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Abstract: Background: Ovarian cancer (OC) is one of the most malignant tumors in the female
reproductive system, with a poor prognosis. Various responses to treatments including chemotherapy
and immunotherapy are observed among patients due to their individual characteristics. Applicable
prognostic markers could make it easier to refine risk stratification for OC patients. Autophagy is
closely implicated in the occurrence and development of tumors, including OC. Whether autophagy
-related genes can be used as prognostic markers for OC patients remains unclear. Methods: The gene
transcriptome data of 374 OC patients were downloaded from The Cancer Genome Atlas (TCGA)
database. The correlation between the autophagy levels and outcomes of OC patients was identified
through the single sample gene set enrichment analysis (ssGSEA). Recognized molecular markers
of autophagy in different clinical specimens were detected by immunohistochemistry (IHC) assay.
The gene set enrichment analysis (GSEA), ESTIMATE, and CIBERSORT analysis were applied to
explore the correlation of autophagy with the tumor immune microenvironment (TIME). Single-cell
RNA-sequencing (scRNA-seq) data from seven OC patients were included for characterizing cell-cell
interaction patterns of autophagy-high or low tumor cells. Machine learning, Stepwise Cox regression
and LASSO-Cox analysis were used to screen autophagy hub genes, which were used to establish
an autophagy-related signature for prognosis evaluation. Four tumor immunotherapy cohorts were
obtained from the GEO (Gene Expression Omnibus) database and the literature for autophagy risk
score validation. Results: The autophagy levels were closely related to the prognosis of the OC
patients. Additionally, the autophagy levels were correlated with TIME status including immune
score, and immune-cell infiltration. The scRNA-seq analysis found that tumor cells with high or
low autophagy levels had different interactions with immune cells, especially macrophages. Eight
autophagy-hub genes (ZFYVE1, AMBRA1, LAMP2, TRAF6, PDPK1, ATG2B, DAPK1 and TP53INP2)
were screened for an autophagy-related signature. According to this signature, higher risk score was
correlated with poor prognosis and better immunotherapy response in the OC patients. Conclusions:
The autophagy-related signature is applicable to predict the prognosis and immune checkpoint
inhibitors (ICIs) therapy efficiency in OC patients. It is possible to identify OC patients who will
respond to ICIs therapy and have a favorable prognosis, although more verification is needed.

Keywords: autophagy; immune microenvironment; immunotherapy; prognosis; ovarian cancer

1. Introduction

Lacking robust screening methods and effective treatment, OC remains one of the
most lethal gynecologic malignant tumors. More than 300,000 new cases of ovarian cancer
were diagnosed and 190,000 deaths were expected in 2020 worldwide [1]. In total, 70–80%
of patients with advanced ovarian cancer develop chemotherapy-resistant disease after
traditional therapy, including cytoreductive surgery and platinum-based chemotherapy,
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conferring a 40% five year survival rate [2]. Novel therapeutic strategies, such as the
poly-ADP ribose polymerase inhibitors (PARPis) and ICIs improved the prognosis for a
subset of OC patients, but the response rate remains limited [3,4]. Currently, there is a
significant need for prognostic markers that stratify OC patients’ prognoses to facilitate
individualized treatment.

Autophagy is an evolutionarily conserved catabolic intracellular process in which
cytoplasmic macromolecules, aggregated proteins, damaged organelles or pathogens are
delivered to lysosomes for degradation [5,6]. It plays an important role in cellular develop-
ment, function and homeostasis [7]. Disturbances in autophagy lead to neurodegenerative
diseases, metabolic diseases and cancer [8]. Previous evidence demonstrated that au-
tophagy levels were correlated with prognosis in tumor patients. Hu et al. reported that
autophagy-related protein five (ATG5) was negatively associated with survival outcomes
in colorectal cancer (CRC) patients [9]. Yang et al. found that high levels of the key au-
tophagy protein LC3 indicated poor prognosis in pancreatic cancer patients [10]. Further
studies also reported the negative role of autophagy in the prognoses of different tumor
types [11–13]. However, the function of autophagy-related genes in the context of OC
prognosis is poorly understood.

Autophagy suppresses or promotes tumor development, depending on several fac-
tors, including nutrient availability, immune activation or immune suppression in the
tumor microenvironment (TME) [5,14–17]. Compared with normal cells, tumor cells are
more reliant on autophagy to adapt their rapid growth rates, altered metabolism, and
nutrient-deprived growth environment [18]. Emerging evidence has shown that autophagy
contributes to anti-tumor immune responses and affects tumor immunotherapy. Elevated
autophagy levels facilitate tumorigenesis and immune escape in non-small-cell lung cancer
(NSCLC) [19]. Furthermore, autophagy inhibition increases the levels of surface MHC-I,
leading to improved antigen presentation and enhanced anti-tumor T cell response in
pancreatic ductal adenocarcinoma (PDAC) [20]. It was also shown that the combination
of autophagy inhibition and dual immune-checkpoint blockade increased the anti-tumor
immune response [20]. Nevertheless, the exact role of autophagy in the immune microenvi-
ronment of OC, and whether autophagy-related genes can predict ICIs therapy efficiency
in OC, remains unknown.

In the present study, we describe the close association between autophagy levels
and the prognosis and immune microenvironment of OC via the bioinformatic analysis
and IHC validation. The interaction between tumor cells and immune cells, particularly
macrophages identified by scRNA-seq, was associated with the autophagy levels of tumor
cells, which may help to further clarify the correlation between autophagy levels and
patient prognosis. Next, an autophagy-related signature composed of eight autophagy-hub
genes was established to evaluate the prognoses of OC patients. Higher scores of the
signature were correlated with poor prognosis and better responses to ICIs therapy in
OC, suggesting its potential availability in clinic for the evaluation of prognosis and ICIs
therapy responses. In general, our research provides a novel approach to predict prognosis
and ICIs therapy efficiency for OC patients based on an autophagy-related signature.

2. Materials and Methods
2.1. Acquirement of Target Datasets

The RNA-seq profiles (fragments per kilobase million (FPKM) value) and related
clinical information of 374 OC patients were obtained from The Cancer Genome Atlas
(TCGA) data portal through the University of California Santa Cruz (UCSC, https://
xenabrowser.net/, accessed on 1 June 2021). From the Gene-Expression Omnibus (GEO)
databases, two OC datasets (GSE14407, GSE38666) were enrolled for validation cohorts.
Patients without complete survival information were excluded. The scRNA-seq data from
seven OC patients with informed consent was from our department. Immunotherapy
cohorts including IMvigor210 and an institutional cohort were downloaded according to
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a previous report [21,22]. The other two immunotherapy cohorts (GSE78220, GSE176307)
were acquired from GEO database.

2.2. Gene Set Variation Analysis (GSVA)

The Hallmark gene sets of autophagy were acquired from Molecular Signatures
Database (MsigDB, https://www.gsea-msigdb.org/gsea/msigdb/, accessed on 1 June
2021). Next, the single-sample gene set enrichment analysis (ssGSEA) algorithm (‘GSVA’
R package) was applied to estimate the abundance of gene signatures for autophagy. An
expression matrix of autophagy-related genes was used to perform principal component
analysis (PCA) on OC patients.

2.3. Human Clinical Specimens

The clinical tissue samples of OC were collected in two parts. The first part was a total
of 6 common tumor specimens from our hospital. Normal ovary samples were included as
controls. The second part was a total of 6 chemo-sensitive samples and 6 chemo-resistant
samples. All samples were collected with the patients’ informed consent. This study was
approved by the Ethics Committee of Shanghai Tenth People’s Hospital Health Authority
(SHSY-ICE-5.0/22K76/P01).

2.4. Immunohistochemical Staining and Analysis

Immunohistochemistry was conducted following the method in a previous report [23].
Antibodies including LC3B (1:600, #ab192890, Abcam, UK), p62 (1:100, #ab207305, Abcam,
UK), Beclin1 (1:700, #ab207612, Abcam, UK), CD86 (1:400, #ab220188, Abcam, UK), iNOS
(1:100, #ab115819, Abcam, UK), and CD163 (1:1000, #16646-1-AP, Pro-teintech, China)
were used to detect protein expression in tissues. Images were captured at 100x and 400x
magnification with the same parameters, and five fields of view per sample were randomly
selected to assess the expression levels of the protein. Next, the percentage and the staining
intensity of positive cells in each image were analyzed automatically by the “IHC profiler”
plugin in Image J software (Version: 1.52a). H-score (H-score = (1 × (% of cells 1+) + 2 × (%
of cells 2+) + 3 × (% of cells 3+)), 1 = lack or weak expression, 2 = moderate expression,
3 = strong expression) was applied to quantify the IHC images [24–26]. The average H-
score from five fields of view was defined as the final score of the sample. Samples with
poor immunohistochemical staining were removed.

2.5. Analysis of Functional Enrichment and Immune Cell Infiltration in TIME

To determine the variances of immune-related signaling between autophagy high and
low groups, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment
and gene set enrichment analysis (GSEA) were performed through the R package Cluster-
Profiler. The pathways were selected according to a rigorous q-value cutoff of 0.05. The
immune score of each sample was calculated by the ‘ESTIMATE’ R package. Further, the
percentage of infiltrating immune cells was evaluated by CIBERSORT in autophagy high
and low subgroups.

2.6. Cluster Identification and Annotation of scRNA-Seq Data

Gene expression matrix of high quality was analyzed with the R package Seurat
to perform cell normalization and cell filtering according to the mitochondrial metrics
percentage, minimum and maximum gene numbers. Cells were removed with detected
genes less than 200. Top 2000 highly variable genes were selected for further clustering
analysis. A PCA was performed on the resulting matrices and top 20 PCAs were further
used to reduce dimensionality using uniform manifold approximation and projection
(UMAP). Clusters were annotated based on their marker genes and canonical cell markers
from CellMarker website (http://biocc.hrbmu.edu.cn/CellMarker/index.jsp, accessed on
1 June 2021). The autophagy scores of malignant cells were obtained in AddModulescore
function in Seurat. Next, clusters ranked top three and bottom three autophagy scores were
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extracted and grouped as autophagy-high and low tumor cells. Other analyses were also
conducted with corresponding functions from Seurat suite.

2.7. Cell-Cell Interaction Analysis

Cell–cell communications at the molecular level between tumor cells and macrophages
were investigated using CellPhoneDB [27]. Curated ligand-receptor interaction pairs from the
built-in database of the package were utilized. Interaction pairs with p-values < 0.05 returned
by CellPhoneDB were selected for the evaluation of cross-talk between cell subgroups.

2.8. Construction and Validation of Autophagy-Risk Signature

The random forest (RF) method was applied to screen out autophagy hub genes. Relative
importance of these hub genes was evaluated by Gini index. Next, stepwise multivariate cox
regression analysis was performed to further filter the independent variables; eight autophagy-
risk genes were obtained. Based on these eight genes, LASSO analysis was conducted to
construct an autophagy-risk model to evaluate the significance of autophagy-risk signature in
the prognosis of OC patients. Regression coefficients and the expression levels of eight risk
genes were used to compute the risk scores for each sample. The specific calculation formula
is 0.2867×ZFYVE1 expression + 0.2394×AMBRA1 expression +0.1966×LAMP2 expression +
(−0.4344)×TRAF6 expression + 0.2297×PDPK1 expression + (−0.4067)×ATG2B expression +
0.1523×DAPK1 expression + (−0.1447)×TP53INP2 expression.

2.9. Prognostic Value and Clinical Applicability Assessment of Autophagy-Risk Signature

Kaplan-Meier survival analysis was carried out to evaluate the survival outcomes of
OC patients in the autophagy high-risk and low-risk groups. The accuracy of this predictive
model was assessed by the time-dependent receiver operating characteristic (ROC) curve
through the R package ‘time ROC’. In addition, using the R package ‘survival’, univariate
and multivariate regression analyses were conducted to verify whether ‘risk score’ could
be an independent prognostic factor for patients with OC. Subsequently, based on the
available prognosis-related clinical features, a nomogram was plotted via the R package
‘rms’. Calibration charts at 3, 5, and 10 years were generated to assess the predictive
capability of nomogram.

2.10. Statistical Analysis

All data were processed in the R programming environment (version 4.0). Single
comparison between two groups was analyzed through a two-tailed Student’s t-test or
Wilcoxon rank-sum test. Spearman’s correlations were used to determine the significance
and correlation coefficients between two continuous variables. p < 0.05 was considered
statistically significant.

3. Results
3.1. Autophagy Levels Were Highly Relevant to the Prognosis of OC Patients

Autophagy is a form of programmed cell death (PCD) and is closely associated with
tumor development [28]. To explore the role of autophagy in the progression of OC, we
self-clustered OC patients according to the gene expression profile matrix, and found
that the patients could be divided into two clusters with significantly different levels of
autophagy through PCA. However, no such result was observed in three other types of PCD,
including apoptosis, necroptosis and ferroptosis (Figure 1A). The result above indicated
that autophagy played an important role in OC, and patients with different autophagy
levels might have diverse biological characteristics. Further, we found that patients with
higher levels of autophagy had a poorer prognosis by Kaplan-Meier survival analysis
(p = 0.0079, Figure 1B). The survival time of the OC patients showed no difference between
high and low levels of apoptosis, necroptosis and ferroptosis (Figure S1A–C). Moreover, a
higher proportion of lymphatic metastases occurred in patients at high levels of autophagy
compared to those with low levels of autophagy (Figure 1C). To verify the autophagy
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levels in the tumor tissues, immunohistochemical assays were performed for autophagy
markers (LC3B, p62 and Beclin1). The results showed that the expression levels of LC3B
and Beclin1 were elevated in the OC tissues compared to the normal ovarian tissues, while
the expression levels of p62 were decreased (Figure 1D). Additionally, cisplatin-sensitive
and cisplatin-resistant OC tissues were also included for immunohistochemical assays due
to the well-recognized differences between them in the prognosis of OC patients. It was
shown that the expression levels of LC3B and Beclin1 were higher in the cisplatin-resistant
OC tissues than in the cisplatin-sensitive OC tissues and the expression levels of p62 were
reversed (Figure 1E). Taken together, these results revealed that autophagy levels were
significantly and negatively correlated with prognosis in OC patients.
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Figure 1. Identification and validation of the correlation between autophagy levels and prognosis
of OC patients: (A) PCA on the correlation of the OC patients with different levels of autophagy,
apoptosis, necroptosis and ferroptosis. (B) Kaplan-Meier analysis of the survival outcomes of patients
(TCGA) with high and low autophagy levels. (C) The proportion of lymphatic metastases in patients
with high and low autophagy levels. (D) Detection of the expression levels of LC3B, p62 and Beclin1
in OC and normal ovary tissues by IHC assay. (E) Detection of the expression levels of LC3B, p62 and
Beclin1 in cisplatin-sensitive and cisplatin-resistant OC tissues by IHC assay. (Scale bar, 200 µm and
50 µm, * p < 0.05, ** p < 0.01, *** p < 0.001).
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3.2. Autophagy Was Significantly Correlated with the Immune Microenvironment in OC

It has been shown that autophagy plays an important role in the immune microenvi-
ronment of tumors [29]. Hence, we hypothesized that autophagy affected the prognoses
of patients by influencing the immune microenvironment in OC. To test this assumption,
we performed the GSEA of autophagy-related genes and found that the immune-related
signals were positively enriched in the autophagy-high group (Figure 2A). We then per-
formed differential expression gene identification between autophagy-high and low groups.
The expression levels of immune-related genes (CD28, CD4, CD274, CTLA4, TLR2, TLR4,
TICAM2, LCP2, ITK, PTPRC, EGF, JAK1 and mTOR) were upregulated in the autophagy-
high group (Figure 2B,C). Other immune-related genes were also significantly higher
in the autophagy-high subgroup (Figure 2C and Figure S2). These results preliminar-
ily suggested that autophagy had an important effect on immunity in OC. Further, the
ESTIMATE analysis was conducted, which demonstrated that the immune score was el-
evated in the autophagy-high subgroup compared to that in the autophagy-low group.
(p = 0.024, Figure 3A). The CIBERSORT analysis was applied to evaluate the infiltration
proportion of twenty-two immune cell types in the OC cohorts from the TCGA. The results
illustrated that the levels of infiltrating naïve B cells, CD4 memory resting T cells, and
M2 macrophages were significantly higher in the autophagy-high group (Figure 3B). The
infiltration levels of memory B cells, CD8 T cells, and gamma-delta T cells were lower in
the autophagy low group. The infiltration difference was further verified by the corre-
lation analysis (Figure 3C). Moreover, the M1/M2 macrophages that infiltrated into the
tissues were investigated via IHC due to their most significant difference in the CIBERSORT
analysis. Signals of iNOS (M1 macrophage) showed no difference between the tumors
and the normal tissues, while more and enhanced CD163 signals (M2 macrophages) were
observed in the tumors (Figure 3D) [30]. Higher CD163 expression was also found in the
cisplatin-resistant OC tissues compared with the cisplatin-sensitive tissues when the CD86
(M1 macrophage) expression was similar among the tissues (Figure 3E) [31,32]. These data
suggested a correlation between autophagy level and OC immune microenvironment.

3.3. Macrophages Contributed to the Autophagy-Involved Immune Microenvironment of OC

Having found significant enrichment of macrophages in autophagy-high tissues, we
intended to investigate the interaction between macrophages and tumor cells with differ-
ent autophagy levels. Firstly, each tumor cell from seven tumor tissues was assigned an
autophagy score based on the gene expression from the scRNA-seq. The UMAP plots
showed that the clusters had different autophagy scores (Figure 4A,B), suggesting these
cells were at different levels of autophagy. According to the autophagy score, tumor cells
were identified as high or low autophagy levels. Furthermore, the interactions between
the tumor cells and the macrophages were investigated via ligand-receptor interaction
evaluation. More ligand-receptor interactions were observed between the autophagy-high
tumor cells and the macrophages (Figure 4C). Receptor-ligand pairs, including CD74_APP,
CD74_COPA, MDK_LRP1, and TNFRSF1A_GRN, were regarded as displaying strong
interaction (Figure 4C). Functional macrophages are reported to contain two polariza-
tion states: alternatively activated M2 and classically activated M1-like subtypes. The
former exerts a tumor-promoting role involving immunosuppression, while the latter
has an anti-tumor effect due to its intrinsic phagocytic properties [33]. There were two
macrophage clusters, which were identified to be M1-like and M2-like based on gene expres-
sion (Figure 4D,E). Accordingly, the cell-cell interaction analysis found different receptor-
ligand pairs among tumor cells. The interaction pairs via SPP1, RARRES2, NECTIN3,
LGALS9, and LAMB1 showed increased signaling in the autophagy-high tumor cells, while
SEMA3C, PTN, ICAM1, GAS6, and CSF1 showed decreased signaling compared with
those in the autophagy-low tumor cells (Figure 4F). This suggested a correlation between
tumor-cell autophagy level and macrophage polarization, since the signals mentioned above
contributed to macrophage polarization [34–41]. These data indicated that autophagy might
affect the immune microenvironment of OC by encouraging macrophage polarization.
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enrichment analysis showed immune-related signals were positively enriched in the autophagy high
group. Volcano plot (B) and box plot (C) showed the expression levels of immune-related genes
(CD28, CD4, CD274, CTLA4, TLR2, TLR4, TICAM2, LCP2, ITK, PTPRC, EGF, JAK1 and mTOR) in
autophagy high and low group (Two-tailed student’s t test, p < 0.05 was considered to be significant).
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Figure 3. The correlation between autophagy and the levels of immune cell infiltration in OC: (A) Esti-
mate analysis of the immune score in autophagy high and low group. (B) CIBERSORT analysis of the
infiltration proportion of twenty−two immune cell types in the TIME of OC. (C) Correlation analysis
of the differential infiltration of twenty−two immune cell types in the TIME of OC. (D) Detection of
the expression levels of iNOS and CD163 in OC and normal ovary tissues by IHC assay. (E) Detec-
tion of the expression levels of CD86 and CD163 in cisplatin-sensitive and cisplatin−resistant OC
tissues by IHC assay. (Scale bar, 200 µm and 50 µm; Two−tailed student’s t test, *** p < 0.001, ns, no
statistical difference).
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Figure 4. Single-cell RNA sequencing analysis of the cell-cell communication between autophagy
high/low tumor cells and macrophages: UMAP plots (A) and Box plots (B) showed differential
autophagy scores in different tumor cell clusters. (C) The ligand-receptor interactions between
autophagy high/low tumor cells and macrophages. (D) Description of two clusters of macrophages
(M1/M2) by UMAP plots. (E) The expression levels of the classical genes which correlated with
M1/M2-like macrophages. (F) Different intensity of interactions between autophagy high/low tumor
cells and M1/M2-like macrophages.
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3.4. Establishment of Autophagy-Related Signature

To translate our evidence into a tool to support clinical practice, we attempted to
construct an autophagy-related signature based on autophagy-hub genes. Firstly, thirty
hub genes associated with autophagy were screened out by random forest (RF) (Figure S3).
These genes were ranked in accordance with their importance in the autophagy process
(Figure 5A). Then, to make the signature more streamlined, stepwise multivariate cox
proportional risk regression analysis was performed and used to filter out eight risk genes
(ZFYVE1, AMBRA1, LAMP2, TRAF6, PDPK1, ATG2B, DAPK1, and TP53INP2) (Figure 5B).
To evaluate the significance of these eight risk genes in the signature for the prognosis of
OC patients, the risk scores for each case were calculated based on the expression levels
and regression coefficients of the risk genes. Subsequently, the OC patients in the TCGA
cohort were divided into high-risk (n = 186) and low-risk (n = 186) groups according to the
median risk score. The Kaplan-Meier survival analysis showed that the overall survival
(OS) of the patients (TCGA) in the high-risk group was significantly shorter than that of in
the low-risk group (p < 0.05) (Figure 5C). The time-dependent ROC curves analysis showed
that the prognostic accuracies of the signature were 0.602 at 3 years, 0.628 at 5 years and
0.808 at 10 years (Figure 5D). We also verified the prognostic value of the autophagy-related
signature in two other GEO cohorts and obtained the same results as shown in Figure 5C
(Figure 5E). Moreover, the autophagy-risk scores of the OC patients in the TCGA cohort
were ranked, and we analyzed their distribution (Figure 5F). The patients’ survival status
and the expression levels of the eight risk genes in the high-risk and low-risk groups were
described in Figure 5G, H, respectively.

3.5. Autophagy-Related Signature Was an Independent Prognostic Predictor

Next, we explored whether the autophagy-related signature could predict the prog-
nosis of OC patients independently of other risk factors. A univariate cox regression
analysis showed that, except for the FIGO stage (III-IV), both age and autophagy-risk score
were closely associated with the prognoses of OC patients in the TCGA cohort (p < 0.05,
Figure 6A). A multivariate cox regression analysis revealed that both age and autophagy-
risk score were independently correlated with OS in the patients with OC in the TCGA
cohort (p < 0.05, Figure 6B). These results showed that autophagy-related signature was
an independent predictor of prognoses in the OC patients. To visualize the relationship
between the clinical prognostic factors and the survival probability, and thus guide clini-
cians towards better prognostic predictions, a nomogram was constructed. We observed
that the patients with higher total points had worse survival outcomes (Figure 6C). The
C-index of the nomogram was 0.623 (95% confidence interval, 0.584–0.662). The calibration
curves showed that the OS predicted by the nomogram at 3, 5, and 10 years was in good
accordance with the OS actually observed (Figure 6D).
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survival outcomes of patients (TCGA) with high or low autophagy risk scores. (D) Time-dependent
ROC curves analysis of the prognostic accuracy of the autophagy-related signature at 3 years, 5 years
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autophagy risk scores in the validation cohorts from GEO. Left: GSE14407; Right: GSE38666. (F) The
distribution of the autophagy risk scores in OC patients from TCGA cohort. (G) The survival status
of the OC patients in autophagy-high/low risk group. (H) The expression levels of the eight risk
genes in autophagy-high/low risk group.
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cohort. (C) A nomogram integrating the autophagy-related signature risk score with the clinical char-
acteristics to quantify risk evaluation for each patient. (D) The calibration curves for the nomogram
in the OC cohorts from TCGA.
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3.6. Autophagy-Related Signature Predicted ICIs Therapy Efficiency of OC

Since autophagy was closely correlated with the OC immune microenvironment, we
next evaluated whether autophagy-related signature was associated with the response to
ICIs therapy. The clinical trial IMvigor210, which explored the therapeutic effects of the
anti-PD-L1 immunotherapy in urothelial cancer (UC) that had similar histological type
to OC [42], was used for the following study. The patients who responded to anti-PD-L1
immunotherapy in the IMvigor210 cohort had a higher autophagy-risk score based on our
signature (Figure 7A). This result was validated in an anti-PD-1 immunotherapy cohort
(renal cell carcinoma) [22]. The results showed that the patients with partial response (PR) to
anti-PD-1 treatment displayed higher autophagy-risk scores than patients with progressive
disease (PD) (Figure 7B). However, the autophagy-risk scores did not show significant
differences among the patients with a complete response (CR), PD, PR and stable disease
(SD) in other immunotherapy cohorts (GSE176307_(UC) and GSE78220_(melanomas))
(Figure 7C,D). Previous studies have shown that tumor mutational burden (TMB) and
tumor neoantigen burden (TNB) reflected the ability of tumor cells to produce neoantigen,
and that the higher the TMB and TNB values, the greater the benefit for the patient from
ICIs therapy. The combination of the two markers was used as a predictor of ICIs therapy
efficacy for a wide range of tumors [43,44]. Therefore, we assessed the correlation between
the autophagy risk score and these two well recognized indexes. The results demonstrated
that the group with the higher autophagy-risk scores had higher TMB and TNB values in
the IMvigor210 cohort. This finding indicated that patients with higher autophagy-risk
scores may have better responses to anti-PD-L1 immunotherapy. In a word, the results
above suggested that the autophagy-risk score based on the autophagy-related signature
could assist in predicting the response rates of patients to ICIs therapy.
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4. Discussion

OC is one of the most malignant tumors of the female reproductive system, with
late presentation and high recurrence, remaining the leading cause of mortality among all
gynecological malignancies. Usually, OC is treated with surgery and chemotherapy, but
with poor outcomes. ICIs therapy has brought a breakthrough in the field of solid tumor
immunotherapy. However, the response rates among OC patients remain modest due
to its complex TIME. Hence, the discovery of new biomarkers and potential therapeutic
targets is essential to improve the prognoses of patients with OC. In the present study, we
firstly explored and validated the correlation of autophagy with prognosis and immune
cell infiltration in OC. Then, the effect of high and low levels of autophagy in tumor cells on
macrophage polarization was further analyzed using the scRNA-seq analysis. Considering
the impact of autophagy levels on the prognosis and the immune microenvironment of
OC, we constructed an autophagy-related signature and assessed its prognostic value in
OC cohorts. Finally, we evaluated the utility of this signature in predicting the response
rate to ICIs therapy. Taken together, our results demonstrated that the autophagy-related
signature was a promising supportive tool in the prediction of prognoses and ICIs therapy
efficiency in OC patients, providing a new direction for the individualized treatment of OC.

In this study, the negative correlation between autophagy levels and the prognoses of
OC patients was determined according to the results of bioinformatic analyses and IHC
validation. It was worth mentioning that significant differences in autophagy levels were
observed not only in normal ovarian and OC tissues, but also in cisplatin-sensitive and
cisplatin-resistant OC tissues. This result which indicated the elevated autophagy levels in
cisplatin-resistant OC tissues was consistent with those of other studies [6,7,45,46]. On this
basis, we hypothesized that the nucleolar stress in cancer cells was one of the important
contributors. Previous evidence demonstrated that cisplatin killed cells by inhibiting
ribosome biogenesis, leading to nucleolar stress [47]. Nucleolar stress is usually mediated
by diverse ribosome proteins and/or nucleolar proteins, such as RPLP0, RPLP1, RPLP2,
and uL3 [48]. Pecoraro et al. showed that the depletion of uL3 increased the drug resistance
of colon tumor cells by activating autophagy [49]. Therefore, it was reasonable to suppose
that elevated levels of autophagy in cisplatin-resistant OC tissues might be involved in the
above factors.

This study identified eight autophagy-risk genes and constructed an autophagy-
related signature based on these eight genes. We then validated the prognostic value of the
signature in the TCGA cohorts of OC. Reviewing the eight genes, ZFYVE1 is a guanylate-
binding protein which contains a zinc-finger FYVE domain. It is usually identified as a
molecular marker of omegasome [50]. In recent years, ZFYVE1 has been found to play
an important role in the innate immune and inflammatory response [51]. Autophagy
regulator AMBRA1 is involved in a variety of biological processes, including autophagy,
proliferation and apoptosis, and it exhibits anti-tumor effects in melanoma [52]. LAMP2 is
an extremely important lysosomal membrane protein, which accounts for approximately
50% of all the proteins in the lysosome membrane [53]. It is also a well-established mediator
of autolysosome maturation [54]. TRAF6 has ubiquitin ligase activity and it regulates TLR4-
induced autophagy by ubiquitinating BECN1 [55]. It was reported that the master kinase
PDPK1 bound to AKT and suppressed autophagy by activating AKT-mTOR signaling [56].
ATG2B is a lipid transporter protein that is required in the formation of autophagosomes
and in the regulation of lipid droplet morphology [57]. DAPK1 belongs to a family of
serine/threonine protein kinases and functions as a tumor suppressor. Furthermore, it is a
key regulator of autophagy [58]. TP53INP2 is initially localized in the nucleus, and upon
translocation to the cytoplasm it can bind to autophagosome and subsequently promote
autophagy [59]. These studies have demonstrated the critical role of the eight genes during
the process of autophagy; nevertheless, their specific biological role in OC needs to be
investigated further.

The complex TME of OC is a major influencer of the prognoses of OC patients. Besides
tumor cells, the TME also contains tumor-associated fibroblasts, endothelial cells and
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infiltrating immune cells [60]. The levels of immune cell infiltration in solid tumors are
extremely important in tumor development. In this study, the effect of autophagy on the
infiltration levels of different immune cells was analyzed. We observed a significantly
higher immune score in the autophagy-high group compared to the autophagy-low group.
The infiltration ratio of naive B cells, memory resting CD4+ T cells and M2 macrophages was
greater in the autophagy-high group. Conversely, memory B cells, CD8+ T cells, follicular
helper T cells and gamma delta T cells were more abundant in the autophagy low group. In
particular, the proportion of infiltrating M2 macrophages varied dramatically at different
levels of autophagy. It has been reported that autophagy can cause M2-like macrophage
polarization in chronic inflammatory diseases [61]. However, the impact of autophagy on
macrophage polarization in OC is unknown. We explored the interaction pattern between
tumor cells with different autophagy levels and macrophages through the scRNA-seq
data. The OC cells with high autophagy levels showed an increased interaction with
macrophages through SPP1-CD44, RARRES2-CMKLR1, NECTIN3-NECTIN2, LGALS9-
CD44, and LAMB1-CD44 signaling, and decreased interaction via SEMA3C-PLXND1,
PTN-SDC4, ICAM1-(ITGAX+ITGB2), GAS6-MERTK and CSF1-CSF1R signaling. Emerging
evidence demonstrated that the ligand-receptor signaling described above was closely
correlated with macrophage polarization [34–41]. For example, Zhang et al. reported that
A549 cells were able to promote the M2 polarization of THP-1 macrophages though the
induction of SPP1 [34]. In summary, these findings indicated that autophagy might play a
key role in the immune microenvironment of OC by affecting macrophage polarization.

It has been reported that autophagy levels can affect the efficiency of ICIs therapy [62].
We found that the patients in IMvigor210 who responded to immunotherapy had signifi-
cantly higher autophagy-risk scores compared to those who had no response. Consistent
results were found in another anti-PD-1 immunotherapy cohort regarding RCC. Addi-
tionally, higher TMB and TNB values were observed in the patients with a high risk of
autophagy in the IMvigor210 cohort. This was in accordance with the results that au-
tophagy was involved in the T-cell meditated immune response in tumors with high TMB,
but not in tumors with low TMB [63]. However, no significant differences in autophagy-
risk score were observed among the patients with different responses in two other im-
munotherapy cohorts (GSE176307 and GSE78220). We speculated that this might be caused
by the insufficient sample size or the specificity of tumor tissues. Nevertheless, all the
findings suggested that patients at high risk of autophagy were more likely to benefit from
ICIs therapy. On this basis, we also considered the factors that potentially contributed to
this result. As is well known, the heterogeneity of cancer cells is an important factor in the
pathology of cancer and therapy response [64]. In this study, the high/low autophagy levels
in the tumor cells allowed them to present different phenotypes, and thus they displayed
different responses to immunotherapy. This reminds us that it is indispensable to explore
the heterogeneity of cancer cells in greater depth.

5. Conclusions

In summary, our study successfully identified a novel autophagy-related signature,
which not only helps to evaluate the prognoses of OC patients, but also potentially aids in
distinguishing the responses to ICIs therapy of patients with specific cancer types.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13020339/s1, Figure S1: Kaplan-Meier analysis of the survival
outcomes of patients (TCGA) with high and low apoptosis (A), necroptosis (B) and ferroptosis
(C) levels. Figure S2: The correlation between autophagy levels and other immune-related genes.
Figure S3: Selection of autophagy key genes in the KEGG database by Random Forest Algorithm.

https://www.mdpi.com/article/10.3390/biom13020339/s1
https://www.mdpi.com/article/10.3390/biom13020339/s1


Biomolecules 2023, 13, 339 17 of 19

Author Contributions: Conceptualization, J.D., C.W. and Y.S.; methodology, J.D., C.W. and Y.S.;
software, C.W. and Y.S.; validation, J.D., Y.S. and J.G.; formal analysis, J.D. and C.W.; investigation, Y.S.
and J.G.; resources, J.D., C.W. and S.L.; writing—original draft preparation, J.D. and C.W.; writing—
review and editing, Z.C. and S.L.; visualization, J.D., C.W. and Y.S.; supervision, Z.C. and S.L.; project
administration, S.L.; funding acquisition, J.G., Z.C. and S.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universi-
ties (22120220601), Shanghai Tenth People’s Hospital (Climbing talent program, 2021SYPDRC006),
National Natural Science Foundation of China (NSFC, grant number 81874104, 82103337).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Shanghai Tenth People’s Hospital Health
Authority (protocol code: SHSY-ICE-5.0/22K76/P01, data of approval: 2 March 2022).

Informed Consent Statement: Informed consent was obtained from all subjects or their relatives.

Data Availability Statement: All the data included in this study was from open databases except for
scRNA-seq data. Further inquiries could be directed to the corresponding authors.

Acknowledgments: We sincerely acknowledge the TCGA and GEO database for providing their
excellent platforms.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Kandalaft, L.E.; Odunsi, K.; Coukos, G. Immunotherapy in Ovarian Cancer: Are We There Yet? J. Clin. Oncol. 2019, 37, 2460–2471.

[CrossRef] [PubMed]
2. Andersen, C.L.; Sikora, M.J.; Boisen, M.M.; Ma, T.; Christie, A.; Tseng, G.; Park, Y.; Luthra, S.; Chandran, U.; Haluska, P.; et al.

Active Estrogen Receptor-alpha Signaling in Ovarian Cancer Models and Clinical Specimens. Clin. Cancer Res. 2017, 23, 3802–3812.
[CrossRef] [PubMed]

3. McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer.
Cancers 2020, 12, 1607. [CrossRef] [PubMed]

4. Johnson, R.L.; Cummings, M.; Thangavelu, A.; Theophilou, G.; de Jong, D.; Orsi, N.M. Barriers to Immunotherapy in Ovarian
Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers 2021, 13, 6231. [CrossRef]

5. Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [CrossRef]
6. Galluzzi, L.; Green, D.R. Autophagy-Independent Functions of the Autophagy Machinery. Cell 2019, 177, 1682–1699. [CrossRef]
7. Clarke, A.J.; Simon, A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2019, 19,

170–183. [CrossRef]
8. Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020, 19, 12. [CrossRef]
9. Hu, W.-H.; Yang, W.-C.; Liu, P.-F.; Liu, T.-T.; Morgan, P.; Tsai, W.-L.; Pan, H.-W.; Lee, C.-H.; Shu, C.-W. Clinicopathological

Association of Autophagy Related 5 Protein with Prognosis of Colorectal Cancer. Diagnostics 2021, 11, 782. [CrossRef]
10. Yang, Y.-H.; Liu, J.-B.; Gui, Y.; Lei, L.-L.; Zhang, S.-J. Relationship between autophagy and perineural invasion, clinicopathological

features, and prognosis in pancreatic cancer. World J. Gastroenterol. 2017, 23, 7232–7241. [CrossRef]
11. Hu, D.; Jiang, L.; Luo, S.; Zhao, X.; Hu, H.; Zhao, G.; Tang, W. Development of an autophagy-related gene expression signature

for prognosis prediction in prostate cancer patients. J. Transl. Med. 2020, 18, 160. [CrossRef]
12. Ma, J.-Y.; Liu, Q.; Liu, G.; Peng, S.; Wu, G. Identification and validation of a robust autophagy-related molecular model for

predicting the prognosis of breast cancer patients. Aging 2021, 13, 16684–16695. [CrossRef]
13. Meng, D.; Jin, H.; Zhang, X.; Yan, W.; Xia, Q.; Shen, S.; Xie, S.; Cui, M.; Ding, B.; Gu, Y.; et al. Identification of autophagy-related

risk signatures for the prognosis, diagnosis, and targeted therapy in cervical cancer. Cancer Cell Int. 2021, 21, 362. [CrossRef]
14. Levine, B. Unraveling the role of autophagy in cancer. Autophagy 2006, 2, 65–66. [CrossRef]
15. Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer 2007, 7, 961–967. [CrossRef]
16. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther.

2011, 10, 1533–1541. [CrossRef]
17. White, E. The role for autophagy in cancer. J. Clin. Investig. 2015, 125, 42–46. [CrossRef]
18. Mowers, E.E.; Sharifi, M.N.; Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J.

2018, 285, 1751–1766. [CrossRef]
19. Ma, F.; Ding, M.-G.; Lei, Y.-Y.; Luo, L.-H.; Jiang, S.; Feng, Y.-H.; Liu, X.-L. SKIL facilitates tumorigenesis and immune escape of

NSCLC via upregulating TAZ/autophagy axis. Cell Death Dis. 2020, 11, 1028. [CrossRef]
20. Yamamoto, K.; Venida, A.; Yano, J.; Biancur, D.E.; Kakiuchi, M.; Gupta, S.; Sohn, A.S.W.; Mukhopadhyay, S.; Lin, E.Y.; Parker, S.J.;

et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020, 581, 100–105. [CrossRef]

http://doi.org/10.1200/JCO.19.00508
http://www.ncbi.nlm.nih.gov/pubmed/31403857
http://doi.org/10.1158/1078-0432.CCR-16-1501
http://www.ncbi.nlm.nih.gov/pubmed/28073843
http://doi.org/10.3390/cancers12061607
http://www.ncbi.nlm.nih.gov/pubmed/32560564
http://doi.org/10.3390/cancers13246231
http://doi.org/10.1038/nrc.2017.53
http://doi.org/10.1016/j.cell.2019.05.026
http://doi.org/10.1038/s41577-018-0095-2
http://doi.org/10.1186/s12943-020-1138-4
http://doi.org/10.3390/diagnostics11050782
http://doi.org/10.3748/wjg.v23.i40.7232
http://doi.org/10.1186/s12967-020-02323-x
http://doi.org/10.18632/aging.203187
http://doi.org/10.1186/s12935-021-02073-w
http://doi.org/10.4161/auto.2.2.2457
http://doi.org/10.1038/nrc2254
http://doi.org/10.1158/1535-7163.MCT-11-0047
http://doi.org/10.1172/JCI73941
http://doi.org/10.1111/febs.14388
http://doi.org/10.1038/s41419-020-03200-7
http://doi.org/10.1038/s41586-020-2229-5


Biomolecules 2023, 13, 339 18 of 19

21. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E.; Koeppen, H.; Astarita, J.L.; Cubas, R.;
et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548.
[CrossRef] [PubMed]

22. Shiuan, E.; Reddy, A.; Dudzinski, S.O.; Lim, A.R.; Sugiura, A.; Hongo, R.; Young, K.; Liu, X.D.; Smith, C.C.; O’Neal, J.; et al.
Clinical Features and Multiplatform Molecular Analysis Assist in Understanding Patient Response to Anti-PD-1/PD-L1 in Renal
Cell Carcinoma. Cancers 2021, 13, 1475. [CrossRef] [PubMed]

23. Notter, T.; Panzanelli, P.; Pfister, S.; Mircsof, D.; Fritschy, J.-M. A protocol for concurrent high-quality immunohistochemical and
biochemical analyses in adult mouse central nervous system. Eur. J. Neurosci. 2014, 39, 165–175. [CrossRef] [PubMed]

24. Detre, S.; Saclani Jotti, G.; Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: Validation for
oestrogen receptor in breast carcinomas. J. Clin. Pathol. 1995, 48, 876–878. [CrossRef]

25. Derangère, V.; Lecuelle, J.; Lepage, C.; Aoulad-Ben Salem, O.; Allatessem, B.M.; Ilie, A.; Bouché, O.; Phelip, J.-M.; Baconnier, M.;
Pezet, D.; et al. Combination of CDX2 H-score quantitative analysis with CD3 AI-guided analysis identifies patients with a good
prognosis only in stage III colon cancer. Eur. J. Cancer 2022, 172, 221–230. [CrossRef]

26. Mazières, J.; Brugger, W.; Cappuzzo, F.; Middel, P.; Frosch, A.; Bara, I.; Klingelschmitt, G.; Klughammer, B. Evaluation of EGFR
protein expression by immunohistochemistry using H-score and the magnification rule: Re-analysis of the SATURN study. Lung
Cancer 2013, 82, 231–237. [CrossRef]

27. Vento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.-E.; Stephenson, E.; Polański,
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