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Abstract: Mitochondria are widely considered the “power hub” of the cell because of their pivotal
roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP,
which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to
calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria
also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of
building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since
mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial
function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and
metabolic disorders. In this review, we discuss the key physiological and pathological functions of
mitochondria and present bioactive compounds with protective effects on the mitochondria and
their mechanisms of action. We highlight promising compounds and existing difficulties limiting
the therapeutic use of these compounds and potential solutions. We also provide insights and
perspectives into future research windows on mitochondrial modulators.
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1. Introduction

Mitochondria, widely understood to be the “power hub” of the cell, are organelles in
eukaryotes responsible for most of the chemical energy supply required to fuel the cells’
complex web of biochemical reactions [1,2]. The mitochondria also perform crucial multi-
faceted roles in biosynthetic pathways, serving as an important source of building blocks
for fatty acid, cholesterol, amino acid, glucose, and heme synthesis [3]. The mitochondria
use fuels consumed by cells in the form of sugars, fatty acids, and amino acids to generate
chemical energy [3,4]. For example, the mitochondria are an important hub for synthesizing
amino acids such as glutamine, glutamate, alanine, proline, and aspartate. In addition,
the initial step of gluconeogenesis, during which pyruvate carboxylase oxaloacetate is
converted to malate, occurs in the mitochondria [3].

As shown in Figure 1, the mitochondria generate small molecule storage of chem-
ical energy known as adenosine triphosphate (ATP) via electron transport-linked phos-
phorylation, otherwise known as oxidative phosphorylation (OXPHOS). The OXPHOS
pathway utilizes five enzyme complexes in the inner membrane of the mitochondria to
produce ATP as it progresses through the respiratory chain. These complexes include
Complex I (NADH: ubiquinone oxidoreductase), Complex II (succinate dehydrogenase),
Complex III (ubiquinol-cytochrome c oxidoreductase), Complex IV (cytochrome c oxi-
dase), and Complex V (ATP synthase) [2,5–7]. In addition to its role at the core of energy
metabolism, the mitochondrion is also an important site for calcium ion (Ca2+) storage
and homeostasis while also playing a crucial role in cell apoptosis [2,8]. Furthermore,
mitochondria are known to play a major role in the generation of reactive oxygen species
(ROS), most of which are produced by Complex I and Complex III (on a smaller scale).
Almost 90% of ROS generated in the mitochondria are essentially a by-product of the OX-
PHOS pathway [5,6,9]. The role of mitochondria in ROS generation is certainly noteworthy,
especially with mounting research evidence establishing a link between disease progression
in several neurodegenerative diseases and increased ROS production [10].
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pathway [5,6,9]. The role of mitochondria in ROS generation is certainly noteworthy, es-
pecially with mounting research evidence establishing a link between disease progression 
in several neurodegenerative diseases and increased ROS production [10]. 

Oxidative stress resulting from the dysregulated generation of ROS can lead to im-
pairments in the OXPHOS machinery, causing an imbalance in the mitochondrial redox 
potential and significant loss of mitochondrial functions (Figure 1). Impairments to mito-
chondrial function could result in decreased ATP generation, calcium overload, and un-
balanced apoptosis [2,6,9]. Furthermore, disease conditions such as Huntington’s, Alz-
heimer’s, Parkinson’s, diabetes, several cancers, seizures, kidney failure, cardiomyopathy, 
and brain disorders, as well as normal aging processes, have been linked to failing mito-
chondrial functions [1,9,11–14]. 

 
Figure 1. Comparison between healthy and dysfunctional mitochondria, highlighting the key mech-
anisms of mitochondrial dysfunction. ETC: Electron transport chain; ROS: Reactive oxygen species. 

As illustrated in Figure 2, the OXPHOS pathway starts with the entry of electrons 
into the respiratory chain via Complexes I and II, which are subsequently transferred to 
Complexes III and IV, respectively, and then used by Complex V to generate energy. 
[1,5,11,15]. 

Complex I, an L-shaped multimeric enzyme, catalyzes the first step of OXPHOS in 
the electron transport chain (Figure 2). Complex I binds and oxidizes NADH to generate 
two electrons which are used to reduce ubiquinone (coenzyme Q) to ubiquinol, an elec-
tron-rich form of coenzyme Q, which further transfers the electrons to Complex III [6,7]. 
Alongside complex I, complex II also binds and oxidizes FADH2 to generate two electrons, 
which are then transferred to ubiquinone [8,16]. Complex III transfers the electrons to cy-
tochrome c (cyt c)and finally to Complex IV, which reduces O2 to H2O. The energy gener-
ated and released during this cascade of processes is then used to move protons from the 
mitochondrial matrix into the intermembrane space to generate an electrochemical poten-
tial utilized by Complex V to produce ATP from ADP and phosphate for cellular energy 
[6,7,11]. 

Figure 1. Comparison between healthy and dysfunctional mitochondria, highlighting the key mecha-
nisms of mitochondrial dysfunction. ETC: Electron transport chain; ROS: Reactive oxygen species.

Oxidative stress resulting from the dysregulated generation of ROS can lead to im-
pairments in the OXPHOS machinery, causing an imbalance in the mitochondrial redox
potential and significant loss of mitochondrial functions (Figure 1). Impairments to mito-
chondrial function could result in decreased ATP generation, calcium overload, and unbal-
anced apoptosis [2,6,9]. Furthermore, disease conditions such as Huntington’s, Alzheimer’s,
Parkinson’s, diabetes, several cancers, seizures, kidney failure, cardiomyopathy, and brain
disorders, as well as normal aging processes, have been linked to failing mitochondrial
functions [1,9,11–14].

As illustrated in Figure 2, the OXPHOS pathway starts with the entry of electrons into the
respiratory chain via Complexes I and II, which are subsequently transferred to Complexes III
and IV, respectively, and then used by Complex V to generate energy. [1,5,11,15].
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Figure 2. OXPHOS pathway, showing the transfer of electrons in the ETC to produce ATP. NADH: 
Reduced nicotinamide adenine dinucleotide; FADH: Reduced flavin adenine dinucleotide; ADP: 
Adenosine diphosphate; ATP: Adenosine triphosphate. 

1.1. Mitochondria in Human Diseases 
As previously enumerated, mitochondria play prominent roles in several processes 

at the cellular level. Consequently, the slightest alterations to any of these processes can 
ultimately lead to diseases and maladies in the human body. As a result, many vigorous 
attempts have been undertaken to explore the role of mitochondria in the pathogenesis of 
different diseases [2,9]. Despite the immense progress made to date, there are crucial 
things yet to be understood when it comes to the structure and function of the mitochon-
dria as related to human diseases. Highlighted in the subsequent paragraphs is available 
evidence of mitochondrial dysfunction in selected human diseases. 

1.1.1. Mitochondria in Neurodegenerative Diseases and Ageing 
Neurodegenerative diseases are a class of incurable diseases characterized by pro-

gressive degeneration and/or death of neurons, leading to the destruction of the nervous 
system. Neurons are well known to be high-energy demanding cells; hence it is not sur-
prising that their health and functionality are closely linked to the mitochondria, which 
are the powerhouses of the cell [2,9,12]. Each neuron contains hundreds to thousands of 
mitochondria, and the central nervous system relies on normal mitochondrial functions 
for its high metabolic needs [17–20]. Although the etiology and pathogenesis of neuro-
degenerative diseases largely remain a mystery, research evidence has identified mito-
chondrial dysfunction as one of the key features of neurodegenerative disorders, such as 
Parkinson’s and Alzheimer’s diseases [17,21]. Therefore, a better understanding of mito-
chondrial function is critical to understanding and detangling the mysteries of neurolog-
ical disorders. 

In Parkinson’s disease (PD), extensive studies using cellular and animal models have 
implicated mitochondrial dysfunction, increased generation of ROS, and calcium imbal-
ance as pivotal factors in the etiology of PD. In addition, a decline in mitochondrial Com-
plex I activity has been reported in PD patient-sourced olfactory neurosphere-derived 
(hONS) cells, and involvement of PARK proteins in altered mitochondrial regulation has 
also been observed [12,15,22,23]. A thorough review discussing the role of mitochondria 
in PD was recently authored by Zambrano et al. [12]. 

In Alzheimer’s disease (AD), mitochondrial anomalies have also been identified as a 
common and consistent feature [21,24]. Accumulation of amyloid-β and phosphorylation 
of tau protein leading to the formation of neurofibrillary tangles are key hallmarks of AD, 
both of which have been linked to mitochondrial abnormalities [21,25]. Alterations in the 
morphology of the mitochondrion, enzyme, and DNA changes have also been observed 

Figure 2. OXPHOS pathway, showing the transfer of electrons in the ETC to produce ATP. NADH:
Reduced nicotinamide adenine dinucleotide; FADH: Reduced flavin adenine dinucleotide; ADP:
Adenosine diphosphate; ATP: Adenosine triphosphate.
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Complex I, an L-shaped multimeric enzyme, catalyzes the first step of OXPHOS in the
electron transport chain (Figure 2). Complex I binds and oxidizes NADH to generate two
electrons which are used to reduce ubiquinone (coenzyme Q) to ubiquinol, an electron-rich
form of coenzyme Q, which further transfers the electrons to Complex III [6,7]. Alongside
complex I, complex II also binds and oxidizes FADH2 to generate two electrons, which are
then transferred to ubiquinone [8,16]. Complex III transfers the electrons to cytochrome
c (cyt c)and finally to Complex IV, which reduces O2 to H2O. The energy generated and
released during this cascade of processes is then used to move protons from the mitochon-
drial matrix into the intermembrane space to generate an electrochemical potential utilized
by Complex V to produce ATP from ADP and phosphate for cellular energy [6,7,11].

1.1. Mitochondria in Human Diseases

As previously enumerated, mitochondria play prominent roles in several processes
at the cellular level. Consequently, the slightest alterations to any of these processes can
ultimately lead to diseases and maladies in the human body. As a result, many vigorous
attempts have been undertaken to explore the role of mitochondria in the pathogenesis of
different diseases [2,9]. Despite the immense progress made to date, there are crucial things
yet to be understood when it comes to the structure and function of the mitochondria as
related to human diseases. Highlighted in the subsequent paragraphs is available evidence
of mitochondrial dysfunction in selected human diseases.

1.1.1. Mitochondria in Neurodegenerative Diseases and Ageing

Neurodegenerative diseases are a class of incurable diseases characterized by pro-
gressive degeneration and/or death of neurons, leading to the destruction of the nervous
system. Neurons are well known to be high-energy demanding cells; hence it is not surpris-
ing that their health and functionality are closely linked to the mitochondria, which are the
powerhouses of the cell [2,9,12]. Each neuron contains hundreds to thousands of mitochon-
dria, and the central nervous system relies on normal mitochondrial functions for its high
metabolic needs [17–20]. Although the etiology and pathogenesis of neurodegenerative
diseases largely remain a mystery, research evidence has identified mitochondrial dysfunc-
tion as one of the key features of neurodegenerative disorders, such as Parkinson’s and
Alzheimer’s diseases [17,21]. Therefore, a better understanding of mitochondrial function
is critical to understanding and detangling the mysteries of neurological disorders.

In Parkinson’s disease (PD), extensive studies using cellular and animal models have
implicated mitochondrial dysfunction, increased generation of ROS, and calcium imbalance
as pivotal factors in the etiology of PD. In addition, a decline in mitochondrial Complex I
activity has been reported in PD patient-sourced olfactory neurosphere-derived (hONS)
cells, and involvement of PARK proteins in altered mitochondrial regulation has also been
observed [12,15,22,23]. A thorough review discussing the role of mitochondria in PD was
recently authored by Zambrano et al. [12].

In Alzheimer’s disease (AD), mitochondrial anomalies have also been identified as a
common and consistent feature [21,24]. Accumulation of amyloid-β and phosphorylation
of tau protein leading to the formation of neurofibrillary tangles are key hallmarks of AD,
both of which have been linked to mitochondrial abnormalities [21,25]. Alterations in the
morphology of the mitochondrion, enzyme, and DNA changes have also been observed
in the brains of AD patients [21]. Similar to PD, oxidative stress induced by abnormal
mitochondrial function is an early feature in AD [21,25]. In addition, partial inhibition
of mitochondrial Complex I has been touted as a potential strategy for the treatment of
AD [11].

Impairments in mitochondrial activity have also been reported in aging, which is one of
the critical risk factors associated with most neurodegenerative diseases. Impairments such
as mitochondrial DNA alteration, decreased proteasomal activity, increased ROS generation,
and reduced activity of the OXPHOS machinery have all been linked to aging [10,17].
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1.1.2. Mitochondria in Metabolic Diseases

Lately, there has been an interesting surge in research findings linking mitochondrial
impairments to metabolic diseases such as type II diabetes [25], insulin resistance [26],
obesity, metabolic syndrome, stroke, non-alcoholic liver disease, and the list goes on [2,8].
A resounding finding in these reports is that mitochondrial dysfunction contributes sig-
nificantly to oxidative stress and inflammation, which is a usual commonality in these
metabolic diseases [9,27–29]. ROS homeostasis is pivotal to aerobic organisms as this
ensures the balance between the rate and magnitude of production and subsequent elimi-
nation of ROS over time. Any imbalance of ROS homeostasis essentially overwhelms the
mitochondrial electron transport chain and, by extension, OXPHOS, leading to a decline in
mitochondrial contents and the rate of OXPHOS [9,27]. A decline in mitochondrial contents
and the rate of OXPHOS, as well as the modification of mitochondrial dynamics in key
organs associated with metabolic diseases, have been implicated in the etiology of several
metabolic diseases [9,26].

1.1.3. Mitochondria in Cancer

Although the role of mitochondria in cancer and tumor development is yet to be fully
understood, mitochondrial defects have long been implicated in the etiology of cancers and
tumors [30]. One important hallmark of cancer is the Warburg effect, which involves the
reprogramming of ATP generation via the OXPHOS pathway to aerobic glycolysis [30,31].
In normal cells, the common mechanism for ATP generation is glucose metabolism via
the OXPHOS pathway in mitochondria. However, even in the presence of functional
mitochondria, most cancer cells bypass the mitochondria and rewire their metabolism to
produce needed energy through aerobic glycolysis, which is less efficient and involves
a high rate of glucose uptake and glycolysis followed by lactate formation [32,33]. This
‘selfish’ reprogramming enhances the progression and proliferation of cancer and tumor
cells through the overexpression of glucose transporters, speedy inefficient production of
ATP to meet energy demands, and accumulation of lactate which aids tumor progression
and acidosis [33,34].

Since the 1920s, when the Warburg effect was first documented, several studies have
reported defective mitochondrial respiration and mutated or low copies of mitochondrial
DNAs in various cancers, including adenocarcinoma, breast, colon, prostate, head, and
neck cancers [35–37]. Another widely reported hallmark of cancer is the excessive genera-
tion of ROS, which are commonly a by-product of the mitochondria-mediated metabolic
process [30,37–39]. The mitochondria have also been established as a proven target for
cancer treatment with a handful of FDA-approved mitochondrial-targeted compounds and
several others at different stages of preclinical and clinical trials. Notable examples include
metformin, mitoxantrone, cisplatin, and ME344 [30].

1.1.4. Mitochondria and infectious diseases

Beyond their conventional role as the cell’s energy hub, mitochondria also play a
crucial role as a signaling platform for innate immunity against infectious microbes, and the
role of mitochondria in infectious disease has been extensively documented [40–43]. Major
host responses against infections depend on mitochondrial functions, and receptors of the
innate immune system can detect compromises in mitochondrial functions, subsequently
triggering an immune response [41,42]. In addition, pathogens exploit mitochondrial
functions to influence their survival and evade immunity by affecting OXPHOS and
mitochondrial dynamics and disrupting communication between the mitochondria and
nucleus [40,41,43].

During infection, pathogens are detected by pattern-recognition receptors (PRRs),
which can recognize pathogen-associated molecular patterns (PAMPs) such as flagellins, li-
posaccharides, proteins, mannose, and nucleic acids, as well as danger-associated molecular
motifs (DAMPs) such as cardiolipin, ROS, mitochondrial DNA and n-formyl peptide [40,42].
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Mitochondrial DAMPs are released into the cytosol as a result of infections, injuries, or loss
of mitochondrial homeostasis [40,42].

DAMPs and PAMPs can be detected by PRRs to trigger innate immune responses
against viruses, bacteria, and other infectious pathogens [42,44]. PRRs are classed into
four families, which include toll-like receptors TLRs, (NOD)-like receptors (NLRs), C-type
lectin receptors (CLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) [42].
In viral infections such as influenza, PAMPs are recognized by RLRs, which interact
with mitochondria antiviral signaling protein (MAVs) in the mitochondrial membrane to
trigger the production of pro-inflammatory cytokines and type 1 interferon as an immune
response [40,42,43]. During bacterial infection, TLRs are stimulated by bacterial PAMPs to
induce the release of mitochondrial ROS to initiate antibacterial defense, resulting in the
killing of pathogenic bacteria [42,45].

1.2. Materials and methods

The aim of this review is to provide a comprehensive insight into compounds with
therapeutic potential on mitochondrial functions and their mechanisms of action, with a
focus on compounds that can modulate the mitochondria such that mitochondrial dysfunc-
tion is mitigated or prevented altogether. To achieve this, an extensive literature search was
conducted on PubMed, Science-Direct, and Google-Scholar databases using the following
search terms:

“Mitochondria,” “Mitochondrial Complex,” “Mitochondria Health Disease,” “Mito-
chondrial Dysfunction,” “Mitochondrial Dysfunction Compounds.”

As a result of our search, we found 61 compounds (Table 1) with protective effects
on the mitochondria. Further searches were conducted exclusively on PubMed using the
name of each of the 61 compounds and mitochondria as keywords. This was performed to
discover multiple mitochondrial modulating activities of any compound that might not
have been covered in the first round of searches and to explore detailed mechanistic studies
of each compound.

All 61 compounds were gathered from articles published in the last 20 years, and
all consulted articles were thoroughly read to extract relevant information, such as the
disease model used for the bioactivity study, the dose administered, mitochondria-related
activities, and mechanisms of action. In Table 1, we present all 61 compounds, the disease
model, effective doses, mitochondria-related targets, mode of action, and references for
each compound.
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Table 1. Mitochondrial Modulators.

Compounds Model Dose Mechanisms References

1. Quercetin PC12 cells
Wistar rats

1–100 µM
2–100 mg/kg

↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑CAT, ↓Apoptosis, ↑MMP, ↑ATP, ↑Nrf2
↑AMPK, ↑PGC-1α, ↑SIRT1, Restored Mt morphology, ↑PINK1 and ↑Parkin [46–49]

2. Baicalein SH-SY5Y cells
V79-4 cells

10–25 µM
10 µg/mL

↓ROS, ↓LPO, ↑SOD, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3
↓Ca2+, ↑Nrf2, ↑MMP [50–52]

3. Kaempferol HUVECs cells
L2 cells 10–40 µM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑GPx, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3

↑MMP, mPTP blockage, ↑ATP, ↑SIRT1 [53]

4. Fisetin Wistar rats 15 and 20 mg/kg ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑CAT, ↑MMP, ↓Caspase-3, ↑ATP, ↑Complex I [54–56]

5. Luteolin C57BL/6 mice 10 µg/kg ↓ROS, ↓LPO, ↑MMP, ↓Caspase-3, -9, ↑ATP, ↑AMPK, ↑Complexes I, II, III, IV, and V [57]

6. 7,8-dihydroxyflavone Wistar Rat
H92c cells

5–20 mg/kg
100 µM

↓ROS, ↓LPO, ↑SOD, GSH, CAT, GPx
↑MMP, ↑Complexes I, II, III, IV [58,59]

7. Naringenin SH-SY5Y cells 10–80 µM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑CAT, ↑PI3K/Akt/GSK-3β,
↑MMP, ↑ATP, ↑Nrf2, ↑Complexes I, V [60–63]

8. Genistein C57/BL6J mice
H9c2 cells

2.5–10 mg/kg
10 pM–1 µM

↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑CAT ↑GPx
↑MMP, ↓Cyt c, ↓Caspase-3, ↑Nrf2 [64–66]

9. Icariin Human NP cells 10 µM ↓ROS, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3, ↑MMP, ↑Nrf2 [67]

10. Catechin EA.hy926 cells
HepG2 cells

4 mM
10 µM

↓ROS, ↓LPO, ↑SOD, ↑CAT, ↑MMP,
Restored Mt morphology, ↑SIRT1, ↑Complex I, ↑ATP [68–70]

11. Epicatechin MRC-5 cells
BV2 cells

10 µM
100 µM

↓ROS, ↓LPO, ↑SOD, ↑CAT, ↑MMP
Restored Mt morphology, ↑AMPK, ↑SIRT1, ↑Complex I, ↑ATP [68,71]

12. Epigallocatechin gallate HLE B-3 cells 50 µM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑CAT ↑GPx, ↓Bax, ↑Bcl-2,
↓Cyt c, ↓Caspase-3, -9, ↑MMP, ↑ATP [72,73]

13. Hesperidin Mice 25–50 mg/kg ↑SOD, GSH, CAT, GPx, ↓Caspase-3, -9, ↑MMP, ↑ATP, ↑Complexes I, II, IV, V [74,75]

14. Resveratrol
Wistar rats

C57BL/6 mice
MC3T3-E1 cells

20 mg/kg
40 mg/kg

25 µM

↓ROS, ↑SOD,↑Bcl-2, ↓Cyt c,
↑SIRT1-AMPK-PGC-1α, ↑PINK1

↑MMP, ↑Nrf2, ↑ATP, ↑Complex I, CypD
[76–78]

15. Tyrosol CATH.a cells
SH-SY5Y cells 50–200 µM ↓ROS, ↑MMP

↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3, -9, ↑ATP [79]

16. Hydroxytyrosol ARPE cells
HCN-2 cells

100 µM
30 µM

↓ROS ↓LPO, ↑SOD, GSH, CAT, GPx
↓Ca2+, ↑Nrf2, ↑MMP, ↑Complexes I, II, V [80,81]
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Table 1. Cont.

Compounds Model Dose Mechanisms References

17. Curcumin SH-SY5Y cells 5 µM ↓ROS, ↓LPO, ↑GSH, ↑GPx, ↑MMP, ↑ATP,
↓Ca2+, ↓Caspase-3, -9, ↑Complexes II, IV [82,83]

18. Esculetin
Mito-esculetin

C2C12 cells
HAEC cells

5 µM
2.5 µM

↓ROS, ↑GSH, ↑MMP, ↑Nrf2
↓Caspase-3, -8, ↑AMPK/SIRT3/ PGC1α [84]

19. Protocatechuic Acid PC12 cells
Human Platelets 0.1–1.2 mM ↓ROS, ↓LPO, ↑GSH, ↑GPx, ↑MMP

↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3, -9, ↓PI3K/Akt/ GSK-3β [85–87]

20. Salvianic acid A SH-SY5Y cells
SD Rat

1–100 µg/mL
52 µg/mL

↓ROS, ↓LPO, ↑MMP
↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3 [88,89]

21. Sesamin BEAS-2B cells 40 µM ↓ROS, ↓LPO, ↑SOD, ↑CAT, ↓Bax, ↑Bcl-2, ↓Caspase-3
↑MMP, ↑Nrf2, ↓PINK1, Parkin [90]

22. α-Arbutin SH-SY5Y cells 1–100 µM ↓ROS, ↑SOD, ↑GSH, ↑MMP, ↑ATP, ↓AMPK [91]

23. Ellagic acid
Wistar rats

C57BL/6 mice
SH-SY5Y cells

10–100 mg/kg
20 µM

↓ROS, ↑SOD↑, MMP, ↑Nrf2
mPTP blockage, ↓Cyt c, ↑ATP, ↑Sirt3
↑Complexes I, II, III, and IV

[92–96]

24. Mangiferin SH-SY5Y cells
C57BL/6 mice

10–50 µM
10–50 mg/kg

↓ROS, ↓LPO, ↑SOD, ↑GSH ↑CAT, ↑GPx, ↓Bax, ↑Bcl-2, ↓Cyt c,
↓Caspase-3, -9, ↑Nrf2, ↑MMP, ↑ATP, ↑Complex I [97–99]

25. Panduratin A RPTEC/TERT1 5 µM ↓ROS, ↑MMP, ↑Bcl-2, ↓Cyt c, ↓Caspase-3 [100]

26. α-Mangostin SH-SY5Y cells 0.03–0.3 µM ↓ROS, ↑MMP, ↑ATP, ↓Caspase-3, -8 [101]

27. Rosmarinic acid

H9c2 cells
SH-SY5Y cells

Zebra fish
C57BL/6 Mice

1–200 µM
20–80 mg/kg

↓ROS ↑GSH, ↑Nrf2, ↑MMP, ↑SIRT1/PGC-1a
↑PI3K/Akt

Restored Mt Morphology, ↑ATP
[102–105]

28. Chlorogenic acid HUVECs cell
Albino mice

25–160 µM
50 mg/kg

↑SOD, ↑GSH, ↑MMP, ↑ATP, ↑SIRT1
↓Caspase-3, ↑Complexes I, II, III, IV, and V [106–108]

29. Theaflavin TCMK-1 cells 2–10 µM ↓ROS, ↓LPO, ↑SOD, ↑MMP, ↑Nrf2, ↓Bax, ↑Bcl-2, ↓Caspase-3
↑ATP, Restored Mt morphology [109]

30. Salvianolic acid A Cardiomyocyte
3T3-L1 cells

12.5–50 µg/mL
1–100 nM

↓ROS, ↓Bax/Bcl-2 ratio, ↓Caspase-3, ↑Akt/GSK-3β, ↑MMP
mPTP blockage, ↑ATP, ↑PGC-1α, ↑Complexes III and IV [110,111]

31. Salvianolic acid B HL-7702 cells
IEC-6 cells

50–200 µM
2.5–40 µM

↓ROS, ↓LPO, ↑SOD, ↑CAT, ↑MMP, ↑PI3K/Akt/GSK-3β, ↑ATP
Restored Mt morphology, ↑AMPK/Sirt3 [112,113]
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Table 1. Cont.

Compounds Model Dose Mechanisms References

32. Sarain A SH-SY5Y cells 0.01–10 µM ↓ROS, ↑SOD, ↑Nrf2, ↑MMP, mPTP blockage, ↓Cyp D, ↑ATP [114]

33. Sarain 2 SH-SY5Y cells 10 µM ↓ROS, ↑MMP [114]

34. Piperine Wistar rats 10 mg/kg ↓ROS, ↓LPO, ↑GSH, ↑MMP, ↑Bax/Bcl-2, ↓Cyt c, ↓Caspase-3, -9
↑Complexes I, II, and II [115–117]

35. Caffeine
SH-SY5Y cells

SD rats
APPsw rats

1–100 µM
40 mg/kg
120 mg/L

↓ROS, ↑MMP, ↑ATP
↓Bax/Bcl-2, ↓Cyt c, ↓Caspase-3, -6
↑PI3K/Akt, ↑Complexes I, II, and III

[118–121]

36. Celastrol C57BL6/J mice
SD rats

100 µg/kg
1–3 mg/kg

↓ROS, ↑GSH, ↑MMP, ↑ATP
↑AMPK/SIRT1/ PGC1α, ↑Complexes I, and III [122,123]

37. Boswellic acid Albino rats 100–250 mg/kg ↓ROS, ↓LPO, ↑SOD, ↑GPx, ↑CAT, ↑Nrf2, ↓Caspase-3
↑Complexes I, II, III, and IV [24,124]

38. Asiatic acid SH-SY5Y cells 10 nM ↓ROS↑, MMP, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3, -8, -8, -9 [125]

39. Paeoniflorin SD rats, PC12 cells 25–100 µM ↓ROS, ↑MMP, ↑ATP, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3, -9 [126–128]

40. Isolongifolene Rats
SH-SY5Y cells

10 mg/kg
10 µM

↓ROS, ↓LPO, ↑SOD, GSH, CAT, GPx, ↑Bax, Bcl-2, ↓Cyt c,
↓Caspase-3, -6, -8, -9, ↑PI3K/Akt/ GSK-3β, ↑MMP [129,130]

41. Lycopene SD rats 5 µM ↓ROS, ↑MMP, mPTP blockage, ↑ATP, ↓Bax, ↑Bcl-2, ↓Bax/Bcl-2 ratio, ↓Cyt c,
↓Caspase-3, -9, ↑PGC1α, ↑Complexes I, II, III, IV [131]

42. Auraptene SN4741 cells
bEnd.3 cells

10 µM
1 µM ↓ROS, ↑MMP, ↑Nrf2 [132,133]

43. Astaxanthin LO2 cells 30–90 µM ↓ROS, ↑MMP, ↑ATP, ↓Bax, ↓Caspase-3, ↑PGC1α, Restored Mt morphology [134]

44. Allicin PC12 cells 0.01–1 µg/mL ↓ROS, ↑MMP, ↑PGC1α, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3 [135,136]

45. Fucoidan SH-SY5Y cells
HPBM cells

50 µg/mL
20 and 50 µM

↓ROS, ↑MMP, ↓Bax, ↑Bcl-2, ↓Caspase-3
↑Complexes I and IV, ↑AMPK/PGC1α [137,138]

46. Sulforaphane HHL-5 cells 10 and 250 µM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑Nrf2, ↑MMP, ↑ATP, ↓Apoptosis,
↑PGC1α, ↓Ca2+, ↑Complexes I and IV [139,140]

47. β-Lapachone MELAS cells 1 µM ↓ROS, ↑MMP, ↑ATP [141]

48. Melatonin Porcine oocytes 500 nM ↓ROS, ↑MMP, ↑ATP,↓Caspase-3 ↑PGC1α/SIRT1 [142]

49. Ligustilide HT-22 cells, SD rats 20 µM, 10, 20 mg/kg ↓ROS, ↑MMP, ↑PINK1/Parkin [143]
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Table 1. Cont.

Compounds Model Dose Mechanisms References

50. Xyloketal B PC12 cells 100–250 µM ↓ROS, ↑GSH, and ↑MMP Restored Mt morphology [144,145]

51. Osthole PC12 cells
SD rats

7µg/cc
50 mg/kg

↓ROS, ↑MMP, ↑ATP, ↓Bax, ↑Bcl-2, ↓Bax/Bcl-2 ratio, ↓Cyt c,
↓Caspase-3, -9, ↑Complexes I, II, III and IV [146,147]

52. Cinnamic Acid H9c2 cells 100–500 nM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑MMP, ↓Bax, ↑Bcl-2, ↓Caspase-3 [148]

53. DL0410 SH-SY5Y cells 1–10 µM ↓ROS, ↓LPO, ↑Nrf2, ↑MMP, ↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3 [149]

54. Mito-Q NP cells 500 nM ↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑Nrf2, ↑MMP, ↓PINK1/Parkin [150]

55. FLZ SH-SY5Y cell 100 µM ↓ROS, ↑GSH, ↑MMP, mPTP blockage, ↑Complexes IV [151,152]

56. MHY-1684 hCPCsc-kit+ 1 µM ↓ROS, ↑AKT signaling, ↓Apoptosis [153]

57. Diphenyl diselenide HT22 cells
LDLr−/− mice

2 µM
1 mg/kg

↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑GPx, ↑MMP
↑Complexes I and II [154–157]

58. Rasagiline SH-SY5Y cells
Rat mitochondria

100 nM
1–10 µM ↓ROS, ↑SOD, ↑GSH, ↑MMP, ↓Cyt c, ↑ATP [158–161]

59. Succinnobucol SH-SY5Y cells 3 µM ↓ROS, ↑GSH, ↑MMP, ↓Cyt c, ↑ATP [162]

60. FMU200 SH-SY5Y cells 0.1 and 1 µM ↓ROS, ↑MMP [163]

61. CNB-001 C57BL/6 mice
SK-N-SH cells

6–48 mg/kg
2 µM

↓ROS, ↓LPO, ↑SOD, ↑GSH, ↑GPx,↑CAT, ↑MMP
↓Bax, ↑Bcl-2, ↓Cyt c, ↓Caspase-3 [164,165]
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2. Mitochondrial Modulators, Mechanisms, and Targets

In Table 1, we present 61 mitochondrial modulators which are able to protect the
mitochondria from toxic insults and/or improve mitochondrial function. This collection
of compounds includes 52 natural products (Figures 3–7) and nine synthetic compounds
(Figure 8). It is noteworthy that 31 of the 52 natural products discussed are phenolic com-
pounds, which represent 50.8% of the total (Figures 3 and 4). This is unsurprising given that
phenolic compounds are renowned for their excellent antioxidant activity and the fact that
oxidative stress is one of the major indicators of mitochondrial dysfunction [166,167]. Others
include four alkaloids (Figure 5), eight terpenes (Figure 6), one organic acid, one amine, one
cyclic polyketide, one lactone, one benzochromone, and one coumarin derivative (Figure 7).

The biological activities of the compounds summarized in Table 1 were evaluated in
cellular or animal models or a combination of both. Our search revealed that 83.6% were
tested using at least one cell line, with SH-SY5Y cells accounting for 41% of the studies.
This is unsurprising because the human neuroblastoma SH-SY5Y cell line is a common
in vitro model for PD and other neurodegenerative diseases associated with mitochondrial
dysfunctions [168–170].

Generally, compounds showed multiple modes of action, exerting their protective
effects on the mitochondria by (1) restoring oxidative balance by inhibiting the production
of ROS or blocking the harmful effects of ROS and increasing the activity of antioxidant
enzymes, (2) modulating apoptotic markers, (3) promoting ATP synthesis, (4) enhancing
the activities of mitochondrial complexes, mitochondrial biogenesis and restoration of
normal mitochondrial morphology in the presence of mitochondria toxins such as rotenone,
6-OHDA and MPP+ [46,76,82,114,171]. The numerical distribution of the compounds
based on structural class and mechanism is shown in Figure 9. Inhibition of ROS is a
common feature in all 61 compounds; while 45 of the compounds have anti-apoptotic
activity, 33 improved ATP synthesis, 24 increased the activities of complexes, 22 promoted
mitochondrial biogenesis, and eight restored normal mitochondrial morphology.
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2.1. Antioxidative Mechanisms of Mitochondrial Modulators

Given that 90% of ROS is generated by mitochondria, oxidative stress is one of the
major hallmarks of mitochondrial dysfunction [2,172]. All compounds listed in Table 1
displayed antioxidant activity through multiple mechanisms. In combination with the
reduction in ROS generation and lipid peroxidation (LPO), the effect of a compound on



Biomolecules 2023, 13, 226 14 of 27

the activity of enzymes that regulate free radical scavenging and oxidative balance is a
major way to determine its antioxidant activity [129,173]. In normal cellular conditions,
super-oxide dismutase (SOD) converts superoxide radical to H2O2, and enzymes such as
catalase (CAT) and glutathione peroxidase (GPX) reduce mitochondrial H2O2 by converting
it to H2O. Hence the ability of any compound to increase the activity of these enzymes is
taken as an indicator that the compound possesses antioxidant potential [114,174].

Nuclear E2-related factor 2 (Nrf2) is one of the most pivotal cell defense mechanisms
against stressors. It is a transcription factor that signals the expression of oxidative enzymes
and stimulates the increased expression of antioxidant genes in response to oxidative stress.
Consequently, any disruption to the activation of the Nrf2-mediated antioxidant response
exposes the cells and renders the mitochondria more sensitive to deleterious pro-oxidants
and electrophiles [175]. As a result of its crucial cytoprotective role against the effects
of oxidative stress, Nrf2 is now a well-known drug target in many neurodegenerative
diseases, most of which are associated with mitochondrial dysfunction [23,175,176]. Hence,
the ability of a compound of interest to activate Nrf2-mediated antioxidative response
is relevant for assessing its antioxidant capacity as a mitochondrial modulator [114,171].
Compounds 1, 2, 7–9, 14, 16, 18, 21, 23, 24, 27, 29, 32, 37, 42, 46, 53, and 54 activate the
Nrf2-mediated antioxidative response.

Excessive ROS generation is known to cause disruptions to the OXPHOS pathway and
electron transport chain, leading to defects in mitochondrial respiration, ATP production,
depletion of mitochondrial complexes, and collapse of mitochondrial membrane potential
(∆Ψm) [23,175,177]. Nrf2, when activated, amplifies ATP production and ∆Ψm by boosting
substrate availability for OXPHOS, leading to enhanced activity of the mitochondrial
complexes [175]. The ability of a metabolite to induce blockage of the mitochondrial
permeability transition pore (mPTP) is also a very instructive parameter when measuring
the extent of mitochondrial oxidative stress. This can be achieved by inhibiting cyclophilin
D (CYPD), a key enzyme that regulates the opening and closing of mPTP [114,178]. The
opening of mPTP leads to mitochondrial swelling and has been implicated as one of the
causes of the loss of mitochondrial function in neurodegeneration. The opening of mPTP
occurs as a result of the collapse of the ∆Ψm, leading to the continuous burst of ROS
into mitochondria, causing oxidative stress [88,178–180] and mitochondrial permeability
transition (MPT) driven necrosis. MPT-driven necrosis is a type of regulated cell death
characterized by uncontrolled loss of post-mitotic cells and can be delayed by inhibition of
CYPD [181,182]. All the compounds listed in Table 1, except boswellic acid (37) and MHY-
1684 (56), were reported to restore ∆Ψm while sarain A (32), ellagic acid (23), salvianolic
acid A (30), kaempferol (3), lycopene (41), FLZ (55) induced the blockage of the mPTP.
Although not listed in Table 1 because it is out of the 20-year coverage of this review, it is
pivotal to mention that cyclosporin A; an FDA-approved immunosuppressant medication is
a proven and well-known MPT inhibitor and a promising potential mitochondrial-targeted
neuroprotective agent [183,184].

2.2. Inhibition of Apoptosis

Inhibition of apoptotic pathways through the modulation of apoptotic markers is
another mechanism commonly reported in compounds discussed in this review. This is
unsurprising because oxidative stress is a known precursor to apoptosis, so mitochondria
play a key role in maintaining cellular apoptotic balance [2]. Typically in cells, apoptosis
is triggered by activating pro-apoptotic proteins belonging to the Bcl-2 family, e.g., Bax
and Bak, which translocate to mitochondria to induce the release of cytochrome c into
the cytosol [185]. The release of cytochrome c promotes the activation of caspase-3, -6,
-7, and -9, which subsequently initiates cell death [115,185]. However, the Bcl-2 family
includes several anti-apoptotic members such as Bcl-2, Bcl-xL, Mcl-1, and Bcl-w. For
the maintenance of proper cellular function, it is important to establish a steady balance
between pro-apoptotic and anti-apoptotic markers [115,185]. Compounds 2–5, 8–9, 12–15,
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17–21, 23–26, 28–30, 34–35, 37–41, 43–45, 48, 51–53, 58, 59, and 61 all showed anti-apoptotic
activity by modulating these markers.

The mitochondria are pivotal to keeping apoptotic balance, and disruptions to this bal-
ance have been implicated in diseases such as PD and AD [115,148,185]. The PI3K/Akt/GSK-
3β pathway also promotes the expression of anti-apoptotic and pro-apoptotic proteins.
The kinase PI3K releases phosphatidylinositol-3,4,5-trisphosphate (PIP3), which activates
Akt by promoting the translocation of Akt to the plasma membrane [115,148]. Activa-
tion of Akt then induces the expression of anti-apoptotic proteins such as Bcl-2, while
GSK-3β, on the other hand, is a prerequisite for the activation of p53, which induces
the expression of pro-apoptotic proteins such as Bax [185–187]. PI3K/Akt also inhibits
the expression of serine-threonine kinase GSK-3β, a critical effector of PI3K/Akt cellu-
lar signaling and activator of neuronal apoptosis. Activation of the PI3K/Akt pathway
ameliorates apoptosis through the phosphorylation of GSK-3β by AKT [185–187]. Com-
pounds 7, 19, 27, 30, 31, 35, 40, and 56 demonstrated anti-apoptotic activity by targeting
the PI3K/Akt/GSK-3β pathway.

2.3. Mitochondrial Biogenesis and Mitophagy

Mitochondrial homeostasis is maintained by keeping the mitochondrial pool in a cell at
a steady state through the simultaneous propagation of new mitochondria (mitochondrial
biogenesis or mitogenesis) and the removal of old and damaged mitochondria through
a process called mitophagy [188,189]. Mitogenesis is a complex process with at least
150 proteins involved [190,191]. However, there are three key interdependent markers
known to play a crucial role in this process: peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC1α), silent mating-type information regulation proteins (Sirt), and
AMP-activated kinase (AMPK) [110,190,191]. PGC1α is a transcriptional factor that binds
to Sirt3 promoters, interacting with Nrf2 to facilitate the upregulation of antioxidants [190].
Sirts can modulate the induction of several markers, such as PGC1α, to enhance the
expression of antioxidant enzymes such as SOD [190,192,193]. Compounds 1, 3, 5, 10, 14,
18, 21–23, 27, 28, 30, 31, 36, 41, 43–46, 48, and 54 were reported to modulate the AMPK/
PGC1α/Sirt pathway.

AMPK is inhibited by ATP, and the AMP/ATP ratio gives a sensitive indication of the
metabolic state of a cell [194]. AMPK, when activated by mitochondrial ROS, promotes
mitophagy, which may lead to a reduction in mitochondrial number, a decrease in ATP
levels, and a subsequent increase in AMP/ATP ratio [194–196]. The PTEN-induced kinase 1
(PINK1) pathway-Parkin pathway also plays a crucial role in the mitophagy of weak
mitochondria and maintenance of mitochondrial homeostasis [196–199]. Several studies
have linked the accumulation of weak mitochondria in cells due to decreased mitophagy
to deficient levels of PINK1 and Parkin [196,197]. Compounds quercetin (1), resveratrol
(14), and ligustilide (49) were reported to modulate PINK1/Parkin.

2.4. Other Effects of Mitochondrial Modulators

In addition to the biological activities earlier discussed, 33 compounds (1, 3–5, 7, 10,
15, 17, 22–24, 26–32, 39, 41, 43, 46–48, 51, 58, 59) were reported to increase ATP synthe-
sis, 24 (4–7, 10, 11, 13, 14, 16, 17, 23, 24, 28, 30, 34-37, 41, 45, 46, 51, 55, 57) enhance the
activity of mitochondria complexes, and 8 (1, 10, 11, 27, 29, 31, 43, 50) restore mitochon-
drial morphology. In addition to their reported antioxidant activity and increase in MMP,
7,8-dihydroxyflavone (6) and diphenyl diselenide (57) increased the level of mitochon-
drial complexes, while β-lapachone (47) improved ATP synthesis [141,154]. However,
sarain 2 (33) did not show any other activity apart from inhibiting ROS and increasing
MMP [114].

Prohibitins (PHB) are evolutionarily conserved proteins ubiquitously expressed in
eukaryotic cells and localized in the nucleus, cytosol, and mitochondria [200,201]. Large as-
semblies of homologous prohibitin members, prohibitin 1 (PHB1) and prohibitin 2 (PHB2),
have been identified in the inner mitochondria membrane [201,202]. These mitochondrial
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PHB subunits play an important role in cell proliferation, mitochondrial biogenesis, mito-
chondrial dynamics, cell apoptosis, and senescence [200,201,203]. PHB impairments have
been reported in aging, cancer, neurodegenerative, kidney, cardiovascular, and metabolic
diseases, in which significant loss of mitochondrial function has been proven [200–203].
The marine natural product, aurilide which binds to PHB1, and a synthetic molecule, fluori-
zoline, which binds to PHB1 and PHB 2 are known potent PHB-binding compounds which
have been reported to induce apoptosis and mitochondrial fragmentation [204,204,205].
Fluorizoline and aurilide have not been included in Table 1 since this review is focused on
compounds that are able to mitigate or prevent mitochondrial dysfunction.

2.5. The Standouts

The most outstanding compound of all 61 discussed is perhaps rasagiline (58), a
well-known monoamine oxidase inhibitor. Rasagiline is a novel propargylamine and an
approved treatment for PD either as a monotherapy or in combination with other treatments
such as levodopa [206,207]. Rasagiline was reported to attenuate mitochondrial dysfunction
by reducing oxidative stress, preventing MMP collapse, suppressing apoptosis by lowering
the release of cytochrome C, and improving ATP synthesis [158]. This is quite interesting
because there are well-established links between PD and mitochondrial dysfunction [208],
suggesting that rasagiline has multifaceted modes of action as far as the treatment of
PD is concerned. The compound was also highly potent, showing excellent activity at a
concentration range of 10 µM to 10 nM [158]. Rasagiline prevented ∆Ψm collapse [158]
and caused a three-fold increase in ATP level at 10 µM and 1 µM as well as a two-fold
increase at 100 nM and 10 nM [159]. The compound also completely suppressed cell death
at 10 µM and 1 µM by reducing cytochrome c [158,159]. Rasagiline is also currently trialed
for treatment in AD, with results from the proof of concept of the phase II trials recently
published [209].

Melatonin (48), a nocturnal hormone in the brain produced by the pineal gland, is also
approved as Circadin®, a prolonged-release melatonin tablet for the treatment of insomnia,
a common comorbidity of neurological disorders [210,211]. Additionally, a randomized
phase II clinical trial of melatonin in the treatment of AD was successfully completed
in 2013, with patients treated with prolonged-release melatonin showing significantly im-
proved cognitive performance [212]. Melatonin also displayed a significantly better potency
compared to the other compounds, second only to rasagiline at the tested concentration of
500 nM [142]. At 500 nM, melatonin significantly reduced ROS and caspase-3 in porcine
oocytes treated with rotenone to levels comparable to that of the untreated group and
enhanced mitochondrial biogenesis by upregulating PGC1α/SIRT while also increasing
MMP and ATP synthesis [142].

The flavonoids, quercetin (1), and resveratrol (14) display the best coverage for bi-
ological activities discussed. They both have antioxidant potentials, activate the Nrf2
pathway, improve MMP, reduce apoptosis, and improve mitochondrial biogenesis and ATP
synthesis [46,49,76,78]. In addition, Genistein (8) and asiatic acid (38) are by far the most
active of the 52 natural products at the cellular level. Genistein reduced oxidative stress
and improved MMP in a dose-dependent fashion in the concentration range from 10 pM
to 100 nM in cells [66]. Asiatic acid, at 10 nM, caused a 75% decline in ROS generation, a
30–50% decline in pro-apoptotic markers such as Bax, cytochrome c, caspase-3, -6, -8, -9,
and a 40% increase in Bcl-2 level when compared to cells treated with rotenone [125].

3. Conclusions and Future Directions

In this review, we have highlighted the multifaceted roles of the mitochondria as
well as their relevance in health and disease. We enumerated 61 compounds, 52 of which
are natural products, while nine are synthetic compounds. The fact that most of the
compounds discussed are natural products underscores the well-known concept that
nature holds vastly untapped therapeutic potential and will continue to play a critical role
in drug discovery [213]. It cannot be overemphasized that tremendous advances have
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been made in natural product drug discovery. However, attention to natural products has
declined in the past two decades due to challenging isolation and screening techniques,
especially in high-throughput assays against molecular targets [213,214]. Despite these
challenges, the field remains exceptionally viable, with millions of species unexplored and
more metabolites waiting to be discovered [215]. Additionally, there is also the potential to
improve current practices and approaches to natural products-based screening through
innovative technological advances that are less arduous, time-saving, and with larger yields
such as metabolomics, genome mining driven isolation, enhanced microbial culturing and
biosynthetic engineering strategies [213].

Although unsurprising, it is noteworthy that 29 of the 61 compounds discussed in this
article are phenolic compounds, many of which are considered safe and already available as
dietary supplements [216,217]. Notable examples are resveratrol, quercetin, catechin, and
kaempferol, but none of these have become approved commercially available drugs [217].
One major challenge with phenolic compounds is their low bioavailability; hence it is diffi-
cult to reproduce the in vitro biological activities of phenolic compounds in vivo [216–218].
Catechin, for instance, has very low bioavailability when taken orally, with its plasma
concentration reported to be about 50 times lower than the concentration required to repro-
duce levels of bioactivity reported in vitro [218,219]. Studies have shown that absorption
of quercetin in humans after ingestion can be as low as 2% [218], curcumin 5% [220,221],
and resveratrol 70% but with bioavailability at trace levels (less than 1%) [222,223]. Con-
sequently, there is a need for more in-depth studies into the pharmacokinetics of these
compounds with the aim of enhancing their absorption and bioavailability through the
development of more effective drug delivery systems such as micelles, liposomes, and
nanoparticles. There is also the potential of developing analogous compounds through
modification of existing phenolic compounds such that their absorption and bioavailability
are improved without loss of bioactivity. Genistein is potentially a good candidate for
absorption and bioavailability since it has high efficacy and potency in vitro at concen-
trations below nanomolar levels to the tune of 10 pM [66]. This may imply that a low
concentration of genistein is needed to reproduce its activity in vivo without the problem of
low bioavailability and absorption. However, this notion remains a theoretical suggestion
and is subject to further investigations.

All compounds discussed in this review showed antioxidant activities. Hence, it is
evident that alleviation of oxidative stress is the primary mechanism and mode of action
of mitochondrial modulators, followed by inhibition of apoptosis reported in 45 of the
compounds. Only 33 compounds improved ATP synthesis, while 22 improved mitochon-
drial biogenesis, and 24 enhanced the activity of mitochondrial complexes, suggesting
that there is still room further to establish the mitochondria-modulating activities of the
untested compounds.

Another issue worth considering in the search for mitochondrial modulators is the
complexity of the mitochondria and the fact that mitochondria are tissue-specific or-
ganelles [224]. As a consequence of the specificity and heterogeneity of the mitochondria in
different tissues, the mitochondria may show different morphology, distinct biochemical
properties, and varied interactions with other intracellular organelles [224,225]. Notably,
live imaging techniques have been used to show alterations in mitochondrial ROS, calcium
homeostasis, membrane potential, and redox state in mitochondria isolated from different
cells or tissues [226]. Furthermore, mitochondria in various tissues may also display differ-
ent responses and sensitivity to molecules [225]. Hence, it might be interesting to consider
if these molecules retain their biological activities across various cell lines and tissues and
how that might affect the utility of the compounds in treating diseases associated with
mitochondria dysfunction.
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