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Abstract: Acute pancreatitis (AP) is a serious inflammatory condition of the pancreas that can be
associated with chylomicronemia syndrome (CS). Currently, no study has explored the differences
between non-CS-associated AP and CS-associated AP in terms of gene expression. Transcriptomic
profiles of blood samples from patients with AP were retrieved from GSE194331 (non-CS-associated)
and GSE149607 (CS-associated). GSE31568 was used to examine the linkage between non-CS-
associated AP and the expression of micro RNAs (miRNAs). Differentially expressed genes (DEGs)
were identified, a gene regulatory network was constructed, and hub genes were defined. Subse-
quently, single-sample gene set enrichment analysis (ssGSEA) scores of hub genes were calculated
to represent their regulatory-level activity. A total of 1851 shared DEGs were identified between
non-CS-associated and CS-associated AP. Neutrophils were significantly enriched in both condi-
tions. In non-CS-associated AP, miRNAs including hsa-miR-21, hsa-miR-146a, and hsa-miR-106a
demonstrated a lower expression level as compared with the healthy control. Furthermore, the
expression patterns and regulatory activities were largely opposite between non-CS-associated and
CS-associated AP, with significantly lower estimated neutrophils in the latter case. In summary, we
found that the regulation of neutrophils was altered in AP. There was a different gene expression
pattern and lower estimated neutrophil infiltration in CS-associated AP. Whether these findings are
clinically significant requires further investigation.

Keywords: acute pancreatitis; chylomicronemia syndrome; neutrophil degranulation; neutrophil;
peripheral blood

1. Introduction

Acute pancreatitis (AP), which is often characterized by upper abdominal pain and
elevated levels of pancreatic enzymes in peripheral blood, is an inflammatory condition of
the pancreas. In the United States, AP is considered to be a major gastrointestinal disorder
that necessitates hospitalization in most cases [1]. In terms of etiology, the leading causes of
AP are gallstones and alcohol, which account for approximately two-thirds of cases [2,3].
Other causes include hypertriglyceridemia (HTG), post-endoscopic retrograde cholan-
giopancreatography, genetics, and certain medications [4–7]. Among them, HTG-induced
AP (HTGP) is often underestimated, even though up to 35% of AP-related hospitalizations
may be caused by HTG [8].

HTG can occur due to a number of conditions, ranging from rare familial disorders
such as familial chylomicronemia syndrome (Familial CS, FCS) to acquired diseases like
diabetes mellitus [9–11]. In fact, the spectrum of conditions associated with HTG may be
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linked to predisposing genetic risks [12]. In the case of FCS, reduced lipoprotein lipase
(LPL) activity has been found to be caused by defects in LPL gene products or genes
involved in the regulation of LPL activity, including APOC2, APOA5, GBIHBP1, and
LMF1 [11]. In contrast, multifactorial chylomicronemia syndrome (MCS) occurs when
an underlying genetic tendency is complicated by several medical factors, which in turn
aggravates HTG [13]. For both types of CS, the most daunting complication is AP, and
identifying patients with CS-associated AP is essential as genetic alterations may portend
therapeutic resistance, especially in FCS [11]; and identification of genomic biomarkers for
this special phenotype is important for long-term management and prevention of future
episodes of AP [14]. However, no study has addressed the contribution of such biomarkers
to the difference between CS- and non-CS-associated AP.

Currently, most studies investigating the genetic risk of AP are primarily based on
the exploration of pancreatic tissues. Obtaining tissue samples, although risk stratification
could be evaluated, may not be practical because the current diagnosis of AP is based on
clinical findings, laboratory data, and imaging [15]. Nevertheless, with the progress of high-
throughput technologies, such as DNA microarray and RNA-Seq, blood samples may still
be of diagnostic value if these data are obtained [16]. In fact, multiple blood biomarkers have
been found to be of diagnostic value for AP, such as lipase, amylase and trypsinogen [17].
These biomarkers are based on the biochemical profiling, and can sometimes be affected
by other gastrointestinal diseases or disease conditions. Other indicators of AP such as
those based on the metabolome, genes, cell free DNA (cfDNA) and miRNA, however, are
different from the biochemical biomarkers and have not been widely investigated. These
novel biomarkers are able to be integrated into machine-learning (ML) process, leading
to accurate prediction of AP. Sun et al. used cfDNA methylation marker in the blood
samples and constructed a prediction model for severe AP with high model performance
and accuracy [18]. Zhang et al., explored the transcriptomic profiles of peripheral blood
cells in AP [19]. Through ML methods, they found that S100A6, S100A9, and S100A12 were
predictors of severe AP. By examining the perturbation of genomic/transcriptomic profiles
in the blood samples, we can sufficiently characterize the altered biological pathways in a
specific condition like CS.

In this study, we aimed to compare the transcriptomic profiles in the blood between
non-CS-associated and CS-associated AP in an attempt to identify biomarkers that could
discriminate between these two patient populations. We used peripheral blood samples
and examined whether the associated transcriptomic profiles and biological pathways
were different. Finally, we tried to construct an ML-based prediction model for AP in
both conditions.

2. Materials and Methods
2.1. Samples

The series matrix files GSE194331, GSE149607, and GSE31568 were downloaded
from the National Center for Biotechnology Information Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo, accessed on 11 September 2022) using the R/
Bioconductor GEOquery package. The datasets were derived from whole-blood sam-
ples [20–23]. The GSE194331 dataset was based on RNA-Seq (platform: Illumina HiSeq
2500) and included 87 patients with AP and 32 healthy controls (total = 119). In addition,
87 patients were annotated with severity according to the revised Atlanta classification.
Raw RNA-seq data were extracted for differential expression analysis and normalized using
variance-stabilizing transformation for cross-sample comparison using the R/Bioconductor
DESeq2 package [24]. The expression of genes among different severities was drawn in
a uniform manifold approximation and projection (UMAP) space to visualize the data
distribution using the umap package in R [25]. The GSE149607 dataset was based on a DNA
microarray (platform: Affymetrix Human Gene 2.0 ST Array) and contained 47 patients
with CS (FCS:19; MCS:28) and 15 healthy controls (total = 61). Data from GSE149607
were normalized using the robust multi-array average (RMA) according to the authors’
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methods. GSE31568 was based on non-coding RNA profiling (febit Homo sapiens miRBase
13.0) and was used to identify potential micro RNAs (miRNAs) associated with AP. This
study included 38 patients with AP and 38 healthy controls (76 patients). This dataset was
normalized using median and quantile normalization.

2.2. Differential Expression Analysis

For GSE194331, differentially expressed genes (DEGs) were identified in patients with
AP with varying severities and healthy controls through a linear regression model using
the R/Bioconductor limma package [26]. Significance was defined as a false discovery rate
(FDR)-adjusted p-value (adj. p) < 0.05. A Venn diagram (https://bioinformatics.psb.ugent.
be/webtools/Venn/, accessed on 11 September 2022) was created to visualize the common
overlap of DEGs among the three severities (mild AP vs. control; moderately severe AP
vs. control; severe AP vs. control). A volcano plot was generated to visualize the overall
distribution of DEGs for any severity of AP vs. control using the EnhancedVolcano package
in R. Similarly, for CS cases in GSE149607, DEGs were identified in AP subjects and healthy
controls and were then intersected with the common overlapping DEGs among the three
severities in GSE194331 in order to filter out genes for over-representation analysis (ORA).

2.3. Gene Set Enrichment Analysis (GSEA)

A ranked list was generated according to the log fold change (logFC) for DEGs between
all AP cases and healthy controls. GSEA was performed using the GSEA function of the
R/Bioconductor clusterProfiler package [27]. The enrichment score (ES) was derived by
calculating the weighted Kolmogorov–Smirnov statistic to a running sum of the ranked list.
The ES was further normalized to account for the size of each gene set. FDR’s less than 0.05
were considered statistically significant.

2.4. Over-Representation Analysis (ORA)

To identify the pathways involved in AP, common DEGs between GSE194331 and
GSE149607 were inputted into Metascape (https://metascape.org/, accessed on 11 Septem-
ber 2022), a website designed to provide comprehensive gene list annotation and pathway
enrichment analysis [28]. During enrichment analysis, the input DEGs were compared
to thousands of gene sets curated from various sources (KEGG Pathway, GO Biological
Processes, Reactome Gene Sets, Canonical Pathways, CORUM, and WikiPathways) to
identify their involvement in specific biological processes. Enriched terms were defined
by hypergeometric test and Benjamini-Hochberg p correction algorithm. p < 0.05 was
considered significant [28].

2.5. Construction of Regulatory Gene Network and Identification of Hub Genes

A protein–protein interaction (PPI) network was constructed by applying DEGs in
the Search Tool for the Retrieval of Interacting Genes (STRING) database. The network
was exported and reconstructed using Cytoscape software (version 3.8.2). Sub-network
modules were identified using plug-in molecular complex detection (MCODE). The criteria
for determining complexes of biological significance for AP were an MCODE score > 3
and a node number > 5. Genes with at least ten interactions were considered hub genes.
CytoHubba was used to identify the central elements of the biological networks [29]. The
top 10 nodes from five methods, namely, Maximum neighborhood component (MNC),
maximal clique centrality (MCC), edge percolated component (EPC), the density of max-
imum neighborhood component (DMNC), and degree, were obtained, and genes with
degrees less than 10 were eliminated.

2.6. Identification of Target miRNAs

It has been shown that altered miRNA expression may cause the alteration of physi-
ological functions involved in inflammation, including AP [30]. To identify the miRNAs
that regulated the hub genes for AP in both datasets (GSE194331 and GSE149607), miRTar-
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getLink 2.0 (https://www.ccb.uni-saarland.de/mirtargetlink2, accessed on 11 September
2022) was used. A unidirectional search was conducted to identify the target miRNAs using
hub genes as inputs. Only target miRNAs that were strongly validated were retained. A lit-
erature search was then performed to confirm the association between the target miRNAs
and the biological mechanisms of interest. Normalized intensity values from GSE31568
were used to validate target miRNAs.

2.7. Single Sample Gene Set Enrichment Analysis (ssGSEA)

To estimate the enrichment of hub genes under AP and health status in patients with
or without CS, the single-sample GSEA (ssGSEA) score was derived using the ssGSEA
function of the R/Bioconductor GSVA package [31]. The ssGSEA score represents the
degree to which the hub genes are coordinately up- or down-regulated for each sample [32].
The ssGSEA score of each sample was then min–max scaled.

2.8. Immune Cell Infiltration Analysis

Immune cell type enrichment analysis from gene expression data was conducted to
estimate immune cell infiltration for each sample in GSE194331 and GSE149607. ssGSEA
scores for immune cell-specific gene sets integrated using publicly available methods were
calculated using the ConsensusTME package in R [33]. Four studies aiming to estimate
immune cell infiltration were adopted, including xCell, MCP-counter, Bindea et al., and
Danaher et al. [34–37].

2.9. Prediction of Associated Genes and Biological Pathways

We hypothesized that the expression profiles of hub genes would be different between
patients with and without CS. To confirm this, we first calculated Spearman’s correlation
coefficients between hub genes and specific immune cell types of interest. The correlation
coefficients were then averaged across four studies (xCell, MCP-counter, Bindea et al., and
Danaher et al.) and ranked. We then extracted the top ten genes with positive correlation
coefficients and used GeneMANIA to construct new PPI networks [38]. GeneMANIA is an
online server where interconnections between proteins can be explored in terms of physical
interactions, co-expression, prediction, and co-localization. Pathway analysis based on the
DAVID website was performed to identify the functional enrichment of the top ten genes
and interacting genes. Enrichment is measured by the hypergeometric p-value, and p < 0.05
was considered significant.

2.10. Construction of Diagnostic Models for AP

Patients with AP in GSE194331 and GSE149607 datasets were randomly divided into
training and testing sets based on an 8:2 ratio. The least absolute shrinkage and selection
operator (LASSO) regression algorithm was used to select 43 hub genes with non-zero
coefficients via 10-fold cross-validation [39]. LASSO models were built based on the selected
gene signatures. Receiver operating characteristic (ROC) analysis with the area under the
curve (AUC) and a 95% confidence interval (CI) was conducted to evaluate the performance
of the LASSO models using the pROC package in R in the training, testing, and entire
sets [40].

2.11. Statistical Analysis

All statistical analyses were conducted using the R software (version 4.1.2). Wilcoxon’s
rank sum test was performed for continuous variables under specific conditions, and
statistical significance was set at p < 0.05.

3. Results
3.1. Characterization of Transcriptomic Profiles in AP without CS

Transcriptomic data from the peripheral blood of AP patients without CS with varying
severities were examined using UMAP analysis. Except for patients with mild AP, who
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were mixed with healthy controls, patients with moderate and severe AP were different and
clustered together (Figure 1A). Differential gene analysis was performed separately, and
Venn diagram analysis identified an overlap of 6513 genes among the different severities
of AP (Figure 1B). The most prominent DEGs identified in the AP samples were ARG1,
S100A8, S100A12, and ANXA3 (Figure 1C). GSEA revealed an enriched Gene Ontology
(GO) term:0042581: specific granule (normalized ES:2.47, adjP:0.0319). A gene-concept net-
work was constructed, and core enriched genes were identified: ARG1, CD177, MCEMP1,
ANXA3, ORM1, ORM2, HP, SLPI, CLEC4D, RETN, and GPR84 (Figure 1E). Specific gran-
ules are a type of secretory vesicle found in granulocytes [41]. It is specifically applied to
neutrophils, which release parts of their granule contents in response to lipopolysaccharide
and proinflammatory proteins, such as S100A9 [42,43]. Some typical contents of the specific
granules are shown in Figure 1F. Compared with healthy controls, expression levels of
the enriched core genes were higher in patients with AP (Figure 1G). In GSE149607, there
was clustering of control samples that was separate from FCS and MCS (Supplementary
Figure S1A). The most prominent DEGs were identified in the control samples, which were
MS4A2, CPA3 and LRG1 (Supplementary Figure S1B). GSEA results showed 3819 enriched
GO terms and GO:0042581 was also significantly enriched, but with the opposite regulatory
pattern as compared with that in GSE194331 (Normalized ES:–2.68, adj. p < 0.001, Sup-
plementary Figure S1C,D). Based on the findings derived from the blood samples, these
results suggest that neutrophil-related biological processes play vital roles in AP and the
regulatory activity might be different between CS-associated and non-CS-associated AP.

Figure 1. Characterization of gene expression profile in patients with non-chylomicronemia syndrome
(CS)-associated acute pancreatitis (AP). (A) Uniform manifold approximation and projection (UMAP)
plot of gene expression between AP samples and healthy controls in GSE194331. Patients with AP
are divided into mild, moderately severe, and severe. Red: Healthy control. Blue: Mild. Green:
Moderately severe. Purple: Severe. (B) Venn diagram of differentially expressed genes (DEGs) among
three degrees of severity in GSE194331. There are 6513 common DEGs. (C) Volcano plot of the
common DEGs in the Venn diagram. Red: Significantly up-regulated and down-regulated genes
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based on the |logFC| > 1.5 and the adj. p-value < 10 × 10−5. Blue: DEGs with |logFC| ≤ 1.5 and adj.
p ≤ 10 × 10−5. Green: DEGs with |logFC| >1.5 and adj. p > 10 × 10−5. Gray: DEGs with |logFC|
≤ 1.5 and adj. p > 10 × 10−5. (D) Gene set enrichment analysis (GSEA) plot of gene ontology (GO):
0042581-specific granule. NES and adj. p are shown. (E) Gene-concept network of genes listed in GO:
0042581. Dot size of the GO term represents the number of DEGs that are annotated based on the
term. Color bar indicates the fold change between AP and control. (F) Diagram of neutrophil and its
common granules. Red: Azurophilic granule. Blue: Specific granule. Contents inside the specific
granule are shown. (G) Hierarchical clustering heatmap shows expression levels of the annotated
DEGs in GO: 0042581 in patients with varying severities and healthy subjects. Expression levels are
z-transformed.

3.2. Neutrophil Degranulation Pathway Is Altered in AP with and without CS

Patients with CS are at higher risk of developing AP. Patients from GSE149607 were
evaluated in order to investigate whether they shared similar altered biological pathways
with GSE194331. We found a substantial overlap of DEGs (n = 1851) between these two
patient populations (Figure 2A). For GSE149607, over 50% of the DEGs (1851/3510, 52.7%)
were shared with GSE194331. Next, the shared DEGs were inputted into Metascape for
ORA. Surprisingly, neutrophil degranulation (Reactome: R-HSA-6798695) was enriched
as the top GO term (Figure 2B). To identify the hub genes for AP in both conditions,
1851 common DEGs were used to construct a gene regulatory network using Cytoscape
(Figure 2C). Through sub-network analysis using CytoHubba, we found that STAT3, IL1B,
TLR4, MYC, PTPRC, ITGAM, MAPK3, and ACTB were selected three times among the
five algorithms (Supplementary Figure S2). Despite the high correlation between the
two platforms regarding DEGs, their correlation was negative (–0.7, p = 4.9 × 10−7)
(Figure 2D). In support of this, heatmaps of the up-regulated and down-regulated hub
genes for CS- and non-CS-associated AP demonstrated strikingly different expression
profiles (Figure 3A,B). Overall, these findings suggest that AP patients with CS shared the
same biological alterations as those not diagnosed with CS; however, the transcriptomic
profiles may be different.
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Figure 2. Common pathway in CS- and non-CS-associated AP. (A) Venn diagram of DEGs between
AP and control in GSE194331 and GSE149607. (B) Dot plots show clustered enrichment ontology cat-
egories from over-representation analysis (ORA) in GSE194331 and GSE149607. –Log10-transformed
multiple testing-adj. p-value is shown for each enriched term. Black arrows indicate the name of
the top enriched term. (C) Hub genes obtained using MCODE in Cytoscape. (D) Scatter plot of
correlation between logFC of common DEGs in GSE194331 and GSE149607. Significance of correlation
was obtained using Spearman’s test.
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Figure 3. Regulation of hub genes in CS- and non-CS-associated AP. (A,B) Heatmaps show hierar-
chical clustering of hub gene expression in GSE194331 and GSE149607. Conditions of up-regulation
and down-regulation are separated. Expression levels are normalized to the z-score. Columns of
heatmaps are divided into AP and control. (C) Interaction graph of selected hub genes and miRNAs
derived from miRTargetLink 2.0. A central component of hub genes with high node degrees is shown.
(D) Box plots show expression of hsa-miR-21*, hsa-miR-146a, and hsa-miR-106a* between AP and
control in GSE31568. Wilcoxon’s rank sum test P values are shown. * indicates the product is from
the opposite arm of the miRNA precursor.

3.3. Identification of miRNAs

The hub genes were input into miRTargetLink 2.0 to build an interaction graph. As
shown in Figure 3C, a central component of hub genes with high node degrees was identi-
fied, including SOCS3, IL6R, CD274, STAT3, TLR2, and TLR4. The miRNAs with more than
two interactions with the central hub genes were hsa-miR-124-3p, hsa-miR-21-5p, hsa-miR-
146a-5p, hsa-miR-23a-3p, hsa-miR-106a-5p, and hsa-miR-125b-5p. Using plasma samples
of AP and healthy controls from GSE31568, we found that the expression levels of hsa-miR-
21, hsa-miR-146a, and hsa-miR-106a were significantly lower than those in the controls
(Figure 3D). A literature search revealed that these miRNAs in peripheral neutrophils were
also down-regulated under various inflammatory conditions (Table 1) [44–49]. Therefore,
as neutrophils account for two-thirds of white blood cells, plasma hsa-miR-21, hsa-miR-
146a, and hsa-miR-106a could be used as potential biomarkers for AP.
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Table 1. miRNAs associated with neutrophil regulation.

miRNAs Condition Neutrophil Source Literature PMID

hsa-miR-106a Down-regulated after acute exercise Peripheral blood Radom-Aizik et al. [44]

hsa-miR-21 Down-regulated after traumatic injury Peripheral blood Yang et al. [45]

Down-regulation induces apoptosis in neutrophil Peripheral blood Hutcheson et al. [46]

hsa-miR-146a Down-regulated in diffuse alveolar hemorrhage Peripheral blood Hsieh et al. [47]

Down-regulation induces neutrophil extracellular traps Peripheral blood Arroyo et al. [48]

Up-regulation represses neutrophil attraction Peripheral blood Meisgen et al. [49]

3.4. Regulatory Activity of the Hub Genes Was Different in Patients with CS

The ssGSEA scores of the hub genes were calculated, and we found that the scores were
significantly different between the AP and control samples in both datasets (all p < 0.001)
(Figure 4A). However, in GSE149607, the ssGSEA scores were lower in patients with CS
(FCS and MCS) than in the controls. Furthermore, ssGSEA scores demonstrated a high
correlation with neutrophil infiltration estimated via signatures derived from xCell, Bindea
et al., Danaher et al., and MCP-counter (Figure 4B). These combined findings suggest that
the regulatory-level activity of hub genes in AP patients was dysregulated regardless of
the presence of CS. However, there were opposite profiles of neutrophil infiltration in the
peripheral blood.

Figure 4. Regulatory activity of the hub genes in AP. (A) Box plots show differences in single-sample
GSEA (ssGSEA) scores between AP and control in GSE194331 and GSE149607. Wilcoxon’s rank
sum test P values are shown. (B) Scatter plots show Spearman’s correlation between ssGSEA scores
and the estimated neutrophil infiltrations in GSE194331 and GSE149607. Gene signatures used for
estimating the neutrophil infiltration are based on xCell, Bindea et al., Danaher et al., and MCP-
counter. Correlation coefficients (r) are shown, and significance of correlation was obtained using
Spearman’s test.

3.5. Correlation Profiles of Hub Genes in Patients with CS- and Non-CS-Associated AP

To investigate which hub genes were responsible for the differences observed between
CS- and non-CS-associated AP, we correlated the expression levels of the hub genes with
regulatory activity for AP (i.e., ssGSEA scores). The correlation profiles were similar,
especially for the down-regulated and up-regulated genes in GSE194331 and GSE149607,
respectively (Figure 5A,B). However, the top 10 hub genes for the other gene sets with the
opposite regulation were slightly different. In GSE194331, the top 10 genes were TLR5,
SPI1, SOCS3, SELL, NCF4, LY96, ITGAM, IL1R1, IL1B, FCGR1A, TNFRSF1A, TLR6, TLR4,
SPI1, NCF4, NCF2, IL1R1, IL1B, FCGR3B, and CXCR2 in GSE149607.
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Figure 5. Correlation profiles of the hub genes. (A,B) Correlation coefficients calculated according to
the four studies (xCell, Bindea et al., Danaher et al., and MCP-counter) between expression of the hub
genes and their ssGSEA scores are plotted for GSE194331 and GSE149607. Due to higher variability
between datasets, the top 10 genes with positive correlations are selected. Red boxes represent the
top 10 genes with higher average correlation coefficients among the four studies in GSE194331. Blue
boxes represent the top 10 genes with higher average correlation coefficients among the four studies
GSE149607.

By applying GeneMANIA to each dataset, networks of the top ten genes and genes
with interactions, either predicted or not, were constructed (Figure 6A,B). The genes
identified by this data source were different and demonstrated varying linking profiles. The
only shared genes were IL1RN, TICAM2, GATA1, IL1RAP, HOXA10, and NCF1. Functional
enrichment analysis revealed differentially enriched GO terms. In GSE194331, the enriched
terms were growth factor receptor binding, the cellular response to lipopolysaccharide, and
the cellular response to interleukin-1, whereas in GSE149607, enriched terms included the
cellular response to molecules of bacterial origin, the cellular response to biotic stimulus,
and the response to molecules of bacterial origin. Because the expression of the top 10 genes
in GSE149607 was lower in subjects with AP than in the controls, it may be likely that the
activity of the functional pathways is suppressed or absent.
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Figure 6. Protein–Protein networks of the hub genes. (A,B) The protein–protein interaction networks
of the top 10 genes in the correlation profiles of GSE194331 and GSE149607 constructed using
GeneMANIA. Interconnections between proteins are shown in terms of physical interaction, co-
expression, predicted, co-localization, common pathway, genetic interaction, and shared protein
domains. The top three enriched pathways are shown for the two networks.

3.6. Diagnostic Models for CS- and Non-CS-Associated AP Based on Hub Genes

To identify candidate genes with diagnostic value for AP, we selected potential genes
with predictive ability from the 43 hub genes. The parameters were tuned, and genes with
non-zero coefficients were identified (Figure 7A,B). Fifteen genes were selected from the
GSE194331 dataset (TLR8, STAT3, IL7R, TNFRSF1A, TLR3, NLRP3, CD83, FOXP3, FAS,
TLR6, LY96, ITGAX, FCGR1A, NCF2, and IL1R1). Based on these genes, a diagnostic
model was constructed, and the predictive values were high, with AUC = 1 (95% CI:1-1),
0.925 (95% CI:0.8193-1), and 0.998 (95% CI:0.9941-1) in the training, testing, and entire sets,
respectively (Figure 7C). Similarly, a diagnostic model for CS-associated AP (GSE149607)
showed high performance based on the four selected genes (ICAM1, TNFRSF1A, CD83,
and CXCR5), with AUC values of 0.996 (95% CI:0.9852-1), 0.889 (95% CI:0.6711-1), and
0.993 (95% CI:0.9797-1).



Biomolecules 2023, 13, 284 12 of 19

Figure 7. Construction of diagnostic models for AP. (A,B) Binomial deviance plot with lambda as
the tuning parameter for GSE194331 and GSE149607 (upper panels). The red dots are the values of
binomial deviance. The gray lines indicate the standard error (SE). The vertical dashed lines indicate
the optimal values by the minimum criteria and 1-SE criteria. The least absolute shrinkage and
selection operator (LASSO) coefficient profile of the selected genes is shown in the lower panels.
(C) Receiver operating characteristic (ROC) curves of the LASSO diagnostic models in the training,
testing, and entire datasets for GSE194331 (upper) and GSE14960 (lower).

4. Discussion

Through integrated bioinformatic analyses of blood samples from subjects with AP, we
identified 43 common hub genes in patients with and without CS. Both patient populations
share the same pathways related to neutrophil degranulation. We found that the regulation
of hub genes was essentially the opposite and could potentially aid in the discrimination
between CS and non-CS causes of AP. The regulatory activity of the hub genes, characterized
by ssGSEA scores, displayed significant differences between the AP and control samples.
Compared with healthy controls, patients without CS had significantly higher ssGSEA
scores, whereas patients with either FCS or MCS had significantly lower ssGSEA scores.
Additionally, this activity score correlated well with the estimated neutrophil infiltration
in the blood for both of the datasets. The correlation profiles in our study also showed
similar patterns with slight differences. Furthermore, the selected hub genes in both
datasets revealed high diagnostic values for AP. Therefore, these 43 hub genes could serve
as potential biomarkers for AP, regardless of the presence of CS.

Because of the relative inaccessibility of pancreatic tissue and the rapid course of AP,
obtaining blood samples seems advantageous for establishing early diagnosis [50]. At
present, there is no gold standard laboratory test for diagnosing AP, and serum lipase
activity at least three times greater than the upper limit is often adopted to assess pancre-
atic inflammation [51]. Other potential serum biomarkers include pancreatic isoamylase,
pancreatic elastase, serum trypsin, urinary trypsinogen-activated peptide, phospholipase
A2, and carboxypeptidase B [52,53]. However, these biomarkers have not been incor-
porated into clinical use for various reasons, such as their low diagnostic accuracy and
availability [54].

AP is a type of inflammatory disease that begins with local inflammation of the
pancreas and progresses into a generalized inflammatory response followed by multi-organ



Biomolecules 2023, 13, 284 13 of 19

dysfunction [55–58]. The most widely accepted initiating event is the premature activation
of trypsin, which activates a zymogen cascade that induces the attraction of leukocytes
to the pancreas [17,59]. Therefore, the immune system is activated at the onset of AP in
the bloodstream. However, the human immune system is complex and includes various
types of immune cells. An overview of the activated immune response to infection or
inflammation is impossible if we rely solely on certain molecules. Due to the advancement
of high-throughput technologies such as DNA microarray, RNA-Seq, and NanoString,
RNA abundance can be measured on large scales, and the complex immune system can
be profiled in an unbiased manner [16]. To profile the human immune system, blood
transcriptomic profiling has proven powerful in elucidating the course and pathogenesis
of autoimmune diseases, infectious diseases, and cancer [60–62]. For example, previous
studies have found that there were profound changes in transcript abundance in patients
with local and systemic infections [63,64]. These changes have diagnostic potential and
help evaluate the severity of infection during the course of the disease. Few studies have
investigated the transcriptional profiles of AP in the blood. The most recent study was
conducted by Zhang et al., who explored the transcriptome of peripheral blood cells in AP
using different severity classifications [19]. They found that S100A6, S100A9, and S100A12
were predictors of severe AP, and that a specific subtype of neutrophils was responsible
for COVID-19-induced AP. In their study, they identified that “neutrophil degranulation”
was the central pathway in both patients with AP and COVID-19. They concluded that
their findings could assist in the severity evaluation and research of AP-related conditions.
Therefore, by exploring the transcriptome in blood, the pathogenesis of a disease can be
better defined, and reliable biomarkers can be identified.

In AP, neutrophils are the first-responder leukocytes recruited to the injured site and
play a vital role in pathogenesis during the early phase [65,66]. Additionally, it has been
shown that there is abnormal signaling in peripheral blood neutrophils in AP complicated
by organ dysfunction, suggesting the systemic effect of neutrophil activation [67]. Once
activated and/or primed by mediators released by systemic inflammation, neutrophil
degranulation may occur, releasing toxic enzymes and products that can damage the
endothelium [68]. In our study, we found that “neutrophil degranulation” was signifi-
cantly enriched in both CS- and non-CS-associated AP, indicating that this pathway was
dysregulated under both conditions. Furthermore, when exploring their common hub
genes, we identified STAT3 as one of the central regulatory elements of many sub-networks.
This finding supports the key role of STAT3 in neutrophil functions, such as maturation,
mobilization, and migration [69,70]. Moreover, STAT3 has been linked to many miRNAs,
and we found that the expression levels of hsa-miR-21, hsa-miR-146a, and hsa-miR-106a
were significantly lower in AP. Some evidence supports the findings of this study. For
example, hsa-miR-21 suppresses the expression of STAT3 and is down-regulated in juvenile
idiopathic arthritis [71]. The down-regulation of blood hsa-miR-146a has been associated
with coronary artery disease, acute exacerbation of chronic obstructive pulmonary disease,
and severe systemic lupus erythematosus [72–74], and down-regulated hsa-miR-106a has
been found in the peripheral blood mononuclear cells of patients with chronic hepatitis B
patients [75]. These results indicate that the down-regulation of these miRNAs could occur
under specific inflammatory conditions. As AP is systemic inflammation, we believe that
these miRNAs might be potential blood biomarkers for AP.

In our study, we found strikingly different trends in neutrophil regulation and the
regulatory activity of hub genes in CS. This discrepancy might be caused by the accumula-
tion of chylomicrons and triglycerides (TG) in the blood due to the accumulation of fat in
the body. It has been shown that circulating levels of TG and remnants of chylomicrons
positively correlate with neutrophils [76,77]. Therefore, baseline neutrophil infiltration
in the bloodstream might be higher in CS patients. These results imply that neutrophil
levels were higher in the CS group in the absence of AP. Additionally, the estimated de-
crease in neutrophils in patients with CS-associated AP may be the result of neutrophil
migration to the sites of injury. Zhang et al. induced AP in mouse models and found
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that GBIHBP1 knockout mice tended to have more neutrophil infiltration in pancreatic
tissues and were prone to developing large areas of pancreatic necrosis [78]. In addition,
loss-of-function mutations in GPIHBP1 are one of the main genetic causes of FCS, thus
patients with CS are more likely to have pancreatic necrosis and organ failure [6,79,80].
Based on current evidence, we hypothesized that neutrophils might be directed toward the
injured site and sequestered in the inflamed pancreas. Furthermore, we found that CXCR2
was down-regulated in CS-associated AP. This gene encodes CXCR2, which is a major
chemokine receptor involved in neutrophil trafficking [81]. When the expression of CXCR2
on the neutrophil membrane decreases, neutrophil migration is impaired, leading to the
accumulation of neutrophils in the vessel wall [82]. However, this phenomenon was not
observed in our study, where CXCR2 down-regulation was not correlated with an increase
in estimated neutrophil infiltration. One likely explanation is that the neutrophils produc-
ing CXCR2 transcripts migrate to the pancreas, which indirectly suggests that neutrophils
were largely mobilized in the presence of AP in patients with high baseline neutrophil
levels. In support of this, the correlation profiles were similar despite different expression
patterns, indicating that neutrophils shared similar activation/response to AP regardless of
whether they were CS-associated or not. This indicates that neutrophils were more likely to
be directed away from the blood as opposed to down-regulating genes. If this hypothesis
is true, inflammation of the pancreas might be more severe, and aggressive management
could be initiated early to prevent organ failure. This conclusion needs to be addressed
carefully and validated through further experiments. Nevertheless, these findings provide
insight into the systemic immune response in CS when AP occurs.

In this study, we examined each dataset separately. As there were two platforms
for obtaining the transcriptomic data, the data cannot be merged directly because of the
different scales of gene expression data generated. Additionally, the techniques for quanti-
fying their expression are not the same. Since we attempted to identify common altered
genes/pathways between two patient populations, we analyzed the data independently
and pooled the results together. For example, we conducted DEG analyses separately
and checked whether there was a strong correlation between the two datasets in terms
of hub gene expression. If the correlation is strong, it means we can derive comparable
results from the two datasets as the transcriptomic perturbation follows a trend for a
specific condition, such as AP in our study. The strong Spearman’s correlation in our
study indicates that the expression of hub genes in both datasets can be compared [83]. In
terms of different patient population characteristics and their effect on our analyses, the
differences in this study arise from the fact that AP is attributed differently in GSE194331
and GSE149607. In GSE194331, patients with AP do not have underlying CS, whereas
patients in GSE149607 had a genetic predisposition toward developing AP throughout the
patients’ lives. This is similar to studies that compare phenotypes between wild types and
mutants. The purpose of such studies is to address the change in phenotypes due to shifts
in genotypes and their relationships [84]. However, data imbalance can sometimes be an
issue. In the case of a large genomic analysis such as GWAS, case-control ratios are often
unbalanced (case:control = 1:10) or extremely unbalanced (case:control < 1:100) when the
prevalence of a condition or a disease is low [85]. This can pose a tremendous challenge
and potentially increase the type I error rate during the association study. However, in
our study, even though the datasets were imbalanced, the case-control ratios are 1:0.37 in
GSE194331 and 1:0.32 in GSE149607, respectively. Moreover, in our study, the datasets were
primarily used for differential gene expression analysis. By using DESeq2, the average
gene expression is compared to derive the fold change. Thus, a slight case-control imbal-
ance might not affect the DEGs. However, according to the designer’s recommendation
(https://support.bioconductor.org/p/9142704/, accessed on 11 September 2022), there is
nothing to do if there is an extreme imbalance. Nevertheless, this situation is not present in
our study. Additionally, the prediction model, without data augmentation and balancing,
showed high AUC in training and testing datasets, suggesting the presence of a case-control
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imbalance did not dent the model performance. However, this should still be validated by
external independent datasets.

Our study had several limitations. First, we analyzed only three datasets. Therefore,
the power to obtain conclusive results may be limited. Second, there was a lack of data from
the pancreatic tissue of the same study population. Therefore, we could not evaluate the
difference in neutrophil infiltration between blood and tissue samples. Third, information
on the TG levels in patients with CS is unknown. Thus, the relationship between TG level
and estimated neutrophil infiltration could not be elucidated. Due to the rarity of FCS and
MCS, we were unable to find suitable patients in our hospital to confirm the results. Despite
these limitations, our study may provide insights into HTGP and other relevant disorders.
Furthermore, as we derived the results only from patients with AP, other inflammatory
conditions may have similar gene expression profiles when neutrophil plays a dominant
role. Other clinical features related to diagnosing AP should be incorporated to improve
the diagnostic yield. Lastly, the time for generating results from DNA microarray or RNA-
Seq might be approximately one to two days [80]. It could be lengthy when immediate
management of AP is necessary. We should still follow the current management guideline
to prevent mortality, while at the same time wait for the results that address the patient’s
underlying causes of AP. This approach could help clinicians spend time grappling with
the pathogenesis and managing this disease in a long-term.

In conclusion, we performed integrated bioinformatic analyses and identified that
the neutrophil-related pathway was altered in patients with AP. Neutrophil dysregulation
occurs in both CS- and non-CS-associated AP. Diagnostic models based on the selected
hub genes for each patient population displayed a high performance. By calculating the
ssGSEA score of the hub genes and estimating the neutrophil infiltration in the blood, we
found that patients with CS-associated AP had a significantly lower regulatory activity of
the hub genes and correspondingly lower neutrophil infiltration, which implied possible
mobilization of neutrophils to the injured pancreas. Our findings offer insight into the
pathogenesis and immune system alterations in patients with CS-associated AP, facilitating
further research on this syndrome.
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