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Abstract: Background: Transient receptor potential (TRP) channels are involved in various phys-
iological, pathological, and tumorigenesis-related processes. However, only a few studies have
comprehensively analyzed TRP family members and their association with prognosis and tumor
microenvironment (TME) in various cancers. Thus, in this study, we focused on TRP channels in
pan-cancer and screened two typical TRP channels, TRPV4 and TRPC4, as examples. Methods:
Based on the latest public databases, we evaluated the expression level and prognostic value of TRP
family genes in pan-cancer tissues via various bioinformatic analytical methods, and investigated the
relationship between the expression of TRP family genes with TME, stemness score, immune subtype,
drug sensitivity, and immunotherapy outcome in pan-cancer tissues. Results: Pan-cancer analysis
revealed that the TRP family genes were differentially expressed in tumor and para-carcinoma tissues.
A significant correlation existed between the expression of TRP family genes and prognosis. The ex-
pression of TRP family genes was significantly correlated with stromal, immune, RNA stemness, and
DNA stemness scores in pan-cancer tissues. Our results indicated that the expression of TRP family
genes correlated with the sensitivity to various drugs including PLX-4720, SB-590885, and HYPOTHE-
MYCIN, immunotherapy outcome, and immune-activation-related genes. Immunohistochemical
analysis revealed significant differential expression of TRPV4 in bladder and para-carcinoma tissues.
Conclusions: Our study elucidated the possible role of TRP family genes in cancer progression and
provided insights for further studies on TRP family genes as potential pan-cancer targets to develop
diagnostic and therapeutic strategies.

Keywords: transient receptor potential channels; pan-cancer; TME; prognosis; immunotherapy

1. Introduction

Transient receptor potential (TRP) channels are a series of ion channels responsible for
various cellular functions. Originally discovered in drosophila, these channels were further
observed to be widely distributed in mammals. Currently, the mammalian TRP-channel
superfamily can be divided into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM
(melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin). Each of these
subfamilies consists of many subtypes. TRP channels are a functional ion channel complex
composed of four functional subunits. The complex can be a homo- or heterotetramer [1],
but it is generally permeable to Ca2+. Its responses vary and can be activated by physical
(depolarization, heat/cold, and mechanical stress) or chemical (pH and osmolarity) stimuli
or by specific agonists.

The process of transformation, evolution, and tumor progression from normal cells to
tumorigenic cells involves a complex network [2]. Previous studies have reported that TRP
channels are involved in various physiological and pathological processes [3,4]. Yang D
et al. mentioned in their review that the mutations in TRP channel genes result in abnormal
regulation of TRP channel function or expression, and interfere with normal spatial and

Biomolecules 2023, 13, 282. https://doi.org/10.3390/biom13020282 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13020282
https://doi.org/10.3390/biom13020282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom13020282
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13020282?type=check_update&version=1


Biomolecules 2023, 13, 282 2 of 17

temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of
multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hall-
marks of cancer pathophysiology, including enhanced proliferation, survival, and invasion
of cancer cells [5]. In the past 10 years, the role of TRP channels in tumorigenesis and the
development of tumors has been gradually clarified. The existing evidence suggested that
these channels induce tumor progression and invasion by participating in cell prolifera-
tion, abnormal differentiation, and autophagy processes [6–8]. Studies have reported that
cancer-related changes in Ca2+ flux at the plasma membrane are diverse, and tumor cells
can exploit this change to maintain tumor progression or resistance to therapy. Importantly,
TRP-channel-mediated Ca2+ infiltration is associated with increased apoptosis resistance
and metastatic potential, which results in activation of antiapoptotic and mitogenic path-
ways, establishment of antioxidant defense systems, initiation of autophagy, increased
motility, and secretion of matrix metalloproteinases [9]. TRPV4 was reported to regulate
calcium influx and release in HepG2 and hepatoblastoma cells [10]. In addition, Potter DA
et al. reported that HGF/SF activated TRPV4 and TRPV1 channels and progressively am-
plified signaling, leading to cell motility and migratory phenotypes through reorganization
of the actin cytoskeleton [11]. The changes in TRPV4 expression in bladder cancer tissue
and para-carcinoma tissue were not very clear [12,13]; however, TRPV4 definitely detected
mechanical and chemical stimuli, induced calcium influx, and promoted ATP release [14].

Therefore, further exploring the physiological functions of TRP channels and molec-
ular mechanisms involved in cancer progression can enhance the understanding of the
biological behavior of tumors and provide a basis for developing new therapeutic molecules
against tumors.

In this study, we comprehensively analyzed the prognostic value of TRP family genes
(TRPC, TRPV, TRPM, TRPP, TRPML, and TRPA) in pan-cancer tissues using the expression
data downloaded from The Cancer Genome Atlas (TCGA). Further, we assessed the associ-
ation between the expression of TRP family genes and tumor microenvironment (TME),
immune subtypes, drug sensitivity, and immunotherapy outcome in patients with cancer.
Moreover, we analyzed the correlation of two members of the TRP family, namely TRPV4
and TRPC4, with tumor mutational burden (TMB) and microsatellite instability (MSI), as
well as the genes related with immune activation.

2. Materials and Methods
2.1. Identification of Differential Expression of TRP Family Genes in Human Pan-Cancer Tissues

RNAseq (FPKM) gene expression, clinical and pathological data, immune subtypes,
survival data, and stemness scores (DNA methylation and RNA-based) for 33 cancers were
downloaded from the online databases of UCSC Xena (http://xena.ucsc.edu, accessed on
19 June 2022 [15]. For pan-cancer TCGA analysis, the expression levels of 28 TRP family
genes (Table S1) were extracted and integrated using Perl (Table S2), and the significant
difference between tumor and para-carcinoma tissues was calculated using the Wilcox test.
Boxplots and heatmaps were plotted using the R packages “ggpubr” and “pheatmap”,
respectively. Correlation analysis of TRP family genes was performed using the R package
“corrplot”. Additionally, it should be noted that the number of normal control samples
of some cancers is less than five in the TCGA database. Too few samples will cause great
systematic errors. Thus, in the process of writing the code, the data of these cancers were
excluded when we compared the tumor and normal tissue.

2.2. Survival Analyses Based on the Expression Level of TRP Family Genes in Human Cancer

Survival data for each sample were extracted from the TCGA database to further
analyze the relationship between the expression of TRP family genes and clinical outcomes.
Overall survival (OS) was adequately assessed [16]. Survival analysis was performed using
Kaplan–Meier (KM) survival curves and log-rank tests (the critical value of p was set to
0.05). The cutoff value was selected by the median expression level of TRP family genes in
each cancer, thereby dividing each patient into a high- or low-risk group. Survival curves
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were plotted according to high- and low-risk groups using the “survminer” and “survival”
R package methods. In addition, we performed Cox analysis to determine the relationship
between the expression of TRP family genes and overall cancer prognosis. Finally, the R
packages “survival” and “forestplot” were used to draw a forest plot.

2.3. Correlation Analysis of the Expression of TRP Family Genes with TME and Stemness Score in
Pan-Cancer Tissues

We used the “estimate” and “limma” R packages to calculate the stromal and immune
cell scores for predicting the infiltration of stromal and immune cells in pan-cancer tissues.
Correlations between the expression of TRP family genes and RNA stemness scores (RNAss)
as well as DNA stemness scores (DNAss) were analyzed using the Spearman method
with the R packages cor. Test and limma. These two metrics were visualized using
the R package “corrplot”.

2.4. Correlation Analysis of TRP Family Genes with Drug Sensitivity and Immune Subtypes

We downloaded the drug sensitivity processed data from the CellMiner data set
(https://discover.nci.nih.gov/cellminer/, accessed on 19 June 2022). Data analysis and
visualization of the results were processed using impute, limma, and ggplot2 in R soft-
ware (version 4.0). The immune subtypes data were downloaded from UCSC. The cor-
relation of TRP family and immune subtypes was mainly analyzed using limma and
reshape2 in R software.

2.5. Correlation Analysis of TRP Family Genes and Immunotherapy Outcome

We downloaded the immunotherapy outcome data from the GES78220 and Imvigor210
datasets. The immunotherapy outcome of the samples is listed in Table S3. Data anal-
ysis and visualization of the result were processed using limma, ggplot2, and ggpubr
in R software

2.6. Correlation Analysis of TRPC4 and TRPV4 Expression with TMB and MSI

The TMB in tumor cells promotes immune recognition and correlates with the effec-
tiveness of immunotherapy. An MSI occurs when new alleles are inserted into a tumor
as a result of an alteration in microsatellites and is considered one of the hallmarks of
immune-checkpoint-related therapy. These scores were computed from somatic mutation
data obtained from TCGA. Two radar legends were generated to illustrate the relationship
between TRPV4 and TRPC4 expression and TMB and MSI, respectively, based on Spear-
man’s rank correlation analysis. Additionally, coexpression analyses were performed on
TRPC4 and TRPV4 with immune-activation-related genes.

2.7. Tissue Specimens and Immunohistochemistry

A total of 7 paired bladder cancer specimens and para-carcinoma tissue samples
were obtained from the Beijing Friendship Hospital, Capital Medical University (Beijing,
China), between January 2022 and March 2022. The clinical BLCA specimens were collected
with permission from our Institutional Research Ethics Committee (NO.2021-P2-159). The
immunohistochemical analysis was conducted as mentioned in our previous paper [17].
All samples were clinically and histologically diagnosed to be BLCA and were blindly
stained by pathologists and evaluated in ImageJ software with a fixed set of operation.
Expression levels of TRP genes were quantified as parameters after normalized ImageJ
measurements and compared accordingly [18]. The antibody was acquired from abcam
(ab307444) and a negative control was conducted during our tests.

2.8. Statistical Analyses

Student’s t test was used to assess the statistical significance between the two groups.
Depending on the types of data, one-way ANOVA or Kruskal–Wallis tests were performed
for the variables divided into more than three groups. The survival rates were calculated
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and visualized using KM survival curves. The significant differences were tested using
the log-rank test. Pearson’s correlation analysis was performed to calculate the correlation
coefficients. Univariate Cox proportional hazard models were used to determine the
hazard ratios of variables and whether those variables were independent prognostic factors.
p < 0.05 was considered significant.

3. Results
3.1. Expression and Correlation of TRP Family Genes in Pan-Cancer Tissues

We assessed the expression of TRP family genes in 33 types of cancers (Figure 1A).
A series of genes in the TRP family including TRPC1, TRPC4, TRPC6, TRPM2, TRPM4,
TRPM7, TRPV2, TRPV4, MCOLN1, MCOLN2, MCOLN3, PKD2, and PKDL1 were highly
expressed in all cancer types. The correlation between various TRP genes was explored
(Figure 1B). TRPV1 and PKD2, as well as TRPV6 and TRPM8, were the genes with the
most significant positive correlation, whereas TRPC1 and TRPM4 were the most nega-
tively correlated genes. We further explored the expression of all TRP family genes in
33 types of cancers (Figure 1C). TRPM4 was highly expressed in CHOL, and TRPM6 ex-
hibited significantly lower expression in pan-cancer tissues, particularly in COAD and
READ (Figure 1C).
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Figure 1. Expression levels and correlations between TRP family genes in various cancers from TCGA
database. (A) Over- or underexpression of TRP family genes in various cancers. (B) Correlations be-
tween TRP family genes. Blue and red dots represent positive and negative correlations, respectively.
(C) Expression data from TCGA database showing the expression of TRP family genes in various
types of cancer. The color of each small rectangle represents high or low expression of TRP family
genes in each cancer. Red and green indicate high and low expression, respectively.
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3.2. Different Expression and Correlation of TRP Family Genes and Prognosis in Pan-Cancer Tissues

Further, we obtained the expression of TRP family genes from the TCGA database; the
expression matrix is shown in Table S2, and the differently expressed TRP family genes
across all tumor and para-carcinoma tissues are shown in Figure 2A,E and Supplementary.
Most tumors exhibited differential expression of TRP family genes in tumor and para-
carcinoma tissues.
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Figure 2. Different expression and Kaplan–Meier survival curves of TRPC4 and TRPV4 in pan-
cancer (A). Differential expression of TRPC4, Kaplan–Meier survival curves of TRPC4 in (B) BLCA,
(C) BRCA, and (D) KIRP. (E) Differential expression of TRPV4, Kaplan–Meier survival curves of
TRPV4 in (F) KIRC and (G) UCEC. The red and blue rectangular boxes represent gene expres-
sion levels in tumor and normal tissues, respectively. * p < 0.05, ** p < 0.01, and *** p < 0.001.
Red- and blue-colored names indicate high and low expressions of the corresponding TRP family
genes, respectively.

We subsequently screened 33 types of cancer and selected those including more than
five para-carcinoma and tumor tissues to analyze the correlation between the expression
levels of each TRP family gene and the prognosis of patients. Finally, 28 cancers were
included in the analysis, and the KM survival curves of TRPC4 and TRPV4 are shown as
an example in Figure 2B–D,F,G, with the rest of the survival curves of all the TRP channels
in pan-cancers shown in Supplementary and Table S4. Furthermore, we investigated the
prognostic risk of TRP family genes, taking TRPC1, C4, C5, C7, V4, M1, and MCOLN1
as examples, in pan-cancer tissues using Cox regression analysis (Figure 3), and the Cox
results of other TRP family members are listed in Figure S3.

3.3. Association of TRP Family Genes with TME and Stemness Score in Pan-Cancer Tissues

TME played a key role in stimulating cancer cell heterogeneity, increasing multidrug
resistance, and contributing to cancer progression and metastasis. Our previous study
had identified a predictive role for the TRP family genes in pan-cancer tissues. It is very
important to explore the relationship between the expression of TRP family genes and TME
in pan-cancer tissues. The ESTIMATE algorithm was used to calculate the immune and
stromal scores of pan-cancer tissues (Figure 4). The scores were significantly positively
correlated with the expression levels of most TRP family genes (Figure 4A,B). Similarly, a
significant positive or negative correlation existed between the expression of HER family
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genes and RNAss (Figure 4C) and DNAss (Figure 4D) in pan-cancer tissues. The correlation
and p value of all the TRP family genes in pan-cancer tissues are listed in Table S5.

Further, we explored the association between the expression of TRP family genes and
immune, stromal, estimate, and stemness scores in selected types of cancer (BRCA and
COAD) (Figures 5 and 6). TRP family genes exhibited extensive correlation with TME as
well as DNAss and RNAss in BRCA and COAD.

3.4. Association of TRP Family Genes with Immune Subtypes in Pan-Cancer Tissues

In a previous study, Thorsson et al. identified six immune subtypes (C1–C6) based on
the immunogenomic analysis of more than 1000 tumor samples from 33 cancer types [19].
These categories were significantly associated with prognosis and genetic and immunomod-
ulatory alterations in tumors. Thus, we further explored the correlation between TRP family
genes and immune subtypes. TRPC4, TRPC6, TRPV2, and TRPV4 were differently ex-
pressed in BRCA and COAD (Figure 7). TRPC4, TRPC6, and TRPV2 exhibited higher
expression in C6 in COAD and BRCA. TRPV4 was highly expressed in C6 and clearly less
expressed in C4 in COAD. However, the expression of TRPV4 in BRCA was not significant.
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3.5. Association of TRP Family Genes with Pan-Cancer Treatments

To explore the correlation between TRP family genes and drug sensitivity in various
human cancer cell lines, drug sensitivity data were obtained from CellMiner. CellMiner is a
database including 60 different cell lines and the sensitivity to more than 20,000 different
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drugs for each cell line. We mainly extracted and examined the relationship between all
TRP channels and FDA−approved drugs or drugs in clinical trials. This resulted in a
total of 860 kinds of drugs including, for example, Chelerythrine, Veliparib, Amuvatinib,
Cytarabine, and so on. All the data downloaded from CellMiner, including the expression
matrix of these cell lines, as well as the drug sensitivity, are listed in Table S8. We listed
16 TRP family genes in Figure 8 and Table S6, which were correlated with a certain drug.
TRPM1 was positively correlated with the sensitivity to PLX-4720, SB-590885, and hypothe-
mycin (Figure 8A,F,J), and negatively correlated with the sensitivity to varbulin (Figure 8G).
TRPV2 was positively correlated with the sensitivity to PLX-4720, SB-590885, hypothemycin,
and tipifarnib (Figure 8B,E,I,N). TRPC4 was negatively correlated with the sensitivity to sep-
antronium bromide, alvespimycin, and ONX-0914 (Figure 8C,D,O). Furthermore, TRPV4
exhibited positive correlation with the sensitivity to PLX-4720 and SB-590885. A negative
correlation existed between the sensitivity to lexibulin and TRPV4 (Figure 8L,M,P).
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Figure 4. Correlation of the expression of TRP family genes with TME and stemness score in pan-
cancer tissues. (A,B) I expression of TRP family genes correlated with various mesenchymal and
immune cancer scores. Red and green dots indicate a positive and negative correlation between the
gene expression and mesenchymal score, respectively. (C,D) The correlation between the expression
of TRP family genes and RNAss and DNAss in pan-cancer tissues. Red and blue dots indicate a
positive and negative correlation between the gene expression and immune score, respectively.
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In recent years, a dramatic shift has been observed from combined chemotherapy and
radiotherapy to more precise immunotherapy. To further explore the correlation between
TRP channels and immunotherapy response, we obtained the expression levels and immune
response from the GSE78220 (Figures 9A and 10A) and IMvigor210 (Figures 9B and 10B)
datasets. Considering the results of the differential expression of TRP family genes between
tumor and para-carcinoma tissues and RNAss, DNAss, and TME scores, we selected TRPC4
and TRPV4 as the representative TRP family genes. Importantly, TRPV4 and TRPC4 were
both negatively correlated with immunotherapy response.
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TMB, which can be easily accessed to replace overall neoantigen detection, has been
identified as a potential biomarker to predict the clinical outcome of immunotherapy [20–22].
In addition, MSI was reported to be correlated with immunotherapy outcomes [20,21,23].
Thus, we downloaded the TMB and MSI data from the TCGA database and explored the
relationship between TMB/MSI and the expression of TRPV4 and TRPC4 (Figure 9C,D
and Figure 10C,D, Table S7). A significant correlation existed between the expression of
TRPV4 and various cancers including BRCA, ESCA, HNSC, KIRC, LGG, LIHC, LUAD,
PCPG, PRAD, SKCM, STAD, and THYM (Figure 9C). Meanwhile, a significant correlation
was observed between TRPV4 expression and MSI in various cancers, including BRCA,
COAD, LAML, LUSC, MESO, PAAD, PRAD, STAD, TGCT, and UVM (Figure 9D). The
positive correlation between TRPC4 and TMB/MSI is shown in Figure 10C,D.
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Furthermore, we explored the coexpression of immune-activation-related genes and
TRPV4 (Figure 9E) and TRPC4 (Figure 10E). A significant correlation was observed between
TRPV4/TRPC4 and immune-activation-related genes in almost all 33 types of cancer.
In addition, we explored the expression of TRPV4 in our own patients’ tissue, and the
result was similar to the conclusions above. In comparison to para-carcinoma tissues
(Figure 11A,C), TRPV4 was highly expressed in bladder cancer tissues (Figure 11B,D,E).
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Figure 7. Correlation between the expression of TRP family genes and immune subtypes in BRCA
and COAD. The significantly different expression of TRP family genes in various immune subtypes in
(A) BRCA and (B) COAD. (A) TRPC1, TRPC4TRPC6, TRPV1, TRPV2, and TRPV4 were all differently
expressed among the immune subtypes. (B) TRPC4TRPC6, TRPV2, and TRPV4 were differently
expressed among the immune subtypes, especially the C6 subtype. X-axis represents immune subtype,
and y-axis represents gene expression. C1, wound healing; C2, IFN-g dominant; C3, inflammatory; C4,
lymphocyte depleted; C5, immunologically quiet; C6, TGF-β dominant. ** p < 0.01, and *** p < 0.001.
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4. Discussion

Cancer is one of the main causes of rising morbidity and mortality worldwide and
has become a major burden and medical challenge in recent decades. Data obtained
from experimental models and preclinical and clinical trials demonstrated the correlation
between classical clinicopathological tumor markers and partial TRP channel expression
in pan-cancer tissues. This suggested that TRP channels are valuable diagnostic and
prognostic markers. At the same time, the inhibition or enhancement of various TRP
channels have been reported to exhibit good antitumor effects in vitro and in vivo [24,25].
Some targeted drugs have a close relationship with TRP family genes [26–28]. Thus,
TRP channels are expected to be studied for developing pan−cancer-targeted therapy.
With the in-depth understanding of the role of TRP channels in pan−cancer tissues, they
have been reported to be the therapeutic targets in certain tumors [27] and are correlated
with tumor progression and metastasis [26,29,30]. For example, TRPV4 is one of the
members of the TRPV channel, which can detect mechanical pressure, osmotic pressure
(hypotonic), medium temperature (>27 ◦C), and chemical stimulation and is a nonselective
cation channel. Its expression is detected in the esophagus, kidneys, liver, lungs, and
bladder [31–35]. Li M et al. reported that the stimulation of native TRPV4 or transiently
transfected TRPV4 in A375 cells (human melanoma cell line) could induce significant
extracellular secretion, which acquired TRPV4-mediated calcium influx, as well as a series
of key regulators of exocytosis including lysosome-associated proteins and multiple folding
and vesicular transporters. By identifying a series of intracellular events after TRPV4
activation, Li M et al. demonstrated a critical role of TRPV4 in extracellular processes
and calcium-mediated ferroptosis [36]. Additionally, administration of 4α-PDD (agonist
of TRPV4) downregulated adhesion−related tumor suppressor genes in 4T07 (mouse
breast cancer cell line). This indicated that TRPV4 increased the metastatic potential of
tumors [37]. In bladder cancer, the inhibition of overexpressed TRPV4 significantly reduced
E-cadherin expression. TRPV4-induced activation of AKT and FAK further affected E-
cadherin expression [38].

In this study, we obtained the expression level of TRP family genes from the TCGA
database and reported the differentially expressed TRP family genes in 33 types of cancer.
We further explored the correlation of each TRP channel with prognosis using KM survival
curves and Cox regression analysis and reported the prognostic value of TRP family genes.
Moreover, we explored the correlation of the TRP family with TME and stemness scores
in each cancer. We evaluated the distribution of the TRP family in C1–C6 pan-cancer
immune subtypes and observed that TRPC4, TRPC6, TRPM4, TRPV2, TRPV4, MCOLN1,
and PKD2L1 had the potential to predict the immune subtype. Thus, we further analyzed
the correlation of TRPV4 and TRPC4 with drug sensitivity, immunotherapy response, TMB,
MSI, and immune-activation-related genes. Therefore, our study provided insights into the
use of TRP family genes as prognostic markers in cancer and contributed to the potential
development of therapeutics involving TRP family genes.

In recent years, several studies were performed on single TRP channels; however,
the role of the TRP family in pan-cancer tissues was still relatively unexplored. In our
study, we comprehensively analyzed the expression levels of TRP family genes in various
tumors (Figure 1). The expressions of TRPC1, TRPC4, TRPC6, TRPM2, TRPM4, TRPM7,
TRPV2, TRPV4, MCOLN1, MCOLN2, MCOLN3, PKD2, and PKDL1 were generally high
in pan-cancer tissues. TRPM4 was widely highly expressed in almost all the cancers
(Figure 1C). This is consistent with previous studies on various tumors including colorectal
cancer, breast cancer, and prostate cancer [39–41]. Moreover, it was shown to be a potential
prognostic marker for cancer and a promising anticancer drug target candidate. Since
TRPM4 is a Ca2+-activated monovalent cation channel, its ion conductivity can decrease
intracellular Ca2+ signaling, leading to further interaction with different partner proteins.
Thus, TRPM4 enabled many interventions in signaling pathways, increasing the possibility
of drug development targeting TRPM4 [42,43]. TRPM2 exhibited similar results; higher
expression of TRPM2 had been proven in various cancers including breast cancer, prostate
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cancer, pancreatic cancer, leukemia, and neuroblastoma [44]. Lin R et al. added PKC/MEK
inhibitor to BxPC-3 cells overexpressing TRPM2 and demonstrated that TRPM2 might
directly activate PKCα via calcium or indirectly activate PKCε and PKCδ by increasing
DAG in pancreatic cancer, which promoted pancreatic cancer by the activation of the
downstream MAPK/MEK pathway [45]. Ji D et al. analyzed TRPM2 as an ion channel in
terms of oxidative stress and reported that it was essential for cellular function and played
an important role in oxidative stress and inflammation; they summarized the current
understanding of TRPM2 in brain tumors and reviewed potential pharmacotherapeutic
roles of TRPM2. The importance of TRPM2, as a potential therapeutic target for brain
tumors, in ion channels and pharmacology was reported in a previous study [46]. In our
study, the differential expression of TRPM2 and TRPM4 in tumor and para-carcinoma
tissues was extremely clear (Figure S1), indicating the important role of these TRP family
genes in the tumorigenicity in various cancers. Moreover, KM survival curves indicated that
the expression of TRP family genes was closely correlated with the prognosis of patients.

In recent years, the focus of cancer research has gradually shifted from tumor cell
metastasis to surrounding core cancer cells, termed TME [47–49]. Immune and stromal cells
are the two major nontumor components of TME and have been recognized as important
in the diagnosis and prognostic assessment of tumors. The cells in TME and degree of
infiltration of immune and stromal cells in the tumor have a significant impact on prognosis.
The calculation of immune and stromal scores based on the ESTIMATE algorithm helps
to quantify immune and stromal components in tumors. In this algorithm, immune and
stromal scores are calculated by analyzing specific gene expression signatures of immune
and stromal cells to predict nontumor cell infiltration. To better understand the prognostic
correlation of immune and stromal cells with the TRP family, we systematically analyzed
the expression of TRP family genes with the immune and stromal scores calculated. The
expression of TRPV2 was clearly positively correlated with immune and stromal scores
in most cancers (Figure 4), except KIRP, PCPG, THYM, and UCS, in which the correlation
between stromal score and TRPV2 was not significant.

We assessed tumor stemness scores of TRP family genes in various cancers using
DNAss and RNAss. The results indicated the negative role of the TRP family in charac-
terizing cancer stem cells. To further explore the association between the TRP family and
TME, stemness scores in certain types of cancer (BRCA and COAD) was analyzed. We
conducted correlation analysis. The expression of TRP family genes (including TRPC1,
TRPC4, TRPC6, TRPV2, TRPV4, MCOLN1, and PKD2L2) exhibited a significant positive
correlation with stromal, immune, and ESTIMATE scores and negative correlation with
DNAss and RNAss in BRCA and COAD (Figures 5 and 6).

The CellMiner database is based on 60 cancer cell-types listed by the National Cancer
Institute’s Center for Cancer Research (NCI). The NCI-60 cell line is currently the most
widely used cancer cell sample population for anticancer drug testing. CellMiner is a
free online tool that provides a centralized source of molecular and pharmacological
characterization data for the widely studied NCI-60 cancer cell population [50]. In our study,
we explored the correlation between the expression of TRP family genes and drug sensitivity
through the data downloaded from CellMiner. Several drugs that were correlated with TRP
family genes were obtained. Further, we observed that TRPC4 and TRPV4 correlated with
immunotherapy response according to the data of the GSE78200 and IMvigor210 datasets,
indicating the potential role of the TRP family in predicting immunotherapy outcomes.
Furthermore, we confirmed the role of TRPV4 and TRPC4 in predicting immunotherapy
prognosis by examining the correlation between the TRP family and immune-activation-
related genes.

5. Conclusions

In summary, our study elucidated the expression profile of TRP family genes that
correlated with disease prognosis, TME, stemness score, and the treatment outcome of
various cancers. In addition, the expression level of TRP family genes in tumor cells
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correlated with the sensitivity to various drugs and the outcome of immunotherapy. These
results can provide reference for further study on TRP family genes as potential pan-cancer
targets to develop diagnostic and therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13020282/s1, Figure S1. The expression levels of TRP family
genes in various cancer and para−carcinoma tissues (TRPM, TRPP, and TRPML); Figure S2. Kaplan–
Meier (KM) survival curves comparing high or low expression levels of TRP family genes in various
cancers (TRPM, TRPV); Figure S3. the Cox results of other TRP family members; Table S1. List
of 28 TRP family genes; Table S2. Expression profile of 28 TRP family genes in various cancers
from TCGA dataset; Table S3. The immunotherapy outcome of the samples in the GES78220 and
IMvigor210 datasets; Table S4. p value of the KM survival curves of TRP family genes in various
cancers; Table S5. Coefficient and the p value of the correlation between TRP family and stromal,
immune, and ESTIMATE scores, RNAss, and DNAss; Table S6. Coefficient and the p value of the
drug sensitivity analysis of TRP family genes; Table S7. Coefficient and the p value of the correlation
between TRP family and TMB and MSI in various cancers; Table S8 the original data downloaded
from CellMiner data base.
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