD) of Swi6, but not
to Chp2-CSD [30,120,129]. Although the “PxVxL/I” hydrophobic amino acid sequence
of the CSD-binding motif is necessary for stable CSD-binding [130–132], this motif is not
conserved in the peptidase-like domain of Spt16. Further Spt16-Swi6-binding experiments
revealed that the binding of Spt16 and Swi6 was easily compromised by increasing the salt
concentration in the binding buffer in vitro, suggesting the existence of a novel binding
mode between Spt16 and Swi6.

To elucidate this binding mode between Spt16 and Swi6, we carefully compared the
primary sequences of Swi6 and Chp2 in the CSD and found a difference in the β1–β2
connecting loop, which forms the protrusion in the CSD homodimer [30]. We identified
a charge-biased “RKDD” cluster in the β1–β2 connecting loop of Swi6-CSD, but no such
charge-biased cluster in the β1–β2 connecting loop of Chp2-CSD. Other HP1 family proteins
were also examined for the presence of charge-biased clusters in the β1–β2 connecting
loop, but no charge-biased clusters were found. A physical interaction between HP1c
and SSRP1 for transcriptional activation on euchromatin has been reported in Drosophila
melanogaster [133], but physical interactions between HP1 and Spt16 have not been reported
in other species so far. The charge-biased cluster in the β1–β2 connecting loop of the
Swi6-CSD might be a specific property of the formation of heterochromatin in fission
yeast. These data have suggested that the “RKDD” sequence in the β1–β2 connecting
loop of Swi6-CSD might function as a binding surface of the peptidase-like domain of
Spt16. To this end, a recombinant Swi6-4A mutant (“RKDD” to “AAAA”) was used to
test the binding activity of Spt16 in vitro. As expected, Swi6-4A lost its ability to bind to
the peptidase-like domain of Spt16 [30]. Interestingly, heterochromatin was significantly
disordered in Swi6-4A mutant fission yeast. Although FACT targets the β1–β2 connecting
loop of Swi6, other effectors might bind to the “RKDD” sequence in the β1–β2 connecting
loop of Swi6-CSD in fission yeast. This scenario requires further examination in future
heterochromatin studies. To evaluate the effect of eliminating FACT in heterochromatin, a
peptidase-like domain-truncated Spt16 was expressed in a pob3∆ strain. Different from the
pob3∆ strain, a major decrease in the levels of histone H3K9 methylation and Swi6-binding
was observed [30]. This indicated that FACT plays a critical role in the establishment and
maintenance of heterochromatin.

7. Mechanism of Action of FACT on Nucleosomes within Heterochromatin for
Formation and Maintenance of Heterochromatin in Fission Yeast

Our analysis revealed the molecular mechanism by which FACT is recruited onto
heterochromatin for the dynamic regulation of the H2A/H2B dimer and optimal man-
agement of nucleosomes in heterochromatin [30]. The H2A.Z/H2B dimer contributes to
a certain extent to this heterochromatic silencing [134]. Other groups have reported that
FACT strongly suppresses histone turnover [31,32,135], and the mechanism by which FACT
regulates nucleosomes in heterochromatin is an important aspect to be considered. To
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predict the means by which FACT regulates heterochromatic nucleosomes in fission yeast,
we proposed a hypothetical model, as shown in Figure 6.
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Within the heterochromatin, two nucleosomes are bridged by the HP1/Swi6 het-
erodimer via histone H3K9me (Figure 6A). Structural analysis revealed that it is not suffi-
cient to enumerate the dinucleosome with a HP1 homodimer alone, and the linker DNA
is exposed to allow the access of silencing effectors [136]. In fission yeast, the Swi6-CSD
homodimer physically binds to the peptidase-like domain of Spt16 to recruit FACT onto
the heterochromatin [30]. Concomitantly, the tandem PH domain of Pob3 binds to the
H3/H4 dimer in a heterochromatic nucleosome (Figure 6B). After the recruitment of FACT
by Swi6, the peptidase-like domain of Spt16, which recognized Swi6-CSD, shifts its scaffold
to histone H3/H4 in the nucleosome [30]. This scaffold shift can be divided into two modes:
binding to the dinucleosome as a bridge (Figure 6C) and binding to the mononucleosome
(Figure 6D), shown as euchromatic nucleosome regulation in Figure 2. In the heterochro-
matic dinucleosome bridging model, FACT helps Swi6 enhance nucleosome condensation
and the formation of a higher-order chromatin structure (Figure 6C). In the heterochromatic
mononucleosome-binding model, the peptidase-like domain of Spt16 and the tandem PH
domain of Pob3 clip the histone H3/H4 tetramer in the heterochromatic nucleosome to
stably tether FACT on a single nucleosome (Figure 6D). Under the stable FACT-nucleosome
binding, deposition and reposition of the histone H2A/H2B dimer occur via the chaperon
activity of the Spt16 tandem PH domain [61]. Histone H2A/H2B ChIP analysis in the pob3∆
strain indicated that reposition of the H2A/H2B dimer was dependent on the recognition
of the stable H3/H4 dimer in nucleosomes by the tandem PH domain of Pob3 [30].

8. Summary and Perspective

FACT is an important transcription stimulating factor that transiently relaxes the
chromatin structure through its histone H2A/H2B chaperone activity. The transcription-
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activating properties of FACT are especially demonstrated in START, the checkpoint of
the G1/S phase, through binding to SBF/MBF in budding yeast [74–76]. However, the
mechanism by which FACT contributes to START activation by the mammalian E2F family
remains unclear. In addition to transcriptional activation in budding yeast, studies using
fission yeast have shown that FACT contributes to the formation and maintenance of
histone H3K9-mediated heterochromatin [30]. In particular, the molecular mechanism by
which FACT is recruited onto heterochromatin was previously analyzed in detail by the
authors, and the means by which FACT regulates nucleosomes in heterochromatin will be
a subject of future research.
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