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Abstract: G-quadruplex (G4) structures are critical epigenetic regulatory elements, which usually
form in guanine-rich regions in DNA. However, predicting the formation of G4 structures within
living cells remains a challenge. Here, we present an ultra-robust machine learning method, G4Beacon,
which utilizes the Gradient-Boosting Decision Tree (GBDT) algorithm, coupled with the ATAC-seq
data and the surrounding sequences of in vitro G4s, to accurately predict the formation ability of
these in vitro G4s in different cell types. As a result, our model achieved excellent performance even
when the test set was extremely skewed. Besides this, G4Beacon can also identify the in vivo G4s of
other cell lines precisely with the model built on a special cell line, regardless of the experimental
techniques or platforms. Altogether, G4Beacon is an accurate, reliable, and easy-to-use method for
the prediction of in vivo G4s of various cell lines.

Keywords: G-quadruplex; in vivo G-quadruplex prediction; Gradient-Boosting Decision Tree (GBDT);
chromatin accessibility

1. Introduction

A G-quadruplex (G4) is a non-canonical structure that forms in guanine-rich se-
quences [1]. The basic unit of the G4 is the G-quartet, a planar structure of four Hoogsteen
hydrogen-bounded guanines with a cation such as potassium in the middle of the plane,
which can stabilize the structure [2,3]. Guanine-rich sequences with special patterns can
form two or more G-quartets and stack them into diverse topologies, including parallel
and antiparallel modes [2]. G-quadruplexes have been reported to be enriched in some
special regions, including promoters, telomeres, and double-strand breaks (DSBs), etc. [4,5],
which are tightly linked to their functions.

The G4-detection techniques can be classified into two categories: experimental meth-
ods and computational methods. Early experimental techniques of G4-detection, such as
NMR [6] and X-ray crystallography [7], focused on the structure information, while recent
methods based on next-generation sequencing (NGS) techniques provide genome-wide
information of the sequences and loci of G4s [8]. The most widely used G4 sequencing
techniques are G4-seq [9] and G4 ChIP-seq [10]. G4-seq is an in vitro G4 detection method
that combines DNA polymerase stalling and NGS techniques to detect the G-quadruplex
structures under the non-intracellular environmental state, and the number of G4s de-
tected by G4-seq is approximately 700 thousand in the human genome [9]. Recent research
employed a simpler DNA-seq experiment approach and proposed a sequencing quality
analysis method to profile whole-genome G4 sites [11]. Different from the G4-seq method,
G4 ChIP-seq uses the immunoprecipitation technique to map endogenous G4s in genomes,
detecting approximately 10 thousand in vivo G4s (also called active G4s) in human cells
such as HaCaT and K562 [10,12]. A recent study also attempted to detect G4s in living
cells using an artificial G4 probe protein (G4P), reporting similar amounts of in vivo G4s
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in different human and non-human cells [13]. Besides the above methods, the Cleavage
Under Targets and Tagmentation (CUT&Tag) technique was also used for genome-wide
in vivo G4 mapping, which showed better performance in terms of G4 detection sensitivity
but suffered from detection failure in fixed tissue compared to other G4 probing meth-
ods [14–16]. The quantity of G4s identified in vivo is significantly lower than that in vitro,
suggesting that the cellular environment may play an important role in G4 production in
cells [2,10,12].

Except for the experimental methods discussed above, there are several computational
methods (also known as in silico methods) designed to predict G4 sequences. Most of
these algorithms are used to detect the potential in vitro G4 sites without considering
the specific cellular environment [8]. The first generation of G4 prediction algorithms
are regular-expression (regex)-based methods through empirical regexes. For example,
the early regex-based algorithm Quadparser uses G3−5N1−7G3−5N1−7G3−5N1−7G3−5 and
has identified approximately 376,000 G4s in the human hg19 genome [17]. The further
developed algorithms are called scoring-based algorithms [8], using more flexible regexes
and scoring methods to detect more potential G4s. For instance, the representative scoring-
based algorithm QGRS mapper uses GxNy1GxNy2GxNy3Gx (x ≥ 2) to search for motifs
and utilizes G-scores to evaluate whether a candidate motif can form a stable G4 struc-
ture [18]. The G-score method tends to give a high score when a motif has (i) relatively
short loops, (ii) equal or similar loop sizes, and (iii) a great number of guanine tetrads [18].
After the G4-seq approach was proposed, more non-canonical G4s, such as long-loop and
bulged structures, were found [9], which brought more complex sequence patterns for
computational methods to detect. To improve the performance in predicting non-canonical
G4s, methods using the sliding-window scoring strategy (G4Hunter) [19] or data-driven
models, such as Quadron [20] and G4detector [21], were proposed.

Following the development of in vivo G4 detection experiments, an individual com-
putational method for predicting active G4 regions in cells, DeepG4, was presented [22].
DeepG4 is a data-driven method using sequence features appending cellular environment
features such as chromatin accessibility information. It employs a convolutional neural
network (CNN) and scans whole input regions with a fixed-length (200 bp) window [22].
However, this method suffered from inadequate performance in whole-genome in vivo G4
mapping: the AUPRC and F1-score declined heavily when the model was tested on the
whole-genome scale test sets [22]. These results reflect the fundamental challenge of the
whole genome in vivo G4 mapping problem, which is called the data-imbalanced problem.
The skewed distribution of G4 data brings serious training difficulties and prediction chal-
lenges [23]. Most traditional machine learning models, as well as deep learning models, are
not suitable for imbalanced dataset training. Therefore, balancing preprocessing methods
should be employed before model training. Moreover, more expressive features are also
required to improve the performance, as other negative factors such as the existence of
noisy samples will be enlarged by imbalanced data problems [23].

In this study, we proposed a cell-type-specific G4 prediction tool called G4Beacon,
which implemented the Gradient-Boosting Decision Tree (GBDT) algorithm to predict if a
G4-seq entry can fold into the quadruplex structure in a given cell type (Figure 1). The main
idea of G4Beacon is to use the ATAC-seq signal data and the surrounding sequences of
G4-seq entries that can provide information on chromatin accessibility as well as sequence
patterns to learn and identify whether a specific G4 site (G4-seq entry) could form the
quadruplex structure in a given cell (Figures 1 and S1). In our model, the cell-type-specific
positive samples were defined as those G4-seq entries that well overlapped with in vivo
G4s, while the remaining G4-seq entries were considered as negative samples. To avoid the
influence of data imbalance on training in G4Beacon, we adopted an oversampling strategy
to balance the data ratio. We then inspected the performance of G4Beacon by designing
and applying one-cell-line and cross-cell-line experiments. We confirmed that G4Beacon is
a robust and accurate method, even when working with datasets that are highly skewed or
derived from other G4 probing techniques. In conclusion, G4Beacon can precisely identify



Biomolecules 2023, 13, 292 3 of 14

the in vivo G4s of previously uncharacterized cell lines in a short time using only a few
commonly used features, which can greatly improve the current dilemma of poor in vivo
G4 data.
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Figure 1. Overview of G4Beacon workflow. G4-seq data are employed as the candidate active G4
dataset. For each candidate sample (G4-seq entry), G4Beacon extends it into a region of 2000 bp
length (surrounding region) and utilizes both ATAC-seq signal-track data and sequence data for
feature selection and construction. The ATAC-seq feature is transformed into a float vector using the
sliding-window method and the sequence feature is encoded using the ordinal categorical encoding
method. All of these features are taken by our trained-GBDT model (implemented using LightGBM)
as input for predicting whether the G4 will fold or not in the specific cellular environment.

2. Materials and Methods
2.1. Raw Data

To build and evaluate G4Beacon, the ATAC-seq data and in vivo G4 sequencing data
were required for feature construction and dataset division. The critical problem was
that there were few in vivo G4 sequencing data due to the high cost and experimental
difficulty of in vivo G4 sequencing. We required cell lines with both high-quality in vivo
G4 sequencing and ATAC-seq data, and, finally, three human cell lines—K562 (human
chronic myelogenous leukemia cell line), HepG2 (human hepatoblastoma cell line), and
MCF7 (human breast adenocarcinoma cell line)—were collected and used in this research.

The human G4-seq data were downloaded from the Gene Expression Omnibus (GEO)
database with the accession number of GSE110582 [24]. We used G4-seq entries derived
from the K+ experimental environment. The G4 ChIP-seq data for K562 and HepG2, and
the G4 CUT&Tag data for MCF7 cell lines, were retrieved from the GEO database with
the accession numbers GSE107690, GSE145090, and GSE181373, respectively. The cell-type-
specific ATAC-seq data were used for the construction of cellular environment features. The
ATAC-seq data were obtained from the Encyclopedia of DNA Elements (ENCODE) portal
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with the identifiers of ENCFF357GNC, ENCFF262URW, and ENCFF976UNK for the cell
lines of K562, HepG2, and MCF7, respectively. The histone modification state data were also
obtained from the ENCODE database with the identifiers of ENCFF783QIW (K562-H3K4me1),
ENCFF060FHP (K562-H3K4me2), ENCFF370CHI (K562-H3K4me3), ENCFF541RTV (K562-
H3K9ac), ENCFF422BDQ (K562-H3K9me3), ENCFF465GBD (K562-H3K27ac), ENCFF796REQ
(K562-H3K27me3), ENCFF199WYG (MCF7-H3K4me1), ENCFF024VOG (MCF7-H3K4me2),
ENCFF615NAU (MCF7-H3K4me3), ENCFF917IBG (MCF7-H3K9ac), ENCFF642EON (MCF7-
H3K9me3), ENCFF246QSB (MCF7-H3K27ac), and ENCFF216VVY (MCF7-H3K27me3). The
human genome assembly version of hg19 was used as the reference genome. All the epigenetic
data that originated from other assembly versions were then converted into hg19 by utilizing
the UCSC liftOver tool [25].

2.2. Positive/Negative Sample Division

We classified G4-seq entries into two parts, namely active G4 entries (positive samples)
and inactive G4 entries (negative samples), for each cell line according to whether these
G4-seq entries were supported by in vivo G4 experiments (Figure 2). We used bedtools [26]
to overlap the G4-seq entries and the G4 ChIP-seq/G4 CUT&Tag entries, taking the overlap
length as the criterion to accept a G4-seq entry as a positive sample or not. Considering
that the resolution of G4 ChIP-seq [27] and G4 CUT&Tag experiments was approximately
100–500 bp [16], only the G4-seq entries that overlapped with G4 ChIP-seq/G4 CUT&Tag
entries were retained and regarded as positive samples [17,19], while other G4-seq en-
tries were treated as negative samples. We used 10% of the G4 ChIP-seq/G4 CUT&Tag
peak length as the overlapping threshold, which was considered to mitigate the false
positive problem (Supplementary Figure S2). After sample division, we finally obtained
positive/negative samples for each cell line (see Table 1).
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Figure 2. Determination of positive and negative samples. In the training and evaluation workflow,
in vitro G4 data (G4-seq) are used as the candidate dataset. In vivo G4 experimental data (G4 ChIP-
seq or G4 CUT&Tag) are used to split positive (active G4s) and negative (inactive G4s) samples. More
specifically, a candidate G4 is tagged as a positive sample if it overlaps with an in vivo G4 peak and
the length of the overlapped region is greater than 10% of this candidate entry’s length.

Table 1. Positive/negative samples of different cell lines.

Cell Line Positive Samples Negative Samples

K562 3716 430,372
HepG2 2491 431,597
MCF7 4272 429,816

Due to the imbalance of positive and negative samples, which may affect the per-
formance of traditional machine learning algorithms [23], training set balancing is essen-
tial before it is used for model training. We compared different data sampling strate-
gies (Supplementary Figure S3 and Supplementary Table S1) and then applied an over-
sampling approach to ensure an equal size of positive and negative samples (see Section 2.5).
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2.3. Feature Selection and Construction

G4Beacon took both the chromatin accessibility data (ATAC-seq) and the sequence
data to construct features for each input G4-seq entry in the candidate dataset (Figure 1). To
acquire more information about the chromatin environment of the surrounding genomic
regions, each G4-seq entry was then extended by 1 kb upstream and downstream of its
center, respectively—that is, a 2 kbp length region (Figure 1).

The chromatin environment can influence the folding capability of in vivo G4s, as
they were found to appear together with ATAC-seq peaks [10]. The ATAC-seq signal value
for each G4-seq entry region was calculated as follows. First, the G4-seq entry region was
divided into 200 non-overlapping windows with 10 bp resolutions; second, the average
ATAC-seq signal value was computed within each 10 bp window. As a result, a vector of
imputed chromatin accessibility values with a size of 200 × 1 for each sample was obtained
for the subsequent analysis.

Most of the existing G4 prediction models merely use the sequences from G4 sites to
learn the sequence patterns of G4 structures [21,22]. However, in our model, the sequence
of each candidate G4-seq entry along with its surrounding regions was also extracted. Since
it is not an optimal strategy to apply the one-hot encoding method in tree learners, we used
the ordinal categorical encoding method for the construction of our model, as inspired by
LightGBM [28]. Generally, a raw 2000 × 1 sequence feature vector is taken as input and, for
each position of the sequence, the variable in the {A, T, C, G} set is mapped into {0, 1, 2, 3}
directly. These 2000 positions in the feature vector will be marked as categorical variables
using the categorical variable option of LightGBM (see Section 2.4) [28].

2.4. Machine Learning Model: Gradient-Boosting Decision Tree (GBDT)

We compared the performance of several machine learning methods, including Lo-
gistic Regression, Decision Tree, Random Forest, and Gradient Boosting Decision Tree
(GBDT) (Supplementary Figure S4, Supplementary Tables S2–S4), and finally the GBDT
algorithm performed better than other models and was used to construct the G4 folding
capability prediction model [29]. The GBDT algorithm is a dataset-scale-robust boosting
method that is largely applied in academic research as well as in industrial applications.
The principal mechanism of gradient boosting is to use multiple base estimators and
train each estimator to fit the difference between the former estimator results and the
true labels. There are two high-performance and widely used implements of GBDT: Xg-
boost [30] and LightGBM [28]. In this study, we utilized the Python API of LightGBM
version 3.2.1 (https://github.com/microsoft/LightGBM, accessed on 2 November 2022)
to implement our model workflow as it can provide categorical feature support and high
training efficiency [28].

As mentioned in Section 2.3, we enabled the categorical variable tag for each position
in the sequence feature. Instead of using the one-hot encoding method, which may lead
to unbalanced growth and high complexity problems, LightGBM sorts the categories
according to the training objective at each split and finds the best split for each categorical
feature [28].

To explore whether different hyperparameters will have a significant impact on the
model performance and to select the best model configurations, we utilized the grid-search
method to optimize the hyperparameters for LightGBM using a 2-fold cross-validation
experiment on the HepG2 cell line dataset (Supplementary Figures S5–S7).

2.5. Training and Evaluation of G4Beacon

In order to obtain a high-performance model that can predict active G4s within a spe-
cific cell line robustly, we designed complete training–evaluation approaches for G4Beacon.

As shown in Section 2.2, the ratio of positive and negative samples was highly skewed
in each cell line, which would influence the model training if the raw dataset were used as
a training set directly. To overcome the data skewness issue, the over-sampling method

https://github.com/microsoft/LightGBM
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was applied to the training dataset—that is, the positive samples from the training dataset
were over-sampled to the same size as the negative samples (Supplementary Figure S1a,b).

To evaluate the performance of G4Beacon comprehensively, we designed an evaluation
workflow containing two different experiments: a one-cell-line experiment and a cross-cell-
line experiment.

In the one-cell-line experiment, the training set and the test set were derived from the
same cell line, and the dataset processing steps can be described as follows. First, the raw
dataset was divided into two subsets of equal size randomly, and the ratio of positive and
negative samples remained the same as in the original dataset. Second, one of the subsets
was selected as the training set and the other as the test set. Third, a preprocessing method
(over-sampling) was applied to the training set before it was taken as the input of the GBDT
classifier for training. Finally, the performance of the trained model was tested on the test
set. We applied this evaluation workflow to all the cell line data (K562/HepG2/MCF7)
that we collected. The sizes of each training set and test set were displayed (Table 2). We
compared the performance divergences of the models with different feature combinations,
and they were the sequence-feature-only model, the chromatin-accessibility-feature-only
model, and the combined model. Among all combinations, the model achieved the best
performance when both sequence features and chromatin features were considered.

Table 2. Training set and test set sizes of experiments for each cell line.

Cell Line Training Set Positive/Negative Test Set Positive/Negative

K562 215,186/215,186 1858/215,186
HepG2 215,798/215,798 1246/215,799
MCF7 214,908/214,908 2136/214,908

The cross-cell-line experiment was applied for further evaluating the robustness of
G4Beacon. One of the basic hypotheses of our study is that the active G4s in different
cell lines exhibit similar chromatin accessibility and sequence patterns, and therefore the
performance of our model should persist when the target samples come from different cell
lines. In the cross-cell-line experiment, one cell line dataset was used as the training set
and the remaining cell line datasets were used as the test sets. Similar to the one-cell-line
experiment, the dataset used for training was preprocessed with over-sampling on positive
samples and the datasets for the test remained unchanged. In this study, the HepG2 cell
line data were utilized as the training set and the performance was tested on K562 and
MCF7 cell line data.

Accuracy, precision, recall, and F1-score were used as the basic criteria of prediction
performance. Moreover, ROC and PRC, as well as AUROC and the average precision
(AP), were also used to provide a more complete picture of the model’s performance. In
both one-cell-line and cross-cell-line experiments, we repeated the process five times with
different random seeds and obtained the mean ± standard error for each criterion.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1-score = 2 × (Precision × Recall)/(Precision+Recall)

AUROC = Area Under Receiver Operating characteristic Curve

AP = ∑ (Recalln − Recalln−1) × Precisionn

Besides the machine learning evaluation method, we also performed chromatin state
analysis to further evaluate our method. Furthermore, we also compared the prediction
results of G4Beacon with a recent in vivo G4 prediction tool, DeepG4 [22].
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Consistent with the cross-cell-line experiment, we used the full HepG2 dataset bal-
anced with the over-sampling method to train our G4Beacon model. The trained DeepG4
model was obtained from GitHub (https://github.com/raphaelmourad/DeepG4, accessed
on 2 November 2022) and directly used for further comparative analysis [22]. The HepG2
and MCF7 datasets were used as test sets, and the input for both methods was kept identi-
cal: the human G4-seq entries and ATAC-seq signal track data for each cell line. We verified
the active G4 surrounding epigenetic modification states, including H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, and H3K27me3.

3. Results
3.1. Predicting In Vivo G4s within One Cell Line

We first conducted the one-cell-line experiment using the training set and the test set
derived from the same cell line to evaluate the performance of G4Beacon on in vivo G4
prediction. We used the over-sampling method on each training set and employed them
to train the model. The performance of the trained models was tested on each testing set
using the criteria mentioned in Section 2.5.

We found that G4Beacon exhibited distinctive characteristics in the performance for dif-
ferent in vivo G4 detection techniques (G4 ChIP-seq or G4 CUT&Tag) when discriminating
between the positive and negative samples (Figure 3, Tables 3–5).
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Table 5. MCF7 cell line training–evaluation results. 

 Accuracy Precision Recall F1-Score AUROC AP 

seq 0.99 ± 0.00 0.22 ± 0.02 0.02 ± 0.00 0.03 ± 0.00 0.91 ± 0.00 0.11 ± 0.00 

ATAC 0.99 ± 0.00 0.48 ± 0.00 0.53 ± 0.01 0.51 ± 0.00 0.99 ± 0.00 0.47 ± 0.00 

ATAC+seq 0.99 ± 0.00 0.55 ± 0.00 0.48 ± 0.01 0.52 ± 0.00 0.99 ± 0.00 0.52 ± 0.00 

Figure 3. ROC/PRC of in vivo G4 prediction with training set and test set derived from same
cell line. The vertical axis and horizontal axis are True Positive Rate = TP/(TP+FN) and False
Positive Rate = FP/(FP + TN) for ROC, precision, and recall for PRC. Since in vivo G4 prediction is
an imbalanced data problem where the number of positive samples is overwhelmingly more than
that of negative samples, the Area Under PRC (AP) can reflect the performance of models more
effectively. (a,b) The ROC/PRC of K562 cell line. (c,d) The ROC/PRC of HepG2 cell line. (e,f) The
ROC/PRC of MCF7 cell line.

https://github.com/raphaelmourad/DeepG4
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Table 3. K562 cell line training–evaluation results.

Accuracy Precision Recall F1-Score AUROC AP

seq 0.99 ± 0.00 0.13 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.93 ± 0.00 0.10 ± 0.00
ATAC 0.99 ± 0.00 0.66+0.01 0.65+0.00 0.65+0.00 0.99+0.00 0.67+0.01

ATAC+seq 0.99 ± 0.00 0.70+0.01 0.66 ± 0.00 0.68 ± 0.00 1.00 ± 0.00 0.74+0.01
Each criterion is expressed as mean ± standard error. seq: sequence-only; ATAC: ATAC-only; seq+ATAC:
sequence–ATAC combined.

Table 4. HepG2 cell line training–evaluation results.

Accuracy Precision Recall F1-Score AUROC AP

seq 0.99 ± 0.00 NaN NaN NaN 0.89 ± 0.00 0.04 ± 0.00
ATAC 0.99 ± 0.00 0.57 ± 0.01 0.50 ± 0.01 0.53 ± 0.00 0.98 ± 0.01 0.49 ± 0.02

ATAC+seq 0.99 ± 0.00 0.63 ± 0.00 0.48 ± 0.00 0.54 ± 0.00 0.99 ± 0.00 0.58 ± 0.00

Table 5. MCF7 cell line training–evaluation results.

Accuracy Precision Recall F1-Score AUROC AP

seq 0.99 ± 0.00 0.22 ± 0.02 0.02 ± 0.00 0.03 ± 0.00 0.91 ± 0.00 0.11 ± 0.00
ATAC 0.99 ± 0.00 0.48 ± 0.00 0.53 ± 0.01 0.51 ± 0.00 0.99 ± 0.00 0.47 ± 0.00

ATAC+seq 0.99 ± 0.00 0.55 ± 0.00 0.48 ± 0.01 0.52 ± 0.00 0.99 ± 0.00 0.52 ± 0.00

In the G4 ChIP-seq group experiments, we employed data from the K562 cell line
and HepG2 cell line. For the K562 cell line, we found that models constructed with
different feature combinations exhibited diverse characteristics (Figure 3a,b and Table 3).
The sequence-only feature approach had inadequate precision and recall performance in
in vivo G4 prediction: F1-score = 0.01, AUROC = 0.93, AP = 0.10. The classifiers using the
ATAC-only feature performed much better than the sequence-only model: the F1-score,
AUROC, and AP rose to 0.65, 0.99, and 0.67, respectively, in the experiments (Figure 3a,b and
Table 3). Finally, we combined the sequence feature and the ATAC feature and found that
the results were further improved in comparison with the former models (F1-score = 0.68,
AUROC = 1.00, AP = 0.74) (Figure 3a,b and Table 3).

The HepG2 experiment had similar performance to that of the K562 experiment
(Figure 3c,d and Table 4). The model using the sequence-only feature approach exhibited
poor model performance, both in terms of precision and recall. The ATAC-only model
performed well in the K562 cell line, with an F1-score of 0.53, an AUROC of 0.96, and an AP
of 0.49 on such an imbalanced test set (Figure 3c,d and Table 4). Moreover, the performance
of the seq-ATAC model was also better than that of the other two models (F1-score = 0.54,
AUROC = 0.99, AP = 0.58) (Figure 3c,d and Table 4), which was consistent with the results
in the K562 cell line.

The performance of G4Beacon in K562/HepG2 experiments exhibited diverse charac-
teristics. First, the sequence-only feature failed to provide enough information for in vivo
G4 prediction, which means that the composition of sequences was not sufficient to charac-
terize the formation ability of in vivo G4s. Second, the models using chromatin accessibility
features provided excellent prediction accuracy in in vivo G4 prediction. Even on the test
set with a skewed positive/negative ratio, G4Beacon could balance the performance in
both precision and recall. Finally, adding a sequence feature to our approach improved the
performance compared with the chromatin-accessibility-feature-only models. Although the
sequence-only models performed poorly, integrating sequence information with chromatin
accessibility information did improve the performance in our experiments.

In the G4 CUT&Tag data experiment, we used MCF7 cell line data to construct the
training set and the test set. In the MCF7 cell line experiment, G4Beacon with different
feature selection approaches performed similarly as on K562 and HepG2 cell line data
(Figure 3e,f and Table 5). The sequence-feature-only model showed poor performance,
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with an F1-score = 0.03, an AUROC = 0.91, and an AP = 0.11 (Figure 3e,f and Table 5). The
model trained with the ATAC-only feature also performed well, striking a balance between
precision and recall. The combined-feature model also had the best performance among
the three feature selection approaches, with an F1-score of 0.52, AUROC of 0.99, and AP of
0.52 (Figure 3e,f and Table 5).

In summary, we validated and confirmed that our model was powerful enough to
predict in vivo G4s within both the training set and test set derived from the same cell line.

3.2. Cross-Cell-Line Predictions

In this study, we aim to propose a robust in vivo G4 predictor for different human cell
lines. Therefore, it is indispensable to test the performance in the situation of a training
set and test set coming from different cell lines. We designed a cross-cell-line train–test
workflow to evaluate the performance of our model—that is, training on one cell line and
testing on other cell lines. Specifically, we conducted a cross-cell-line experiment in which
the model was trained on the HepG2 dataset and tested on the other two cell lines, i.e., the
K562 cell line and MCF7 cell line. The entire data of each cell line were used in the above
experiment. The data for model training were balanced using over-sampling methods, as
for the training set in the one-cell-line experiment. As we had confirmed in the former
experiments that the combined feature model exhibited the best performance, we then
used ATAC and sequence-combined features in the cross-cell-line experiments.

We found that the prediction model trained on HepG2 G4 ChIP-seq data (HepG2
model) in the cross-cell-line experiment had robust performance in predicting in vivo G4s
in other cell lines (Figure 4 and Table 6). The HepG2 model provided accurate prediction on
the K562 (G4 ChIP-seq data) dataset, with an F1-score of 0.69, AUROC of 1.00, and AP of 0.79
(Figure 4 and Table 6). These results showed the excellent consistency of the data derived
from G4 ChIP-seq, which can be learned as in vivo G4 patterns by our approach. The HepG2
model also showed good performance when it was used to predict the in vivo G4s in the
MCF7 cell line (G4 CUT&Tag data), giving an F1-score of 0.33, AUROC of 0.98, and AP of
0.40 (Figure 4 and Table 6). Although there was a decrease in prediction performance with
lower recall compared to the HepG2train-K562test experiment, our model still maintained
acceptable performance, implying that the G4 patterns described by G4 ChIP-seq data are
probably stricter than the patterns derived from G4 CUT&Tag data, which is consistent
with the feature that G4 CUT&Tag is more sensitive in G4 detection than the G4 ChIP-seq
technique [15]. Moreover, we also compared the results between candidate G4-seq entry
inputs with canonical G4 motif and non-canonical (two-tetrad format) ones, and found that
in vivo G4s with only two tetrads were less predictable (Supplementary Table S5). This
result confirmed that the two-tetrad G4s were more unstable and easier to be influenced
by other potential chromatin environment situations, which was consistent with the prior
knowledge [18].

Table 6. Cross-cell-line prediction results (HepG2-trained model).

Accuracy Precision Recall F1-Score AUROC AP

Test on K562 0.99 ± 0.00 0.79 ± 0.00 0.61 ± 0.00 0.69 ± 0.00 1.00 ± 0.00 0.79 ± 0.00
Test on MCF7 0.99 ± 0.00 0.59 ± 0.00 0.23 ± 0.00 0.33 ± 0.00 0.98 ± 0.00 0.40 ± 0.00

Our G4Beacon approach has been proven to work robustly in the cross-cell-line
experiment. Predictions on the K562 dataset, which was divided with the same in vivo G4
detection method data (G4 ChIP-seq), showed prominent precision as well as recall on the
whole-genome scale test set. Moreover, G4Beacon can also perform robustly on a dataset
(MCF7) constructed with different sequencing techniques. These results demonstrate that
G4Beacon is equipped to learn the general ATAC-seq and surrounding sequence patterns
of in vivo G4s detected by G4 ChIP-seq/G4 CUT&Tag experiments.
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3.3. Cell Line Specificity and Histone Modification State of In Vivo G4s Identified by G4Beacon

Previous studies have shown that active G4s are preferentially located in active chro-
matin regions and are related to some histone modifications [10,12,16]. Inspired by this, we
set out to compare the differences in histone modifications around active G4s predicted by
G4Beacon and DeepG4.

We characterized the histone modification around in vivo G4s predicted by G4Beacon
and DeepG4, which could potentially justify the G4 prediction results as in vivo G4s are
preferentially formed in active genomic regions [12,16]. We used the threshold of predicting
score 0.5 for both G4Beacon and DeepG4, which means that the resulting G4s are consid-
ered to have more than a 50% possibility of being active G4s by the tool. We found that
the distribution modes of histone modification signals were varied around the predicted
G4s. The G4s predicted by G4Beacon showed higher average signal values and more
significant signal peaks than those predicted by DeepG4, regarding the open chromatin his-
tone modifications H3K4me1, H3K4me2, H3K4me3, H3K9ac, and H3K27ac in K562, while
the opposite was observed when considering the closed chromatin histone modifications
H3K9me3 and K3K27me3 (Figure 5a). Moreover, from the heatmaps, we found that most
of the G4s predicted by G4Beacon presented similar signal patterns and intensity, while the
DeepG4 results were less consistent (Figure 5a). This was also the case in the MCF7 cell
line when we considered the distribution mode of histone modifications around the pre-
dicted G4s derived from G4Beacon and DeepG4 (Supplementary Figures S8 and S9). These
results coincided with the relationship between G4 ChIP-seq peaks and transcriptional
activities [10,16], confirming the rationality of the active G4s predicted by G4Beacon.

Additionally, we used a more stringent threshold (0.95 and 0.99, respectively) for the
identification of active G4s and visualized the histone modification states around them, fo-
cusing on the most confident results of G4Beacon and DeepG4 (Figure 5b, Supplementary
Figures S10 and S11). As a result, the signal values around G4Beacon’s predicted G4s were
higher than those around DeepG4’s predicted G4s in those histone modifications that were
tightly associated with open chromatin states (Figure 5b, Supplementary Figures S10 and S11).

In summary, we described the histone modification states around the active G4s
derived from G4Beacon and DeepG4. The results showed that the G4s predicted by
G4Beacon were significantly enriched in open chromatin histone modification regions
rather than closed modifications, which implied the characteristics of active G4s.
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4. Discussion

The development of G4 detection methods, including G4-seq, G4 ChIP-seq, G4P-ChIP-
seq, and G4 CUT&Tag [9,10,13,15], has allowed us to profile G-quadruplex structures both
in vivo and in vitro. However, it is challenging to perform these methods across multiple
cell lines in a limited time and at a limited cost. As a result, a robust computational method
is needed to predict the active G4s for different cell lines in a high-throughput manner.

In this research, we focused on implementing the in vivo G4 predictions through a
data-driven method. We developed an effective method called G4Beacon, which contained
two core modules, namely the complete feature-construct module and the predictor module.
In the feature-construct module, we used chromatin accessibility data, i.e., ATAC-seq data
and the sequence data, as input to describe a candidate G4 sample. The predictor module
was built based on a strong ensemble learning method, GBDT, and we used one of the
widespread implements: LightGBM [28].

Different from most of the existing G4 prediction tools that took only sequence data as
input and predict non-cell-type-specific G4s, our model utilized the chromatin accessibility
profiles, which reflect the intracellular environments of cells within G4 folding regions, as
well as the surrounding sequences, which contain information about regulatory elements
related to G4s, e.g., transcription factor binding sites. Due to the importance of in vivo G4
prediction, another deep learning algorithm has recently been proposed to characterize
and predict in vivo G4s based on chromatin accessibility and sequence patterns, namely
DeepG4 [22]. Although the DeepG4 tool achieved fair AUROC performance on data from
different cell lines, the AUPRC results remained to be greatly improved, which reflected
the potential high-false-positive-ratio problem. To overcome this problem, we employed
a different data preprocessing strategy. Our method used a wider surrounding region of
2000 bp length for feature construction, which helped the model to acquire more cellular
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environment and surrounding sequence pattern information for each candidate G4. The
results showed that although our model was trained on a specific cell line, its superior
performance persisted in other cell lines, meaning that it can be transplanted to those cell
lines whose G4s are not depicted.

To verify the performance of G4Beacon, we profiled both machine learning evaluation
experiments and bioinformatics analysis of histone modifications around the predicted
active G4s. The machine learning evaluation experiments, including one-cell-line and
cross-cell-line experiments, showed that G4Beacon not only performed well on data from
one cell line but was also robust in cross-cell-line predictions (Figures 3 and 4). Moreover,
the results of the histone modification analysis also supported the notion that the active
G4s identified by G4Beacon had reliable cell line specificity and correlated with some
important histone modifications (Figure 5). Therefore, our method was relatively reliable
in G4 prediction scenarios.

However, the features that we considered in constructing the G4Beacon model are still
inadequate to completely describe the cellular environment involved in G4 folding, which
is a limitation of this model. Although the sequence patterns can be different between
active and inactive G4s, the main differences should arise from the cell line environment
where they are harbored—that is, the chromatin accessibility feature used in our research.
With the developments in researching the environmental factors that can influence the
formation of in vivo G4s, more useful information can be taken as input features. Even
so, the framework of our G4Beacon can be generalized to support any type of sequential
environment data. It is conceivable that G4Beacon can easily be employed to train on new
expressive features, and thereby we can acquire predictors with better performance.

In conclusion, G4Beacon is a very accurate, stable, and concise tool that can be used
for the prediction of in vivo G4s.

5. Conclusions

In this research, we proposed G4Beacon, a machine-learning-based in vivo G4 pre-
diction method that utilized both the sequence and chromatin accessibility information
to depict and identify the cell-type-specific active G4s. We tested G4Beacon in a one-
cell-line experiment and a cross-cell-line experiment, which showed that our model was
considerably accurate and robust in whole-genome in vivo G4 prediction. In summary, our
method can quickly and extensively describe the landscape of in vivo G4s in existing cell
lines and can facilitate genome-wide G4 studies and the discovery of their potential new
biological functions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13020292/s1, Figure S1: Dataflow of G4Beacon; Figure S2: The
boxplots of G4 ChIP-seq signal of G4-seq entries with different overlapped rates; Figure S3: Comparison
of different training set balancing (sampling) strategies; Figure S4: Model comparison of 4 differ-
ent machine learning methods (Logistic Regression, Decision Tree, Random Forest, and GBDT);
Figure S5–S7: Performance of LightGBM models with different training hyperparameters (learning
rate, number of base estimators, and number of leaves of one base estimator); Figure S8: Profiles
and heatmaps of the histone modification results on MCF7 cell line data; Figure S9: The heatmaps
of histone modification states around active G4s derived from DeepG4; Figure S10: The boxplots of
histone modification state scores of K562 active G4s derived from G4Beacon and DeepG4, with the
probability threshold of 0.99; Figure S11: The boxplots of histone modification state scores of MCF7
active G4s derived from G4Beacon and DeepG4, with the probability thresholds of 095 and 0.99;
Table S1: Evaluation results of different training set balancing strategies; Tables S2–S4: Evaluation re-
sults of model comparison on different cell line data (K562/HepG2/MCF7); Table S5: Cross-cell-line
prediction results of different motif patterns.
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