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Abstract: Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels
widely expressed throughout the central and peripheral nervous systems. They are involved in
synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in
the body, contributes to numerous physiological functions, with neurotransmission being of note.
Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels
and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been
linked to several neurological and psychological disorders, such as Alzheimer’s disease, Parkinson’s
disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the
persistence of each of these neurological and psychological disorders. It is critical to understand
how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation
of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc’s
structural interactions with ASICs and discusses the potential therapeutic implications zinc may have
on neurological and psychological diseases through targeting ASICs.
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1. Introduction

Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent Na+ chan-
nels found predominantly in the central and peripheral nervous systems [1,2]. ASICs are
part of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of amiloride-
sensitive ion channels [3]. To date, at least six ASIC isoforms (ASIC1a, 1b, 2a, 2b, 3a, and
4) encoded on four genes (ACCN1–ACCN4) have been cloned [2,4]. These ASIC isoforms
form homo- and heterotrimers with different physiological and pharmacological proper-
ties [3,4]. ASIC subunits, mainly those present in the brain, are activated by rapid drops in
pH [3]. Transient pH drops lead to rapid desensitization of ASICs, producing a detectable
current [3]. On the contrary, gradual acidification causes gradual desensitization. Thus, no
detectable current is produced from ASICs with slow drops in pH [3]. Most ASIC subunits
are located in the brain; however, ASIC3 is a calcium-insensitive channel that is predomi-
nantly found peripherally in the dorsal root ganglion (DRG) neurons and other locations in
the peripheral nervous system (PNS) [2,3]. Moreover, ASIC4 is unlike other ASIC channels
in that, despite its name, ASIC4 does not induce currents when protonated [3,5]. Rather
than a protein channel, it is hypothesized to be a modulator, specifically downregulating
ASIC1a and ASIC3 surface expression. In addition, ASIC4 is unique from other ASIC
channels in that it is found intracellularly, mainly in endosome-related vacuoles [6,7].

In concurrence with the major physiological roles of ASICs, studies have indicated
that the potentiation, desensitization, and inactivation of ASICs play a role in pathological
processes such as brain ischemia [8], Parkinson’s disease [9], multiple sclerosis [10], and
cocaine addiction [11]. It has been discovered that at both physiological and pathological
levels, zinc serves as an important modulator of ASICs and can cause their activation
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or inhibition, depending on the specific ASIC isoform [4,12]. For example, the finger
domain binds zinc, which has a potentiating effect on ASIC2a and an inhibiting effect on
ASIC1b [13]. Beyond these findings, there are few studies reviewing the exact relationship
of zinc with the different isoforms of ASICs. This review serves to elucidate zinc’s structural
interactions with ASICs and discuss the potential therapeutic implications zinc may have
on neurological and psychological diseases through targeting ASICs.

1.1. ASIC Structure

As a part of the DEG/ENaC superfamily, ASIC subunits are composed of intracellular
NH2 and COOH terminals and two hydrophobic transmembrane domains (TMD1 and
TMD2) separated by a large extracellular domain of approximately 370 residues [14–17].
The grossly viewed structure of an individual ASIC subunit’s extracellular domain resem-
bles a “clenched fist” with wrist, palm, finger, knuckle, thumb, and β-ball domains [15,17].
The palm domain serves as the central structure within each extracellular ASIC subunit
and has direct connections to the transmembrane domains (TMD1 and TMD2) and the
thumb domain [17]. The knuckle domain and its attached finger domain lie superior to
the palm domain [17]. The outer edges of the finger domain come in contact with the
thumb domain, and altogether the palm, thumb, finger, and knuckle domains surround
the small β-ball domain [17]. Between the β-ball, thumb, and finger domains lies a highly
negatively charged cavity called the acidic pocket [17]. Within this acidic pocket are three
pairs of carboxyl–carboxylate interactions between the side chains of aspartate or glutamate
residues [17]. These carboxyl–carboxylate interactions are responsible for the ion and pH-
sensing capabilities of the acidic pocket [15,17]. This extracellular “clenched fist” domain
is rich in cysteine residues, and studies have indicated that mutating various cysteine
residues in the extracellular domain of ASICs play a critical role in zinc’s potentiation and
inhibition effects [15,17]. The zinc-binding site is located within the extracellular domain of
the ASIC channel [4,12,18]. The specific extracellular domain zinc binds to varies on the
ASIC subtype (see Figure 1). Zinc’s effects on the activation or inactivation of ASICs can be
further regulated by extracellular residues, such as histidine and cysteine [4,12,18].

Figure 1. General ASIC structure with the zinc-binding site. Acid-sensing ion channels are composed
of two transmembrane domains (TMD1 and TMD2) separated by a large extracellular domain. The C
and N terminal face inside of the membrane. The binding site of zinc is contained within the ASIC
extracellular domain. The exact location of zinc’s binding site within this extracellular domain varies
depending on the ASIC subtype. Adapted from “Transporters” by BioRender.com (2022 and ac)
(https://app.biorender.com/biorender-templates, accessed on 10 December 2022).

https://app.biorender.com/biorender-templates
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1.2. Zinc Physiology

Zinc is essential to the growth and development of living organisms, and after iron,
zinc is the most abundant trace metal within the human body. The human body contains
approximately 2–4 grams of zinc, and the majority of zinc is distributed within the testes,
muscles, liver, and prostate [19–21]. Over 300 enzymes rely on zinc as their cofactor, and
zinc plays an important structural role for various proteins [21]. Furthermore, zinc is
an essential ion for neurotransmission and is widely distributed within the presynaptic
vesicles [22]. Zinc plays a critical role in neurogenesis, as it controls the cell cycle, apoptosis,
and the binding of DNA and several proteins [22]. In addition, zinc plays a significant role
in inhibiting growth within the prostate gland [23]. For example, zinc inhibits the enzyme
in the first step of the Krebs cycle, accumulating citrate within the prostate gland and
preventing further downstream energy production [24,25]. Moreover, high levels of zinc
induce mitochondrial apoptosis, dampening prostatic tissue’s growth and proliferation [25].

1.3. Zinc and Disease

The importance of zinc is underscored during the adverse effects that arise from a
state of zinc deficiency. A lack of zinc in the body can lead to impaired immune function,
growth retardation, delayed sexual maturation, poor wound healing, prostate cancer, and
neurodegenerative disease [19,22,25–27]. Studies have indicated that men with prostate
cancer have markedly decreased zinc levels by up to 80% compared to healthy controls.
No study has reported a case of prostate cancer without decreased zinc levels [24,25].

Furthermore, zinc is involved in the pathogenesis of Alzheimer’s disease, ischemic
stroke, traumatic brain injury, epilepsy, and Parkinson’s disease [26,27]. Most of these
diseases are caused by zinc deficiency or intracellular zinc overload that disrupts multiple
signaling pathways. A myriad of studies have been conducted to evaluate the concentration
levels at which zinc develops neuroprotective or neurotoxic effects [27,28].

1.4. Zinc and Ion Channel Regulation

Ions cannot pass freely across cell membranes due to their charge; therefore, ion
channels or transporters are required to transport ions between intra- and extracellular
compartments [29]. Ion channels are mainly either voltage-gated or ligand-gated. Voltage-
gated ion channels open and close based on changes in the membrane potential [30].
Ligand-gated ion channels rely on the release of molecules such as glutamate, glycine,
acetylcholine, GABA, ATP, and serotonin [31]. These messengers selectively open cationic
or anionic channels to depolarize or hyperpolarize the cell, respectively [31]. If a channel
allows for the influx of sodium or calcium, it is classified as excitatory. Likewise, if a channel
allows for the influx of chloride ions or efflux of potassium, it is classified as inhibitory. Zinc
has been studied for the regulation or modulation of several ion channels, including the K+

channel, Ca2+ channel, N-methyl-D-aspartate (NMDA) receptors, α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors, kainate receptors, transient receptor
potential (TRP) channels, and γ-aminobutyric acid (GABA) receptors [31,32].

K+ channels selectively transport potassium from inside the cell to the extracellular
space [33]. There are four main classes of K+ channels: calcium-activated K+ channels,
inward-rectifying K+ channels, tandem pore domain K+ channels, and voltage-gated K+

channels [33]. Each K+ channel is divided into a pore-forming and regulatory domains [33].
The pore-forming domain allows for the passage of K+ ions, and its structure is conserved
among the different types of K+ channels [33]. The regulatory domain varies in struc-
ture depending on the K+ channel type [33]. Potassium channels are widely expressed
in the peripheral and central nervous system cell membranes and play a major role in
multiple cellular physiological processes as they control the resting membrane potential,
repolarization rate of action potentials, and spike frequency adaptation [33]. Therefore,
potassium channel dysfunction is associated with multiple neurological disorders such as
epilepsy [34], Huntington’s disease [35], and Parkinson’s disease [36,37]. At micromolar
concentrations, zinc is a negative modulator for most K+ channels [32]. The exceptions are
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that zinc positively modulates TWIK-related potassium channels subtype 2 (TREK-2) at an
EC50 of 659 µM and voltage-gated potassium channels subfamily Q member 5 (KCNQ5)
at an EC50 of 22 µM [32]. Furthermore, zinc activates Slo1 K+ channels at an EC50 of
34 µM [32].

There are two types of Ca2+ channels: high voltage-activated (CaV1.1–1.4, CaV2.1–2.3)
and low voltage-activated (CaV3.1–3.3) channels [38]. These voltage-gated calcium channels
(VGCC) open for the entry of Ca2+ into the cell in response to membrane depolarization [38].
Zinc serves as a negative modulator for all calcium channels [32]. CaV1.1–1.4 channels
conduct L-type calcium currents, distinguished by slow voltage-dependent inactivation [38].
The L-type Ca2+ channels are mainly expressed in smooth muscle cells [32]. These channels
are involved in initiating contraction, hormone secretion, and local calcium signaling to
gene transcription [38]. CaV1.1 has a zinc IC50 of 11 µM or 18 µM, and CaV1.2 has a zinc
IC50 of 34 µM [32]. CaV2.1–2.3 channels conduct P/Q-, N-, and R-type calcium currents,
respectively [38]. These currents contain faster voltage-dependent inactivation and are
located in neurons [38]. CaV2.1 has a zinc IC50 of 110 µM, CaV2.2 has an IC50 of 98 µM, and
CaV2.3 has an IC50 of 32 µM [31]. CaV3.1–3.3 channels conduct T-type calcium currents,
which are activated at negative membrane potentials [38]. T-type calcium currents also
have fast deactivation upon repolarization and fast voltage-dependent inactivation during
sustained depolarizations [38]. CaV3.1–3.3 channels are prominent within cardiac myocytes
in the sino-atrial node and neurons within the thalamus [38]. They have zinc IC50s of 82,
0.8, and 159 µM or 196, 24, and 152 µM for Cav3.1, Cav3.2, and Cav3.3, respectively [32].
Mutations in calcium channels are responsible for neuropsychiatric diseases, migraines,
hypertension, heart failure, and chronic pain syndromes [39].

Glutamatergic neurons are involved in important roles in the CNS, such as learn-
ing/memory and synaptic plasticity [40]. Glutamatergic neurotransmission is primarily
modulated through ionotropic and metabotropic glutamate receptors [40]. The ionotropic
glutamate receptors are ligand-gated ion channels that are permeable to Na+ and K+. Cer-
tain ionotropic glutamate receptors have Ca2+ permeability, such as GluN2-containing sub-
units [40]. There are three groups of ionotropic glutamate receptors: N-methyl-D-aspartate
(NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors, and kainate receptors [40]. At normal physiological conditions, NMDA receptors are
blocked by Mg2+. To function properly, NMDA receptors first require membrane depolar-
ization via an influx of Na+ from AMPA receptors to remove this Mg2+ block and allow
subsequent ion permeability [40]. Once the Mg2+ block is removed, NMDA receptors allow
the influx of Na+ and Ca2+ [40]. This influx of Ca2+ activates intracellular mechanisms that
lead to the phosphorylation and subsequent upregulation of AMPA receptors [40]. AMPA
and NMDA receptors play a major role in synaptic plasticity and are involved in pathologi-
cal processes such as Alzheimer’s disease [41]. Kainate receptors and AMPA receptors are
inhibited by zinc [31,32]. The regulation of zinc on these ionotropic glutamate receptors
heavily depends on the subunit composition [31,32]. For example, the co-expression of
GluN1 and GluN2A subunits in HEK293 cells increased the negative zinc modulation
by 1000-fold compared to the co-expression of GluN1 and GluN2B subunits in HEK293
cells [31]. Ionotropic glutamate receptors, particularly NMDA and AMPA receptors, have
been linked to neurological disorders such as Alzheimer’s disease, ischemic stroke and
schizophrenia [41–43].

TRP channels are a large family of channels that are activated by a variety of sensory
stimuli [44]. Out of the 28 members, there are six TRP subfamilies: canonical (TRPC),
vanilloid (TRPV), melastatin (TRPM), polycystin (TRPP), mucolipin (TRPML), and ankyrin
(TRPA) [44]. These channels are integral in evaluating environmental stimuli and act as
signal transducers via altering the membrane potential and intracellular Ca2+ levels [44].
TRP channels are involved in a large number of physiological processes and are potential
therapeutic targets. For example, TRPA contains a single chemo-nociceptor that may be a
potential analgesic target, and TRPP is involved in autosomal dominant polycystic kidney
disease [44]. Zinc serves as a negative modulator for TRPM2 and TRPM5 [31,32]. When
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TRPM2 is activated by ADP ribose, zinc negatively modulates the channel because of
inhibition of the channel above levels of 30 µM of extracellular zinc [31,32]. When TRPM5
is activated by 500 nM of intracellular Ca2+, it has a zinc IC50 of 4.3 µM [31,32].

GABA is a fast inhibitory neurotransmitter predominant within the CNS and acts
on GABAA and GABAB receptors [45]. A dysfunction with these receptors can lead to a
wide array of neurological problems [45]. GABAA receptors are the target for multiple
therapeutic drugs, including those for epilepsy, anxiety, insomnia, and panic disorder [45].
GABAA receptors are composed of 19 subunits, with the predominant presynaptic isoform
composed of two α1 subunits, two β2 subunits and one γ2 subunit [45]. GABA receptors
are negatively modulated by zinc [32]. The GABAρ1 subunit has a zinc IC50 of 22 µM or
20 µM, the GABAα1β2γ2 subunit has a zinc IC50 of 441 µM, and GABAA has a zinc IC50 of
7 µM [32].

Despite the research into zinc and other membrane channels, few studies or reviews
have linked zinc’s pathological role in these neurodegenerative disorders with its effects on
ASICs [13]. Both zinc and ASICs are involved in the pathophysiology of multiple neurolog-
ical and psychological disorders. Depending on the ASIC subtype and composition, zinc
can serve as a potentiator or inhibitor of that channel by binding to the ASIC extracellular
domain. Further study of the connection between zinc and ASICs may reveal a critical point
for the therapeutic treatment of several of these “incurable” neurodegenerative disorders.
Thus, the next section of the review details the relationship between zinc and ASICs and
how these two substances correlate with several neurological and psychological diseases.

2. Zinc’s Effects on Different Types of ASICs
2.1. Zinc and ASIC1a

Although ASIC1a and ASIC1b are transcribed from the ACCN2 gene [2,16], their
function and location vary significantly. ASIC1a is widely expressed in the CNS and PNS.
Centrally located homotrimeric ASIC1a plays a vital role in synaptic plasticity, learning, and
memory [3]. ASIC1a also plays a role in fear and anxiety [3]. Unlike the other ASIC channels,
ASIC1a is uniquely permeable to Ca2+ and is heavily involved in acidosis-induced injuries
such as ischemic brain injury [46–50]. Though their calcium permeability is poor, activation
of ASIC1a channels may induce damage through secondary mechanisms that increase intra-
cellular Ca2+ levels, such as the activation of voltage-gated Ca2+ channels and intracellular
storage release [50]. Zinc chelation potentiates ASIC1a-mediated currents, consequently
increasing intracellular calcium levels and inducing membrane depolarization [46].

Our laboratory’s previous studies have shown that zinc has a high-affinity binding site
on the lysine-133 residue in the extracellular domain of ASIC1a channels, where it exhibits
inhibitory behavior. Consequently, mutations of K133 rendered zinc’s function to be
obsolete [46]. The presence of 0.3 µM of zinc displayed reversible inhibition of ASIC1a [50].
The effects of N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), a high-
affinity zinc chelator, on closed-state ASIC1a revealed current potentiation with an EC50
value of 2 µM in mouse cortical neurons [46]. The maximum potentiation induced by TPEN
can be achieved in cells within 2–4 min of perfusion, and the effect is reversible following a
washout of TPEN. Adding TPEN alone in the solution does not trigger any current in pH
7.4 solution, and co-applicating TPEN to pH 6.5 solution for 10 seconds does not induce
any significant potentiation. Another study revealed that the co-application of 300 µM
of zinc to Xenopus oocytes displayed slight inhibition of the ASIC1a current that was not
significant [18], suggesting that zinc only has significant inhibitory effects on the closed
state of ASIC1a channels.

Zinc-mediated inhibition is pH- and dose-dependent based on zinc chelation using
10 µM of TPEN in various concentrations of buffered free zinc ions with an IC50 value of
14 nM in mouse cortical neurons [46]. Consequently, a zinc dose-inhibition curve yielded
an IC50 value of 7.0± 0.35 nM for buffered zinc solutions. An increase of zinc concentration
up to 30 µM does not display additional zinc-mediated inhibition [46].
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2.2. Zinc and ASIC1b

ASIC1b and ASIC3 channels normally possess a transient current followed by a sus-
tained current, which contributes to prolonged acidosis and pain sensation [12,51,52]. Zinc
binds to the extracellular domain of ASIC1b channels and displays inhibitory mecha-
nisms [12,51]. Zinc inhibits the peak amplitude in both ASIC1b and ASIC3 channels, but
unlike ASIC1b, zinc inhibits both the peak and sustained component in ASIC3, thereby
indicating that zinc has differing mechanisms on ASIC1b and ASIC3 [12,51,52].

Zinc concentrations of 1 or 3 µM harbor no significant inhibition on ASIC1b chan-
nels [12,51] while concentrations of 10, 30, 100, or 300 µM exhibit a profound and concentration-
dependent inhibitory effect of the peak amplitude [12,51], revealing that zinc has a low-
affinity binding site of ASIC1b channels. Furthermore, pretreatment of zinc possesses
inhibitory behavior with an IC50 of 36.5 ± 1.5 µM while co-application harbors no effects
on ASIC1b currents [12,51]. Additionally, pH activation, steady-state desensitization, and
extracellular calcium concentrations harbor no effect on zinc-mediated inhibition of ASIC1b
channels, indicating non-competitive processes [12,51]. Therefore, zinc reveals a strong pH-
and calcium-independent inhibitory effect on the peak component of ASIC1b channels in
closed states only.

Studies from our laboratory have shown that mutation of the extracellular cysteine-
149 residue in mouse ASIC1b did not reveal any zinc-mediated inhibition, indicating
a lack of zinc-binding site in rat ASIC1b when cysteine 149 residue was replaced [51].
Patch-clamp recordings of zinc and human ASIC1b with a mutation of the extracellular
cysteine-196 residue demonstrated no inhibition of the current due to the lack of zinc
binding [12]. Consequently, mutating other cysteine or non-cysteine residues on ASIC1b
channels exhibited a reduction of ASIC current in peak amplitude by a drop in pH [12],
revealing that the extracellular cysteine-196 residue of human ASIC1b is the low-affinity
binding site of zinc responsible for mediating inhibitory mechanisms [12].

2.3. Zinc and ASIC1a/3

ASIC channels can form homomeric and heteromeric channels [4,46]. ASIC1a is
predominantly located centrally, whereas ASIC3 is primarily expressed in the peripheral
sensory neurons. The coexistence of the ASIC1a/3 heterodimer is currently discovered to
be located mostly in skeletal muscle and plays a role in pain management [53,54]. Recently,
we found that systematically mutated histidine residues 72 and 73 in both ASIC1a and
ASIC3 and histidine residue 83 in ASIC3 were responsible for the dual effects of zinc on
heteromeric hamster ovary ASIC1a/3 channels [4].

Co-application of zinc dose-dependently potentiated the peak and sustained compo-
nent of ASIC1a/3 channels. Concentrations between 1 and 100 µM displayed an EC50 of
26 µM whereas concentrations between 100 and 1000 µM displayed an EC50 of 343 µM [4].
Overall, zinc has a low-affinity binding site on ASIC1a/3 that mediates potentiation of
both the peak and sustained components of open-state ASIC1a/3 heteromeric channels in
a dose- and pH-dependent manner.

Pretreatment with zinc between 3 to 100 µM exerted the same potentiation as co-
application [4]. Concentrations between 1 and 100 µM exhibited an EC50 of 24 µM, and
concentrations between 100 and 250 µM exhibited an EC50 of 128 µM. In contrast, concen-
trations above 250 µM exerted profound inhibition on the peak amplitude with an IC50
of 306 µM [4]. Taken together, zinc displays dual effects on the closed state of ASIC1a/3
channels in a dose- and pH-dependent manner [4].

2.4. Zinc and ASIC1a/2b

Homomeric ASIC2b channels do not produce currents independently, but ASIC2b,
associated with other ASIC subunits, can form functional heteromeric ASIC channels [55].
The ASIC2b subunit enables the heteromeric channel ASIC1a/2b to harbor unique channel
properties different from homomeric ASIC1a [55]. ASIC1a/2b undergoes steady-state
desensitization at more basic pH values (pH 7.4) than other ASIC channels [55]. In Xenopus
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oocytes, co-application of 300 µM of zinc on ASIC1a/2b heteromers and ASIC1a homomers
displays reversible inhibition. This is in contrast to ASIC1a/2a, which demonstrates
profound potentiation. However, zinc modulation has reduced effects in the presence of
ASIC2b with ASIC1a compared to ASIC1a homomers [55]. The same study also utilized
10 µM TPEN and assessed that nanomolar chelating concentrations of zinc enhance the
ASIC1a/2b current amplitude. In fact, ASIC1a, ASIC1a/2a, and ASIC1a/2b are all inhibited
by low nanomolar concentrations of zinc [55]. These studies monitored all currents with
zinc modulation after the voltage ramp, indicating that these channels were assessed
in an open state. The exact zinc-binding site of ASIC1a/2b is unknown, although it is
strongly hypothesized that it is located on the ASIC2 subunit based on the differing current
modulation of zinc when comparing homomeric ASIC1a and ASIC1a/2b [55]. Further
research is required to identify the exact binding site for zinc modulation.

2.5. Zinc and ASIC1a/2a

Zinc has a dual dose-dependent effect on ASIC1a/2a heteromers. At high micromolar
concentrations (100–300 µM), zinc binds to the ASIC1a/2a channels with low affinity and
potentiates the effect of the ASIC1a/2a heteromers as it does with ASIC2a [18,46]. Zinc
potentiates the ASIC1a/2a current at an EC50 of 111 µM upon co-application with an acidic
pH [18]. Zinc cannot potentiate the channel unless the ASIC1a/2a heteromer is in an open
state. Normally, ASIC1a/2a requires a more acidic pH to be activated in the CNS. However,
the potentiation of ASIC1a/2a by zinc at high micromolar concentrations leftward shifts
the pH dependence to a pH closer to physiological pH. Rather than becoming activated
at a pH0.5 of 5.5 as the channel usually does, the pH0.5 for ASIC1a/2a channels activated
by zinc is higher, at 6.0 [18]. The greatest potentiation by zinc was between a pH of 6.9
and 6.3 [46]. These heteromers increase the Hill coefficient by shifting the activation curve
to the left, demonstrating that one ASIC2a subunit is enough for Zn2+ to potentiate the
heteromer [18]. In homomeric ASIC2a channels, mutation of either the histidine residue
H162 or H339 to alanine inhibits zinc coactivation of the channel [18]. Conversely, zinc
coactivation of the heteromeric ASIC1a/2a channel is inhibited by H339A mutations but
not by H162A mutations. This indicates a difference between the zinc binding sites of
the ASIC2a containing homomeric and heteromeric channels that can alter the capability
of zinc as a potentiator [14]. An increasing number of 2a subunits in comparison to 1a
subunits also does not increase its potentiation by Zn2+. Unexpectedly, the ASIC1a-2a-1a
concatemer with two 1a subunits had greater potentiation by zinc than the ASIC1a-2a-2a
concatemer [56]. This suggests that the cooperation of the three subunits contributes to its
ability to be potentiated by Zn2+ rather than simply the presence of ASIC2a.

At nanomolar concentrations, Zn2+ inhibits the ASIC1a/2a heteromer as it does with
ASIC1a [46]. Chelation of zinc by TPEN potentiates the current through ASIC1a/2a in
a dose-dependent manner [46]. The IC50 value for inhibition of ASIC1a/2a by zinc is
10 nM [46]. While the absence of ASIC2a did not impact the inhibition of zinc, the absence
of the ASIC1a subunit did eliminate the inhibition of zinc, confirming that the presence
of ASIC1a is necessary for the inhibitory effects of zinc [46]. The high-affinity site K133
located extracellularly on the ASIC1a subunit is highly indicated in the binding of zinc
to the channel. This positively charged lysine residue could be involved in the inhibitory
effect of zinc at nanomolar concentrations on ASIC1a/2a heteromers since ASIC1a mediates
zinc inhibition [46]. However, the exact binding site for the inhibitory action of zinc on the
ASIC1a/2a channel is currently unknown.

2.6. Zinc and ASIC2a

Unlike ASIC1a channels, high micromolar concentrations of zinc (e.g., 100 or 300 µM)
potentiate ASIC2a and ASIC2a-containing channels [18,46]. Upon mutation of the extra-
cellular His-162 (H162) and His-339 (H339) residues to alanine, zinc was no longer able
to potentiate ASIC2a-containing channels [18]. Specifically, zinc binds with low affinity
to the H339 and H162 residues at the interface between the upper palm, finger, and ball
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domains [18]. This is different from heteromeric ASIC2a-containing channels in which
H339 is necessary, but H162 has either moderate or no effect on zinc sensitivity, indicating
a difference in binding sites between the homomers and heteromers [18]. ASIC2a is po-
tentiated by zinc at an EC50 of 120 µM upon co-application with an acidic pH [18]. Thus,
zinc potentiates the ASIC2a homomer when the channel is in an open state. Homomeric
ASIC2a normally has low acid sensitivity and cannot be activated at a pH between 7.4 and
5.5. It requires a pH of 4.5 to activate a large current [18,46]. However, the potentiation
of ASIC2a by zinc occurs at a much lower concentration of H+ between a pH of 6.9 and
5.0 since zinc induces an alkaline shift of the pH dependence [18]. The pH sensitivity of
ASIC2a is dependent on the extracellular His-72 residue found immediately after the first
transmembrane domain and is abolished if this is mutated [18].

2.7. Zinc and ASIC2a/3

Another function of ASIC2a is to increase the conductance sensitivity of the cell mem-
brane to protons by increasing the expression of ASIC3 at the cell surface and assembling
heteromers with ASIC3 [56,57]. ASIC2a/3, like the previous ASIC2a-containing channels,
is also potentiated by zinc [18]. The potentiation of this channel by micromolar concen-
trations of zinc mimics that of ASIC1a/2a, with the greatest potentiation being at a pH of
6 [18]. Zinc acts on the ASIC2a/3 channel in an open state, requiring co-application with
an acidic pH for potentiation to occur [18]. Similar to ASIC1a/2a, potentiation by zinc
decreased with increasing extracellular acidity [18]. While the effect of zinc on the potentia-
tion of ASIC1a/2a was unchanged with a mutation of H162, for ASIC2a/3 channels, both
H162 and H339 mutations decreased the effects of zinc [18]. This indicates that zinc likely
binds with low affinity to both the H162 and H339 residues to potentiate the heteromeric
ASIC2a/3. However, the H339 residue is likely more significant because an H339 mutation
had a greater zinc potentiation reduction than the H162 mutation [18].

2.8. Zinc and ASIC3

Zinc binds to the extracellular domain of ASIC3 channels and exhibits inhibitory
behavior [52]. Similar to ASIC1b, ASIC3 channels possess a transient current followed by
a sustained current, thereby prolonging acidosis and further contributing to pain percep-
tion [54]. Nanomolar concentrations of zinc harbor no involvement in ASIC3 channels,
while micromolar concentrations exhibit inhibitory behavior on both the transient and
sustained components of ASIC3 currents, indicating that zinc has a low-affinity binding
site on ASIC3 channels [52]. Additionally, our studies have shown that the co-application
of zinc has no effects on ASIC3 currents, whereas pretreatment of zinc displays dose-
dependent inhibition with an IC50 of 61 ± 3.2 µM [52]. Zinc-mediated inhibition occurs
rapidly and at a narrow concentration range between 30 to 300 µM [52]. Thus, zinc reveals
a strong inhibitory effect on ASIC3 channels in closed states within a narrow micromolar
concentration range.

Administration of intracellular zinc does not diminish zinc-mediated inhibition of
ASIC3 currents, confirming that the zinc-binding site is located outside the cell [52]. When
administering zinc on ASIC3 channels with calcium concentrations at 2, 5, or 10 mM, the
degree of zinc inhibition remains unchanged, concluding that zinc and calcium do not
share the same binding site on ASIC3 channels [52]. Therefore, zinc-mediated inhibition
is calcium-independent for this particular isoform. When comparing zinc inhibition at
various pH values, the percent inhibition does not deviate significantly, suggesting that this
inhibition is pH-independent [52]. With consistent inhibitory behavior and pH activation
acuity, zinc may be a crucial ASIC3 channel regulator in pathophysiological conditions
associated with pH changes, such as epilepsy [58,59], myocardial ischemia [60], rheumatoid
arthritis [61,62], Alzheimer’s disease [63], and trauma [64].

While zinc commonly binds to histidine or cysteine residues in other ASIC channels,
modification of these two amino acid residues on ASIC3 did not affect zinc inhibition, sug-
gesting that zinc binds to a site unrelated to histidine or cysteine [52]. Further examination
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of other extracellular residues like glutamate may help to identify the specific zinc-binding
site of the ASIC3 channels. Table 1 shows zinc’s effects on different type of ASICs.

Table 1. Summary of zinc’s effects on different ASIC subtypes.

ASIC Subtype Zinc Binding Site Zinc Effect EC50/IC50
Binding State of

Channel References

ASIC1a K133↑ Inhibitory IC50: 7.0 ± 0.35 nM Closed [46]

ASIC1b C149↓ Inhibitory IC50: 36.5 ± 1.5 µM Closed [12,51]

ASIC1a/3 H72↓, H73↓, H83↓
Excitatory* [µM]

Inhibitory# [1–250 µM]
Excitatory# [> 250 µM]

EC50
*: 26 µM

EC50
# [1–100 µM]: 24 µM

EC50
# [100–250 µM]: 128 µM

IC50
# [> 250 µM]: 206 µM

Closed1,2

Open1 [4]

ASIC1a/2b Unknown Inhibitory Unknown Open [50]

ASIC1a/2a H339↓,1, K133↑,2
Excitatory [µM]

Inhibitory [1–250 µM]
EC50: 111 µM

IC50: 10.04 ± 1.23 nM Open [18,46]

ASIC2a H339↓, H162↓ Excitatory EC50: 120 µM Open [18]

ASIC2a/3 H339↓, H162↓ Excitatory Unknown Open [18]

ASIC3 Unknown↓ Inhibitory IC50: 61 ± 3.2 µM Closed [52]

[] The values in brackets represent the zinc concentrations used to determine the subsequent findings.↑—High
affinity; ↓—Low affinity; *—Open state; #—Closed state; 1—Excitatory; 2—Inhibitory.

3. Zinc Regulation of ASICs in Neurological and Psychological Diseases
3.1. ASIC1a
3.1.1. Epilepsy

Epilepsy is a neurological disorder characterized by abnormal, excessive, or synchro-
nized neuronal activity [65]. Various studies reveal the significance of zinc homeostasis
in seizures and epilepsy. Zinc is necessary for proper neural signaling, whereas zinc
dyshomeostasis leads to an improper balance of neural excitation and inhibition, resulting
in seizures [20]. Increased zinc serves as a protective tool in preventing ASIC1a- and
NMDA-mediated excitotoxicity in neuropathological conditions like epilepsy [59,66]. Acti-
vating ASIC1a channels from decreased pH levels in the brain leads to acidosis-mediated
neurological damage [67]. The zinc-mediated inhibition of ASIC1a channels may reduce
acidosis and thus prevent brain injury from seizures [67].

Further research on administering zinc as a therapy to epileptic patients is required
to document the specific relationship between zinc and epilepsy. Notably, increased zinc
concentrations beyond physiological concentrations were found to be toxic due to their
entry into neurons [34,68]; yet another study found that a moderate increase of zinc in the
extracellular space is neuroprotective against pathological conditions with severe acidosis.
The corresponding study used HEK 293 cells, so future research is needed on primary
neurons to study the neuroprotection of different concentrations of extracellular zinc [67].

3.1.2. Migraines

The pathophysiology of migraines is poorly understood, although one hypothesis
suggests extracellular acidification [69]. Calcium ions play a vital role in the human body
and can contribute to non-mitochondrial reactive oxygen species (ROS) production [70] and
induce acidosis-mediated injury [46]. Various studies reveal a correlation between migraine
headaches and zinc deficiency [71]. A 2020 randomized 8-week clinical trial revealed that
220 mg of zinc sulfate per day reduced the frequency of migraine attacks in comparison to
the placebo group. However, other factors such as headache severity, migraine duration,
and presence of auras were not affected by zinc supplementation [72]. Similarly, a 2021
randomized 12-week clinical trial revealed that zinc glucose supplementation not only
significantly reduced the frequency but also the periods and severity of migraine attacks in
comparison to the control group [73]. Taken together, zinc supplementation has an overall
positive impact on migraine attacks by reducing the frequency and severity. ASIC1a is
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vital for normal brain function, though due to its calcium permeability, excessive ASIC1a
signaling can contribute to acidosis-mediated injury [50] and cortical spreading depression
in migraines [71]. Administration of the inhibitors mambalgin-1 and amiloride to ASIC1a
channels revealed significant efficacy as acute and prophylactic treatment options for
migraines [71]. Most therapeutic options for chronic migraines are notoriously difficult and
commonly fail [74,75]. Further research is necessary to analyze the potential therapeutic
effects of zinc administration and chronic migraines. Thus, zinc supplementation might
reveal a potential therapeutic option for the treatment of acute migraine attacks due to its
inhibitory modulator on ASIC1a.

3.1.3. Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is one
of the leading causes of dementia [76]. It is characterized by advanced cognitive impair-
ment associated with behavioral changes, memory loss, and learning and orientation
complications [76,77]. Diagnostic histopathologic features of AD include amyloid plaques
aggregated by β-amyloid (Aβ) peptides and neuronal fibrillary tangles (NFTs) by hyper-
phosphorylated tau protein in the brain [78,79].

The imbalance of zinc in the brain is one of the pathological features of AD. Zinc
concentrations are elevated in specific regions of the brain affected by AD, which may
be a result of the Aβ peptides capturing zinc ions. Additionally, zinc directly promotes
the aggregation of Aβ peptides and tau hyperphosphorylation, thereby exacerbating the
advancement of AD [80–84]. Furthermore, the quantity of zinc transporters decreases as
the disease progresses, correlating to increased disease severity and cognitive impairment.
It is unclear whether zinc concentrations or zinc transporters are the ultimate cause of
AD [84,85].

ASIC1a channels may play a role in the pathogenesis of AD through their involvement
in the Aβ-mediated effect on metabotropic glutamate (mGlu) receptor-dependent transmis-
sion. Consequently, utilizing the ASIC1a-selective inhibitor, psalmotoxin-1, restored the
intrinsic excitability of mGlu in the hippocampus, revealing that ASIC1a channels play a
role in the Aβ-related depolarizing response and long-term depression [77]. Taken together,
the relationship between ASIC1a channels and mGlu potentially suggests their significant
role in the pathogenesis of AD.

Because both zinc and ASIC1a channels play a role in the pathogenesis of AD, targeting
zinc and ASIC1a may have therapeutic potential for AD. Various studies revealed potential
therapeutic effects of zinc and copper balance on the early stages of AD [86], unrelated to
ASIC channels. Further research is required to analyze the relationship between zinc and
ASIC1a channels in patients with AD.

3.1.4. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by Lewy body
inclusions and the degeneration of the dopaminergic neurons in the substantia nigra pars
compacta [87], leading to dopamine deficiency in the striatal pathway and, ultimately, basal
ganglia deterioration [88,89]. Clinical presentation of PD includes olfactory dysfunction,
tremor, cogwheel rigidity, cognitive impairment, and more [87].

It is uncertain how zinc dyshomeostasis and PD are related. Some studies have found
lower serum zinc levels in PD patients [90,91], while others have found higher serum zinc
levels. Studies reveal that methamphetamine causes dopaminergic cell death by generating
reactive oxygen species and increasing the total amount of α-synuclein, a key element of
Lewy bodies [85]. Zinc pretreatment reverses the aforementioned phenomena by increasing
metallothionein expression in vitro, attenuating the accumulation of ROS in neurons [92,93].
By pretreating the cells with 50 µM of zinc chloride, methamphetamine-induced expression
of α-synuclein was significantly reduced [92]. This observation supports the potential
relationship between low zinc levels and α-synuclein production in PD. Contrastingly,
numerous studies have demonstrated the detrimental effects of an aberrant accumula-
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tion of zinc in the substantia nigra and striatum, leading to dopaminergic neuronal cell
death [88,94]. These findings are reinforced by the observation of 1-methyl- 4-phenyl-
1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neuronal cell death in mice when zinc is
pretreated [85]. In principle, these research findings imply that zinc dyshomeostasis may
harbor dual involvement in the pathogenesis of PD contingent on zinc-modulated signaling
pathways at specific stages of the disease.

Aberrant excess of neural inflammation and lactic acidosis contribute to neurodegen-
eration in PD [87,95]. Observation of lactic acidosis in the animal model of PD reveals that
ASIC1a may also play a role in dopaminergic neuronal cell death. Amiloride (non-selective
ASIC inhibitor) and psalmotoxin-1 (selective inhibitor of ASIC1a) were revealed to atten-
uate neurodegeneration in the substantia nigra pars compacta [95]. This observation is
supported by the conclusion that ASIC1a may play a significant role in the pathophysi-
ology of PD [77], either by mutations in the Parkin gene associated with the autosomal
recessive juvenile-onset of PD [96] or by the absence of the Parkin gene, which promotes
hippocampal ASIC1a currents [97]. The role of ASIC1a as a therapeutic target for PD has
not been the subject of many research investigations.

The significance of zinc and ASIC1a channels as a potential treatment of PD demands
further investigation. Zinc-mediated inhibition of ASIC1a channels [46] is a probable
therapeutic target to prevent neurodegeneration, but future research is required to detail
zinc’s precise effects on ASIC1a channels and how it impacts PD.

3.1.5. Depression

Major depressive disorder (MDD) is a prevalent mental illness with unclear etiology
and poor effective therapies [98,99]. A key contributing factor to depression may be
alterations to serotonin levels in the brain [99]. The glutamatergic theory, which postulates
that depression results from an imbalance between the excitatory effect of glutamate and
the inhibitory action of γ-aminobutyric acid (GABA), is the widely accepted approach to
understanding the pathophysiology of depression. However, the glutamatergic theory of
depression does not account for the large spectrum of symptoms observed in MDD [99].
Consequently, there is potential significance between zinc and its receptor, GPR39, that
bridges the gaps in understanding depression. Therefore, it is crucial to investigate potential
interactions between the brain’s monoaminergic, glutamatergic, and zincergic systems.

Zinc can act as an inhibitory neuromodulator of NMDA channels, a major pharma-
cotherapeutic target in depression, [100] or as a neurotransmitter [101]. Neural transmission
is disrupted in zinc deficiency, clinically manifesting as cognitive, emotional, and behav-
ioral impairment [102]. In rats, low levels of zinc cause elevated cortisol, enhancing the
hypothalamic–pituitary–adrenal (HPA) axis and ultimately facilitating the pathogenesis of
depression [103]. GPR39 also plays a significant role relevant to cognition, emotions, and
memory processing [101,102]. When bound to zinc, GPR39 is hypothesized to participate
in serotonin synthesis [104], serotonin receptor signaling [105], and higher brain-derived
neurotrophic factor (BDNF) [106]. Consequently, GPR39 knock-out mice are resistant to
traditional antidepressants [104]. Zinc is also hypothesized to directly affect serotonin
signaling through agonistic binding to the 5-HT1A receptor and antagonistic binding
to the 5-HT7. Likewise, zinc transporters play a role in depression. Mice with absent
zinc transporter-3 exhibit reduced proliferating progenitor neurons [107] and decreased
hippocampal volume [108], suggesting that alterations to zinc transporter-3 contribute
to the pathogenesis of depression. The impacts of zinc are comparable to that of typical
antidepressants, and prior research has demonstrated that antidepressant treatment of
depression restores low BDNF levels [109].

Fear, addiction, and depression are attributed to ASIC channels [110,111]. ASIC1a
channels located in the amygdala are hypothesized to play a significant role in depres-
sion [110–112]. ASIC1a channel disturbance is theorized to disrupt the fear circuit, leading
to deficits in fear-related behavior [112]. A 2009 study investigated the antidepressant-like
effects when disrupting ASIC1a channels in mice. Using the forced swim test and tail
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suspension test, mice with absent ASIC1a channels displayed antidepressant-like findings
compared to mice with normal ASIC1a. Administration of PcTx1 and amiloride also pro-
duced antidepressant-like effects. Overall, findings from this study reveal that ASIC1a
contributes to depression in mice [110]. Surprisingly, a 2017 study revealed normal nucleus
accumbens ASIC1a expression in knock-out mice with absent ASIC1a alleles. The same
mice also demonstrated a normal forced swim test. The discrepancy may be due to the
newer study using SynAsic1a KO mice generated by floxed ASIC1a alleles disrupted by
Cre recombinase driven by the neuron-specific synapsin I promoter, whereas the 2009 study
used ASIC1a−/− mice. Compared to ASIC1a−/− mice, SynAsic1a KO mice do not display
identical behavioral changes but have similar deficits in fear conditioning. Furthermore,
not all neurons had disrupted ASIC1a expression in SynAsic1a KO mice [109]. Therefore,
ASIC1a channels impact fear-related behaviors in mice, but further research is required
to assess the specific relationship between ASIC1a and depression. With zinc intrinsically
harboring antidepressant effects, targeting ASIC1a channels using zinc-mediated inhibition
may be another potential antidepressant. Future investigation is warranted to identify a
potential correlation between ASIC1a channels, zinc, and depression in humans.

3.1.6. Stroke

Ischemic stroke is characterized as a thrombo-inflammatory condition that induces
a pro-inflammatory state at the site of vascular injury, consequently compromising the
blood–brain barrier (BBB) and inducing neuronal cell death [113,114]. Under physiological
conditions, zinc and other divalent cation transport are maintained by the BBB [115]. Some
research utilizing animal models of global ischemia in cortical neurons reveals that zinc
accumulation drives the progression of brain infarction. Additionally, pathological zinc
concentrations in the synaptic cleft of ischemic neurons also elicit cell death, revealing
that zinc toxicity may be an independent risk factor for ischemic stroke [115,116]. Conse-
quently, chelating zinc using EDTA in rats with ischemia revealed neuroprotection through
enhanced cognitive function and deterred apoptosis of ischemic cells [116]. Surprisingly,
other studies have revealed that zinc administration in rats with cerebral ischemia guards
the hippocampus against neuronal injury during the reperfusion phase [115,117].

Furthermore, patients with zinc deficiency have a greater likelihood of ischemic strokes
and an enhanced rehabilitation of neurological deficits with zinc supplementation [115,118].
These contradictory findings suggest that zinc plays a variety of functions in both the early
and late stages of ischemic strokes. The laboratory settings may also substantially influence
the beneficial or detrimental effects of zinc addressed above.

ASIC1a channels are suggested to play a role in the progression of ischemic strokes
due to their activation during hypoxia [119,120]. Lactic acid production from increased
anaerobic glycolysis promotes an acidic pH in the brain, thereby activating ASIC1a and
ASIC1a-containing channels [119]. ASIC1a-mediated neuronal ischemic injury is further
enhanced by concurrent induction of other elements such as Ca2+/calmodulin kinase II
and NMDA receptors [121]. Consequently, the administration of amiloride, a high-affinity
inhibitor of ASIC1a and most other ASIC subtypes, demonstrated a reduced cerebral
ischemic cell injury [120]. Taken together, the inhibition of ASIC1a channels may have
significant therapeutic potential in ischemic strokes. Within the current literature, the effect
of zinc on ischemic stroke is inconclusive, as different studies have seen the neuroprotective
effects of both zinc chelation and administration. However, further research on the effect
of zinc chelation and administration in the early versus late stages of ischemic stroke may
ascertain whether the neuroprotective effects of zinc chelation are time-dependent and/or
superior to the effects of zinc administration.

3.1.7. Cocaine Addiction

Cocaine triggers drug-seeking behavior by binding to the dopamine transporter at
the synapse [122,123]. A 2021 study revealed that increased zinc concentrations in mice
enhance cocaine binding to the dopamine transporter (DAT) protein. Repeated cocaine
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administration increased zinc concentrations in the caudate putamen (CPu) and nucleus
accumbens (NAc). Conversely, low levels of zinc revealed decreased zinc content and
cocaine sensitivity in the brain, confirming that zinc plays a role in cocaine-seeking be-
havior [123]. Additionally, ASIC channels are abundantly expressed in the NAc [122,124].
Previous studies discovered that mice deficient in the ASIC1a gene had increased cocaine-
conditioned place preference (CPP); consequently, the effect is abolished when ASIC1a
is restored in the NAc [11,125]. More recently, cocaine priming-induced reinstatement
and drug-seeking were amplified when ASIC1a was overexpressed in mice NAc [122].
Additionally, our studies have indicated that, at various dosages of cocaine (5, 10, 20, and
30 mg/kg), cocaine drastically reduced acute cocaine-induced motor responses in ASIC1a-/-

mice [124]. Behavioral sensitization in chronic cocaine addiction was also prevalent in
the same ASIC1a-/- mice, suggesting that ASIC1a plays a role in chronic cocaine-induced
behavioral changes [124]. These findings demonstrate that ASIC1a channels partake in both
acute and chronic cocaine addiction. Taken together, it is unclear whether zinc-mediated
inhibition of ASIC1a would attenuate or stimulate cocaine addiction. Further research
is required to investigate the specific therapeutic potential of zinc modulation of ASIC1a
channels in cocaine addiction in humans.

Zinc regulation of ASIC1a in certain neurological and psychological disorders has
been shown in Figure 2.

Figure 2. Zinc Regulation of ASIC1a in Neurological Diseases. Zinc-mediated inhibition of ASIC1a
channels is theorized to reduce the risk of epilepsy, migraine attacks, Parkinson’s disease, and
depression and increase the risk of Alzheimer’s disease. Its effects on cocaine addiction and strokes
are unknown based on current literature. Adapted from “Transporters” by BioRender.com (2022)
(https://app.biorender.com/biorender-templates, accessed on 28 December 2022).

https://app.biorender.com/biorender-templates
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3.2. ASIC1b

Zinc’s anti-inflammatory qualities from zinc-mediated enhancement/induction of
metallothionein are thought to be the reason for its therapeutic effectiveness in the treatment
of pain [126], which is significant given inflammation is a primary contributor to the onset
of chronic pain, including neuropathic pain [127]. However, the exact role that zinc plays
in nociception is unknown. Studies show a diet lacking in zinc enables mice to experience
less of the antinociceptive effects of morphine [128]. In addition, zinc was found to inhibit
paclitaxel-induced mechanical hypersensitivity, the capsaicin response in DRG neurons,
and TRPV1 channels [129]. These are several mechanisms of action that potentially reveal
how zinc plays a role in pain sensation. Zinc therapy significantly reduced inflammatory
hyperalgesia in a rat model of generated neuropathic pain and levels of the inflammatory
biomarker IL-1B and nerve growth factor (NGF) [130].

Consequently, zinc chelation is found to cause hyperalgesia, and a zinc injection leads
to pain relief [131,132]. Through TRPV inhibition, zinc may also be used therapeutically to
treat chemotherapy-induced peripheral neuropathy [133]. Additionally, the depletion of
vesicular zinc in the dorsal root ganglion of mice led to an increase in neuropathic pain due
to a lower pain threshold [134]. In mice with fibromyalgia, it was found that when inducing
hyperalgesia in both ASIC1b knockout mice and wild-type mice, the knockout mice had
a shorter response [132]. Studies also revealed that human and mouse ASIC1b channels
exhibit a small sustained current when activated [132,135]. The physiological significance
of the sustained current is unclear but has been implicated in persistent pain [136]. Taken
together, zinc-mediated inhibition of ASIC1b may play a key role in pain management therapy.

3.3. ASIC1a/3

Studies from ASIC knock-out mice have indicated that ASIC1a/3 channels could be
one of the main ASIC components within skeletal muscle afferents [137]. ASIC channels
play a significant role in detecting protons within sensory muscle neurons, particularly
with sensing drops in pH [54,58]. Skeletal muscle afferents are predominantly composed of
ASIC heteromers, ASIC1a/2a/3 or ASIC1a/3 [137]. Additional studies have hypothesized
that ASIC1a/3 heterotrimers are involved with muscle pain [138]. This study found that
PcTx1 significantly inhibited pH 6-evoked currents in ASIC1a/3 heteromeric channels in
CHO cells [138]. PcTx1 binds a location on the ASIC1a/3 extracellular domain that con-
trols pH-dependent channel desensitization [138]. With the presence of PcTx1, ASIC1a/3
channels are desensitized at a neutral pH and are, therefore, unable to be opened by acidic
pH changes [138]. Thus, targeted inhibition of ASIC1a/3 can be a therapeutic option for
patients with activity-induced hyperalgesia [138]. Zinc exhibits dual effects on ASIC1a/3
heterotrimers, causing inhibition at higher concentrations [4]. For example, the pretreat-
ment of zinc of 1–100 µM has an EC50 of 24 µM, 100–250 µM has an EC50 of 128 µM, and
300 µM has an IC50 of 306 µM [4]. Furthermore, it has been shown that systemic zinc
administration reduces hyperalgesia during early inflammation by decreasing cytokine
IL-beta and growth factor NGF [130]. Therefore, zinc-mediated inhibition of ASIC1a/3 in
the DRG of skeletal muscle cells may be a method of treatment for activity-induced pain,
and further investigation should be done to explore this relationship.

Furthermore, ASIC1a and ASIC3 channels have a significant expression in the retina
and subsequently can form functional ASIC1a/3 channels. In addition, zinc is released
into the retina during neurotransmission. Multiple studies have shown that exogenous
dietary supplementation of zinc is vital in preventing retinal aging [139,140], age-related
macular degeneration [141,142], and maintaining the taurine system [143]. Hence, we
hypothesize that zinc may be a modulator of ASIC1a/3 activity under physiological and
pathological conditions. Prospective studies are required to investigate the relationship
between zinc and ASIC1a/3 channels on the retina and explore zinc’s effects on retinal
pathological conditions.
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3.4. ASIC1a/2b

ASIC1a/2b expression in dorsal horn neurons is upregulated by peripheral inflam-
mation, thereby suggesting a vital role in central pain perception in physiological and
pathological circumstances [144]. Similar to homomeric ASIC1a channels, ASIC1a/2b chan-
nels are calcium-permeable [55,145]. ASIC1a/2b calcium permeability plays a significant
role in mediating neuronal death under various pathological states [55]. When the ACCN1
(ASIC2) gene is mutated, ASIC1a/2a and ASIC1a/2b heteromers display significantly
reduced acidosis-induced calcium rise after an ischemic event [146,147]. Current studies
indicate that barium can reduce acid-induced neuronal death by inhibiting ASIC1a/2b [55].
Surprisingly, although ASIC1a homomers resist barium, barium could still profoundly
inhibit neuronal death [55]. These results could be due to differences in the expression of
ASIC1a/2b channels compared to ASIC1a homomeric channels in the neurons studied.
However, this could also be evidence that ASIC1a/2b can be specifically targeted for treat-
ment in neuron populations that are not affected by inhibitors of ASIC1a homomers. No
current studies suggest the association between zinc regulation of ASIC1a/2b and tissue
acidosis. Since millimolar and nanomolar concentrations of zinc can inhibit ASIC1a/2b
as well as ASIC1a, additional research regarding the effects of zinc-mediated inhibition
on neuronal cell death under ischemic conditions is necessary to determine whether zinc
could be an advantageous therapy.

3.5. ASIC1a/2a

ASIC1a-containing channels, such as ASIC1a/2a heterotrimers, are indicated in neu-
ronal injury after an ischemic stroke [49,147]. Although ASIC1a/2a channels are calcium
impermeable, in acidic conditions, they can increase calcium levels and contribute to neu-
ronal or axonal degeneration through secondary mechanisms [147,148]. This is true for
calcium permeable ASIC1a channels as well. In fact, the activation of VGCC and release of
calcium stores in acidotic and ischemic conditions have a higher contribution to the total
increase in calcium than the calcium influx through ASIC1a [147]. While the activation
of ASIC1a/2a channels may not directly contribute to injury, the greater the number of
ASIC1a-containing channels, the greater the magnitude of the acid-induced calcium release
during acidosis. Thus, the inhibition of the ASIC1a/2a heterotrimers with nanomolar con-
centrations of zinc could potentially attenuate the effect of the channel on a neuronal injury
during acidotic and ischemic conditions [148,149]. However, as previously mentioned with
ASIC1a, current research demonstrates that zinc plays a controversial role in the patho-
physiology of ischemic stroke. In one study, the accumulation of zinc in the brains of adult
rats was shown to be an independent risk factor for ischemic stroke [116]. In another study
on rats, zinc supplementation after ischemia protected the hippocampus from neuronal
injury [117]. With these conflicting findings, it is difficult to theorize the effects of zinc
modulation of ASIC1a/2a on reducing the likelihood of neuronal degeneration after an
ischemic stroke without additional research.

ASIC1a/2a heteromers and ASIC1a homomers are the most commonly expressed
ASICs in the neurons of the olfactory bulb and are necessary for odorant stimulation
and synaptic transmission [150]. A study proposed that a reduced ASIC function could
contribute to the loss of olfactory perception in PD [150]. Additional research on the
pathophysiology of ASICs and PD could be beneficial in determining whether micromolar
concentrations of zinc could help potentiate ASIC1a/2a and attempt to restore olfactory
perception. Currently, studies show that zinc treatment has controversial roles in PD de-
pending on the affinity at which it binds to proteins in different signaling pathways. In one
study on Drosophila flies, zinc treatment increased the lifespan and motility of the flies with
PD [151]. In another study on mice, zinc supplementation resulted in methamphetamine-
induced dopaminergic neuronal loss [94]. Thus, further research is necessary to elucidate if
ASIC1a/2a is a channel that zinc will preferentially bind to for the restoration of olfactory
perception in patients with PD or if it is more likely to bind to another protein that could
result in neurotoxicity.
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3.6. ASIC2a

ASIC2a homomers are indicated in numerous pathological conditions that affect
different parts of the body. While ASIC1a, ASIC2a, and ASIC2b are highly expressed
in the CNS, ASIC2a expression is thought to increase susceptibility to temporal lobe
epilepsy [59]. There is greater ASIC2a expression post-seizure, and overexpression of
ASIC2a hastened the onset of the first epileptic episode as well as increased the occurrence of
status epilepticus episodes reaching Racine stage IV [59]. In those with focal brain ischemia
due to a stroke, the deletion of ASIC2 channels has a protective effect on hippocampal,
cortical, and striatal neurons by decreasing the effects of acidosis-induced injury [147,152].
ASIC2 deletion contributes to this protective effect by deleting heteromeric 1a/2a channels
and decreasing the expression of ASIC1a [147]. It also eliminates ASIC2a, and this will
result in a reduction of neuronal cell death under pathological conditions [147]. Since zinc
helps potentiate ASIC2a currents and could increase seizure susceptibility and acid-induced
injury after a stroke, systemic treatment with zinc may result in increased adverse effects
for these patients.

In the eyes, ASIC2a is important for retinal function due to its expression in retinal
ganglion cells. Zinc, abundant in the retina, can potentiate ASIC2a and consequently protect
the eye from light-induced retinal degeneration [153]. Zinc supplementation has been
studied to slow the progression of age-related macular degeneration [141,142]. However,
in conditions such as glaucoma, in which there is optic nerve injury, retinal ganglion cells
cannot regenerate and begin to die. In this circumstance, zinc accumulates in the retina
and further prevents the axon regeneration of the retinal ganglion cells [154,155]. Studies
propose that zinc chelation in patients with glaucoma could promote the regenerative
capacity of the retinal ganglion cells [154,155]. The role of ASIC2a in the progressive damage
of the retina after injury to the optic nerve is currently unclear. Further investigation is
necessary to elucidate whether the modulation of ASIC2a by zinc plays a role in patients
with glaucoma.

3.7. ASIC2a/3

ASIC2a/3 is a heteromeric channel found in cardiac dorsal root ganglion neurons [156].
Potentiation of these channels increases the firing of action potentials and could cause per-
sistent angina during myocardial infarction [156]. Previous studies have shown that zinc’s
antioxidative and anti-inflammatory nature can protect against myocardial infarction [157],
attenuate cardiac remodeling after infarction [158,159], improve the rate of contraction, and
increase myocardial flow rate [160]. Although zinc supplementation has proven to be an
effective cardioprotective treatment, since it potentiates ASIC2a/3, it should be studied
further to determine if it could cause angina as an adverse effect.

3.8. ASIC3

ASIC3 is predominantly expressed within nociceptors and is a target of therapy for
acid-induced pain [161]. In animal and human studies, selective ASIC3 drug antagonists are
effective in relieving acid-evoked pain [161]. Furthermore, data has indicated that ASIC3 is
involved in the maintenance of inflammatory pain [162]. One study utilized CFA-treated
rats to demonstrate the role of ASIC3 in inflammatory pain [162]. Injection of APETx2, a
potent peptide inhibitor of ASIC3, into a CFA-induced inflamed paw of the rat resulted in a
complete reversal of mechanical hypersensitivity levels before the CFA treatment, reaching
maximal efficacy 30 min post-APETx2 injection [162]. Therefore, inhibition of ASIC3 serves
as a powerful therapeutic agent for both acid-induced and inflammatory nociception. Zinc
inhibits the peak and sustained components of ASIC3 channels; hence, zinc may play a
role in treating chronic pain [9]. Furthermore, ASIC3 is expressed within neuronal cells
in the brain and adipocytes, and ASIC3 knockout mice show reduced anxiety levels and
enhanced insulin sensitivity [161]. Thus, inhibition of ASIC3, potentially via zinc, may
have additional analeptic implications outside of pain management.
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ASIC3 has profound expression in the retina, and zinc is released during retinal neuro-
transmission; therefore, zinc may influence ASIC3 and ASIC1a/3 activity during normal
or pathological conditions [4]. As previously stated, multiple studies have shown that
exogenous dietary supplementation of zinc is vital in preventing retinal aging [140], age-
related macular degeneration [141,142], and maintaining the taurine system [143]. Hence,
we hypothesize that zinc may be a modulator of ASIC1a/3 activity under physiological and
pathological conditions. Additional research is warranted regarding the zinc regulation on
ASIC3 and ASIC1a/3 channels in the retina.

ASIC3 was also discovered to have an influential expression in the bladder. Subse-
quently, mutations of this channel can cause micturition-affiliated pathophysiological condi-
tions such as urinary incontinence [163]. ASIC3 channels are significantly acid-sensitive and
therefore play a vital role in tissue acidosis, nociception, and mechanosensation [52,164].
Knowing that zinc exhibits inhibitory behavior on ASIC3 channels, zinc may consequently
play a vital role in tissue acidosis, nociception, and other underlying pathological con-
ditions. A recent study from 2019 discovered that zinc is a protective biomolecule in
ischemia/reperfusion injury in various organs [165]. However, no current studies support
this relationship between ASIC3 and zinc and warrant future research.

3.9. ASIC4

ASIC4, unlike most ASIC channels, does not induce currents when protonated [5]. It is
also mainly found intracellularly in endosome-related vacuoles [7]. ASIC4 is hypothesized
to be a modulator that downregulates ASIC1a and ASIC3 surface expression [6]. This
ultimately reduces the production of currents that trigger acidosis. Furthermore, ASIC4
channels may play a role in reducing fear and anxiety by modulating ASIC1a channels.
One study found that knockout mice with ASIC4 mutations demonstrated heightened fear
and anxious behavior [47]. Chemo-sensing and mechano-sensing roles of ASIC4 channels
are still unclear since they do not form functional heteromeric or homomeric channels [164].

There is a potential linkage between zinc and ASIC4 channels found in zebrafish.
Zebrafish ASIC4 (zASIC4) shares characteristics of a cytoplasmic N terminal domain with
mammalian ASIC4 that is completely conserved in human ASIC4 channels [166]. zASIC4.1
has a transient component and a sustained component induced by calcium influx. In the
study, the administration of 0.5 mM of zinc blocked the sustained component of zASIC4.1
channels but not the transient component, indicating a potential inhibitory modulation by
zinc [166,167]. Further research is needed to analyze a possible relationship between zinc
and human ASIC4 channels.

3.10. ASIC5

Similar to ASIC4, ASIC5 channels are also not activated by protons [168,169]. Recent
studies have indicated that ASIC5 is important for type II Unipolar brush cells activity
and that disruption of ASIC5 contributes to impaired movement, likely, at least in part,
due to altered temporal processing of vestibular input [170]. In fact, ASIC5 has been
discovered to be sensitive to bile acids. The closed state of ASIC5 is destabilized in the
presence of bile acids, thus activating the channel [169]. It was subsequently named bile
acid-sensitive ion channel (BASIC) [168,169]. In addition, physiological concentrations of
magnesium and calcium strongly inhibited ASIC5 channels, indicating that extracellular
divalent cations stabilize the inactive state of ASIC5 channels [168,169]. Therefore, bile
acids and the displacement of extracellular divalent cations activate ASIC5 channels. There
is currently no relevant literature discussing the relationship between zinc and ASIC5
channels, but since zinc is also an extracellular divalent cation with a history of effects
on other ASIC channels, it is essential to rule out the possible correlation between zinc
and ASIC5.
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4. Conclusions

In conclusion, there has been significant interest in the function of zinc as a modulator
of ASICs. ASICs have been implicated in numerous neurological disorders such as ischemic
stroke, epilepsy, PD, and AD. Depending on the concentration of zinc and the ASIC
isoform, zinc can exert either a stimulatory or inhibitory effect on the ion channels. With
further research, zinc has promising potential to provide therapeutic benefits for various
neuropathologies through the modulation of ASICs.
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