
Supporting Information for ‘Statistical Power Analysis for

Designing Bulk, Single-Cell, and Spatial Transcriptomics

Experiments: Review, Tutorial, and Perspectives’

Supplementary Material S2. Tutorial for ‘POWSC’ Bioconductor

package

Hyeongseon Jeon1,2,†, Juan Xie1,2,3,†, Yeseul Jeon1,4,5,†, Kyeong Joo Jung6, Arkobrato Gupta1,2,3,
Won Chang7, Dongjun Chung1,2,*

1 Department of Biomedical Informatics, The Ohio State University, Columbus, OH, U.S.A.
2 Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The
Ohio State University, Columbus, OH 43210, U.S.A.
3 The Interdisciplinary PhD program in Biostatistics, The Ohio State University, Columbus, Ohio,
U.S.A.
4 Department of Statistics and Data Science, Yonsei University, Seoul, South Korea
5 Department of Applied Statistics, Yonsei University, Seoul, South Korea
6 Department of Computer Science and Engineering, The Ohio State University, Columbus,
Ohio, U.S.A.
7 Division of Statistics and Data Science, University of Cincinnati, Cincinnati, Ohio, U.S.A.
† These authors contributed equally to this work
* Correspondence: chung.911@osu.edu

DEG identification

POWSC can be used to identify genes whose expression changes under different conditions for

a particular cell type (within cell type) or to identify biomarkers that distinguish cell types

(between cell types). We will provide codes for each scenario.

Template datasets for parameter estimation

POWSC provides two template datasets for parameter estimation: mouse data (GSE29087,

with embryonic fibroblast and embryonic stem cells) and human brain data (GSE67835). The

mouse data consists of 92 cells with two cell types, and the human brain data consists of 57

cells with four cell types(the original study sequenced 466 cells, POWSC just included partial

cells in the package). Both datasets are formatted as SingleCellExperiment objects.

suppressMessages(library(POWSC))

Warning: package 'matrixStats' was built under R version 4.1.3

Warning: package 'S4Vectors' was built under R version 4.1.3

mouse data

#load data

data('es_mef_sce')

quick view the data

table(es_mef_sce@colData$cellTypes)

fibro stemCell

44 48

load human brain data

sce

class: SingleCellExperiment

dim: 1000 57

metadata(0):

assays(1): counts

rownames(1000): STIP1 STS ... LINC00311 PNKP

rowData names(1): geneNames

colnames(57): GSM1658127 GSM1658128 ... GSM1658182 GSM1658183

colData names(3): tissueTypes cellTypes Patients

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

quick view of the data

table(sce@colData$cellTypes)

astrocytes hybrid neurons oligodendrocytes

3 7 35 12

table(sce@colData$tissueTypes)

cortex

57

table(sce@colData$Patients)

AB_S7

57

Besides these two template datasets, users can also provide their pilot data for parameter

estimation. If you want to use your dataset, it should be either a SingleCellExperiment object or

a count matrix.

Scenario 1: Within cell type

For this scenario, we will use the template mouse data. Here we follow the POWSC vignette

and focus on fibroblast cells.

Step 1-1: Parameter estimation

Users need to provide the template dataset or their pilot dataset and then call the Est2Phase

function for parameter estimation.

load template data(used for parameter estimation)

data('es_mef_sce')

explore the data

table(es_mef_sce@colData$cellTypes) # check the cell types

fibro stemCell

44 48

subset the fibro cells

FIBRO <- es_mef_sce[,colData(es_mef_sce)$cellTypes=='fibro']

if intereseted in stem cells:

STEM <- es_mef_sce[,colData(es_mef_sce)$cellTypes=='stemCell']

set.seed(12) # to ensure reproducible results

INDEX <- sample(1:nrow(FIBRO),600) # the original data contains > 10000 genes. For illustrati

on purpose, we randomly select 600 genes.

FIBRO <- FIBRO[INDEX,]

est_paras <- Est2Phase(FIBRO)

str(est_paras)

List of 7

$ exprs : num [1:600, 1:44] 65 0 78 233 121 0 0 0 35 29 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:600] "Ankrd12" "Epas1" "Dnajc7" "r_MT2B" ...

.. ..$: chr [1:44] "fibro_1" "fibro_2" "fibro_3" "fibro_4" ...

$ pi.g : Named num [1:600] 0.705 0.177 0.563 0.811 0.68 ...

..- attr(*, "names")= chr [1:600] "Ankrd12" "Epas1" "Dnajc7" "r_MT2B" ...

$ p0 : Named num [1:44] 0.852 0.866 0.815 0.927 0.947 ...

..- attr(*, "names")= chr [1:44] "fibro_1" "fibro_2" "fibro_3" "fibro_4" ...

$ lambda: Named num [1:44] 1.54 2.25 2.51 3.56 1.46 ...

..- attr(*, "names")= chr [1:44] "fibro_1" "fibro_2" "fibro_3" "fibro_4" ...

$ mu : num [1:600] 11.2 10.4 10.7 10.8 11.5 ...

$ sd : Named num [1:600] 1.35 1.36 1.5 1.76 1.5 ...

..- attr(*, "names")= chr [1:600] "Ankrd12" "Epas1" "Dnajc7" "r_MT2B" ...

$ sf : Named num [1:44] 0.06124 0.01029 0.07039 0.0312 0.0039 ...

..- attr(*, "names")= chr [1:44] "fibro_1" "fibro_2" "fibro_3" "fibro_4" ...

est_paras2 <- Est2Phase(FIBRO,low.prob = 0.1)

The results are provided as seven lists: exprs, pi.g, p0, lambda, mu, sd and sf. exprs is the

count matrix, and the rest correspond to 𝜋𝑔(length g), 𝑝𝑖, 𝜆𝑖, 𝜇𝑔 and 𝜎𝑔, respectively.

Step 1-2: Data simulation

After estimating the key parameters, we are ready to simulate scRNA-seq data. The function to

call is Simulate2SCE.

simData <- Simulate2SCE(n = 200, perDE = 0.05, estParas1 = est_paras, estParas2 = est_para

s)

Four arguments are involved in this function, n is the total number of cells for two conditions;

perDE is the percentage of DE genes, estParas1 and estParas2 are the set of parameters

corresponding to cell type under two conditions, respectively. In this example, we simply adopt

the same set of parameters. If users want to supply a different set of parameters for the two

conditions, they need to make sure that the parameters' dimensions must be the same. i.e.,

estParas1 and estParas2 are obtained from two datasets of the same dimension (same number

of genes and same number of cells).

The output from this function is a list of metrics, including the DE gene indices from Form I and

II DE genes and simulated expression data (stored as SingleCellExperiment object).

check the simulated data

simData$sce@assays@data$counts[1:4,1:4]

[,1] [,2] [,3] [,4]

g1 116 196 46 35

g2 0 123 0 0

g3 0 0 0 0

g4 449 520 0 0

Step 1-3: Power analysis

Next, we are ready to evaluate the power based on simulated data. Users can first call runDE

function to identify DE genes, where they can choose either ‘MAST’ or ‘SC2P’ for DE_method.

Then they call either Power_Cont (for the continuous case, i.e., Phase 2 DE genes) or

Power_Disc (for the discrete case, corresponding to Phase 1 DE genes) for power evaluation.

identify DE genes

user may also use either 'runMAST' or 'runSC2P'to call DE genes, which are just the same as

runDE

DE <- runDE(simData$sce, DE_Method = 'MAST') # another option for DE_method is 'SC2P'

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.37,7.31] (7.31,8.27] (8.27,9.33] (9.33,10.5] (10.5,15]

5.69766 5.69766 5.69766 6.55216 6.55216

Done!

Refitting on reduced model...

Done!

power evaluation, with FDR = 0.1

estPower1 <- Power_Cont(DE,simData, alpha = 0.1, delta = 0.3, strata = c(0,10,20,30,Inf)) # ph

ase II DE

estPower2 <- Power_Disc(DE, simData, alpha = 0.1, delta = 0.1, strata = c(0,0.1,0.2,0.4,0.6,0.8,

1)) # phase I DE

In the Power_Cont function, users can freely modify ‘alpha’, ‘delta’ and ‘strata’ arguments.

Specifically, alpha is the cutoff for the FDR, delta is the effect size, and in this case, it refers to

log fold change. Strata specify how we will stratify the expression levels to report power.

In the Power_Disc function, the arguments are the same as those in Power_Cont, yet the

meanings are slightly different. Specifically, delta is the cutoff for zero ratio change, and strata

specify how we will stratify the zero proportions when reporting power.

The output lists power-related metrics, including marginal and stratified power.

Phase II DE genes

marginal power

estPower1$power.marginal

[1] 0.3076923

stratified power

estPower1$power

[1] 0.1250000 0.0000000 0.0000000 0.4666667

Phase I DE genes

marginal power

estPower2$power.marginal

[1] 0.5789474

#stratified power

estPower2$power

[1] NaN 1.0000000 0.0000000 0.5000000 0.8571429 0.0000000

POWSC provides a single function named runPOWSC that wraps data simulation, DE

identification, and power evaluation steps. Moreover, this function allows users to specify

multiple sample sizes, facilitating easy comparison of power under a different number of cells.

Besides, the output object can be used for plotting (the plot function in POWSC does not accept

output from Power_Disc or Power_Cont).

A demonstration of runPOWSC is provided as follows:

sim_size <- c(100,200,300)

pow_rst <- runPOWSC(sim_size = sim_size,

 per_DE = 0.05,

 est_Paras = est_paras,

 DE_Method = 'MAST',

 Cell_Type = 'PW',

 multi_Prob = NULL,

 alpha = 0.1,

 disc_delta = 0.1,

 cont_delta = 0.3

)

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.17,7.09] (7.09,8.05] (8.05,9.12] (9.12,10.3] (10.3,14.8]

5.274808 5.274808 5.274808 5.274808 6.920211

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.24,7.16] (7.16,8.12] (8.12,9.19] (9.19,10.4] (10.4,14.9]

1.441090 5.613279 5.613279 5.650234 5.721656

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.63,6.67] (6.67,7.5] (7.5,8.43] (8.43,9.45] (9.45,10.6] (10.6,14.8]

6.188738 6.188738 14.462959 14.462959 14.462959 14.462959

Done!

Refitting on reduced model...

Done!

Most arguments have the same meaning as those in the separate functions for the data

simulation, DE identification, and power evaluation. Some specific arguments are Cell_Type:

specifying whether conduct within cell type DE identification (‘PW’) or between cell types DE

identification (‘Multi’) multi_Prob: cell type proportions. Needs to sum up to 1. This argument is

useful when conducting between-cell type DE identification. disc_delta: cutoff for zero ratio

change. cont_delta: cutoff for the log fold change.

The results can be plotted using plot_POWSC.

plot_POWSC(pow_rst,Form = 'II',Cell_Type = 'PW') # for phase II DEGs

plot_POWSC(pow_rst,Form = 'I',Cell_Type = 'PW')

Or we can summarize the results by calling summary_POWSC function. The Form argument

allows users to specify whether they want to show results for phase I DEGs or phase II DEGs.

summary_POWSC(pow_rst, Form= 'I',Cell_Type = 'PW') # phase I DEGs

(0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]

100 0 0.00 0.0000 0.0 0

200 1 0.75 0.1667 0.6 0

300 0 0.00 0.0000 0.0 0

summary_POWSC(pow_rst,Form = 'II', Cell_Type = 'PW') # phase II DEGs

(0,10] (10,20] (20,40] (40,80] (80,160] (160,Inf]

100 0.1250 0.00 0 0.2857 0.2 0.5

200 0.1111 0.25 0 0.6667 0.5 1.0

300 0.0000 0.00 0 0.0000 0.0 0.0

Scenario 2: Between cell types

In this scenario, the interest is to identify DEGs expressed differently between cell types. For

demonstration, we use the human brain data (GSE67835). The template data in POWSC

contains 57 cells, spanning four cell types, and all the cells come from the same patient. Here,

we utilize the most abundant three cell types, namely hybrid, neurons, and oligodendrocytes. A

series of datasets will be simulated, with the underlying cell type proportion being 20% (hybrid),

30% (oligodendrocytes), 50% (neurons), respectively. For each dataset, we will perform

pairwise comparisons and report the power evaluation for each comparison.

Step 2-1: Parameter estimation

load human brain data

sce

class: SingleCellExperiment

dim: 1000 57

metadata(0):

assays(1): counts

rownames(1000): STIP1 STS ... LINC00311 PNKP

rowData names(1): geneNames

colnames(57): GSM1658127 GSM1658128 ... GSM1658182 GSM1658183

colData names(3): tissueTypes cellTypes Patients

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

get expression data

exprs <- assays(sce)$counts # 1000*57 count matrix

estimate parameters for each cell types

col = colData(sce)

estParas_set = NULL

celltypes = c("hybrid","neurons","oligodendrocytes") #

for (cp in celltypes){

 print(cp)

 ix = grep(cp, col$cellTypes)

 tmp_mat = exprs[, ix]

 tmp_paras = Est2Phase(tmp_mat)

 estParas_set[[cp]] = tmp_paras

}

[1] "hybrid"

[1] "neurons"

[1] "oligodendrocytes"

Step 2-2: Data simulation

For data simulation, users need to call SimulateMultiSCEs this time. There are four arguments

in this function, where n specifies the number of total cells for multiple cell types; estParas_set :

a set of estimated parameters for each cell type; multiProb: a vector of cell type proportions. No

need to sum up to 1 (POWSC will normalize); delta1: the minimum of expression change used

to determine the Form I DE; delta2: the minimum of log fold change used to determine the Form

II DE.

sim_size <- 1000 # the number of

cell_per <- c(0.2,0.3,0.5) # cell type proportions

sim <- SimulateMultiSCEs(n = sim_size,

 estParas_set = estParas_set,

 multiProb = cell_per,

 delta1 = 0.1,

 delta2 = 0.5)

The result is a list of the simulated dataset. Each dataset corresponds to a pairwise comparison,

including indices from Form I and II DE genes and simulated expression data (stored as

SingleCellExperiment object).

Step 2-3: Power analysis

For power analysis, we first identify DEGs using runDE function. Then call Power_Disc and

Power_Cont functions to do power analysis for Form I and II DEGs, respectively. The usage of

these functions is the same as before.

DE analysis

DE_rslt = NULL

for (comp in names(sim)){

 tmp = runDE(sim[[comp]]$sce, DE_Method = "MAST")

 DE_rslt[[comp]] = tmp

}

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.17,4.84] (4.84,5.59] (5.59,6.44] (6.44,8.48] (8.48,9.7] (9.7,16.4]

6.289383 6.289383 6.289383 6.289383 6.289383 6.289383

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.43,4.06] (4.06,4.78] (4.78,5.6] (5.6,7.6] (7.6,8.83] (8.83,10.2]

0.9581862 0.9782294 7.2254917 7.2254917 7.2254917 7.2254917

(10.2,15.7]

7.2254917

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.79,4.44] (4.44,5.18] (5.18,6.02] (6.02,8.07] (8.07,9.3] (9.3,10.7]

4.873362 4.873362 7.218169 7.218169 7.218169 7.218169

(10.7,16.2]

7.218169

Done!

Refitting on reduced model...

Done!

#########

######### Summarize the power result

#########

pow_rslt = pow1 = pow2 = pow1_marg = pow2_marg = NULL

TD = CD = NULL

for (comp in names(sim)){

 tmp1 = Power_Disc(DE_rslt[[comp]], sim[[comp]])

 tmp2 = Power_Cont(DE_rslt[[comp]], sim[[comp]])

 TD = c(TD, tmp2$TD); CD = c(CD, tmp2$CD)

 pow1_marg = c(pow1_marg, tmp1$power.marginal)

 pow2_marg = c(pow2_marg, tmp2$power.marginal)

 pow_rslt[[comp]] = list(pow1 = tmp1, pow2 = tmp2)

 pow1 = rbind(pow1, tmp1$power)

 pow2 = rbind(pow2, tmp2$power)

}

######### Demonstrate the result by heatmap

#########

library(RColorBrewer); library(pheatmap)

Warning: package 'RColorBrewer' was built under R version 4.1.3

breaksList = seq(0, 1, by = 0.01)

colors = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(length(breaksList))

dimnames(pow1) = list(names(sim), names(tmp1$CD))

dimnames(pow2) = list(names(sim), names(tmp2$CD))

visualize the results for Form I DEGs

pheatmap(pow1, display_numbers = TRUE, color=colors, show_rownames = TRUE,

 cellwidth = 30, cellheight = 40, legend = TRUE,

 border_color = "grey96", na_col = "grey",

 cluster_row = FALSE, cluster_cols = FALSE,

 breaks = seq(0, 1, 0.01),

 main = "")

visualize the results for Form II DEGs

pheatmap(pow2, display_numbers = TRUE, color=colors, show_rownames = TRUE,

 cellwidth = 30, cellheight = 40, legend = TRUE,

 border_color = "grey96", na_col = "grey",

 cluster_row = FALSE, cluster_cols = FALSE,

 breaks = seq(0, 1, 0.01),

 main = "")

And like the case for within cell type, we can use runPOWSC, which wraps simulation, DE

analysis, and power evaluation, and also allows for comparing different sample sizes.

powsc_rst <- runPOWSC(

 sim_size = c(200, 800, 1000),

 per_DE = 0.05,

 est_Paras = estParas_set,

 DE_Method = "MAST",

 Cell_Type = "Multi",

 multi_Prob = cell_per,

 alpha = 0.1,

 disc_delta = 0.1,

 cont_delta = 0.5

)

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.53,4.92] (4.92,5.77] (5.77,6.75] (6.75,7.86] (7.86,9.13] (9.13,10.6]

4.342940 4.342940 6.327037 6.327037 6.327037 6.327037

(10.6,16.3]

6.663939

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(2.99,4.32] (4.32,5.15] (5.15,7.21] (7.21,8.49] (8.49,9.97] (9.97,15.9]

1.195028 5.412472 5.412472 5.412472 5.412472 6.339718

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.31,4.69] (4.69,5.53] (5.53,7.61] (7.61,8.88] (8.88,10.3] (10.3,16.2]

7.041537 7.041537 7.041537 7.041537 7.041537 7.041537

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.23,4.9] (4.9,5.66] (5.66,7.48] (7.48,8.56] (8.56,9.79] (9.79,16.5]

4.601535 4.601535 4.601535 4.601535 4.601535 4.601535

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.5,4.13] (4.13,4.85] (4.85,5.67] (5.67,7.68] (7.68,8.9] (8.9,10.3]

1.154594 1.154594 6.162667 6.162667 6.162667 6.162667

(10.3,15.8]

6.162667

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.8,4.45] (4.45,5.19] (5.19,6.99] (6.99,8.07] (8.07,9.3] (9.3,10.7]

7.267414 7.267414 7.267414 7.267414 7.267414 7.267414

(10.7,16.1]

7.267414

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(4.28,4.95] (4.95,5.71] (5.71,7.52] (7.52,8.6] (8.6,9.81] (9.81,16.4]

6.383678 6.383678 6.383678 6.383678 6.383678 6.410608

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.29,3.92] (3.92,4.63] (4.63,5.46] (5.46,7.47] (7.47,8.71] (8.71,10.1]

7.240856 7.240856 7.240856 7.240856 7.240856 7.240856

(10.1,15.7]

7.240856

Done!

Refitting on reduced model...

Done!

`fData` has no primerid. I'll make something up.

`cData` has no wellKey. I'll make something up.

Assuming data assay in position 1, with name et is log-transformed.

(3.71,4.36] (4.36,5.1] (5.1,5.94] (5.94,7.98] (7.98,9.22] (9.22,10.6]

6.280485 6.280485 6.280485 6.280485 6.280485 6.280485

(10.6,16.1]

6.280485

Done!

Refitting on reduced model...

Done!

results visualization

plot_POWSC(powsc_rst, Form = 'I', Cell_Type = 'Multi') # Form I DEGs

plot_POWSC(powsc_rst,Form = 'II',Cell_Type = 'Multi') # Form II DEGs

