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Abstract: Carotenoids are naturally occurring pigments that are abundant in the natural world. Due
to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, includ-
ing the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are
presently the main sources for acquiring natural carotenoids. However, due to the swift progress in
metabolic engineering and synthetic biology, along with the continuous and thorough investigation
of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to
produce carotenoids. The identification and manipulation of gene targets that influence the accumu-
lation of the desired products is a crucial challenge in the construction and metabolic regulation of
recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway,
followed by a summary of the methodologies employed in the discovery of gene targets associated
with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown
potential to enhance carotenoid production. To facilitate future research, we categorize these gene
targets based on their capacity to attain elevated levels of carotenoid production.
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1. Introduction

Carotenoids, such as lycopene, β-carotene, and astaxanthin, are synthesized as hy-
drocarbons or their oxygenated derivatives by a variety of organisms, including plants,
fungi, and bacteria [1]. These pigments have garnered significant interest due to their
intriguing properties and, more significantly, their potential advantageous impacts on
human health [2]. Most carotenoids exhibit a C40 carbon skeleton featuring a C22 central
unit comprising nine conjugated double bonds and four side-chain methyl groups. The
presence of an alternating double-bond–single-bond system accounts for the high reac-
tivity of carotenoids [3]. Over the past few years, there has been a significant increase in
interest regarding the production of natural carotenoids through microbial fermentation.
This heightened interest can be attributed primarily to the growth of specific industries,
including agriculture, particularly aquaculture and the poultry industry, as well as the nu-
tritional supplement and food industries. In these sectors, natural carotenoids are utilized
as coloring agents for various products, such as cooked sausages, soft drinks, baked goods,
and pharmaceuticals, and are also incorporated as additives in cosmetics [4]. According to
projections, the global carotenoid market is anticipated to attain a value of USD 2.7 billion
by 2027, reflecting a compound annual growth rate (CAGR) of 5.7% during the forecast
period spanning from 2022 to 2027, up from USD 2.0 billion in 2022 [5]. Consequently, there
has been a significant amount of research carried out on carotenogenic microorganisms like
Haematococcus pluvialis, Xanthophyllomyces dendrorhou, and Blakeslea trispora, with the aim of
achieving large-scale carotenoid production [6].
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At present, the majority of industrially produced carotenoids are synthesized chemi-
cally using multistep processes or extracted using solvents from non-microbial sources [7].
However, the intricate structure of most carotenoids renders their chemical synthesis an
impractical means of production. In contrast, the microbial production of carotenoids offers
an environmentally sustainable alternative to chemical techniques and has the potential to
meet the increasing need for natural carotenoids [8]. Carotenoid genes were introduced
into non-carotenogenic microbes like Escherichia coli, Saccharomyces cerevisiae, and Yarrowia
lipolytica, resulting in the successful production of carotenoids [9]. The manipulation of
microorganisms to produce different carotenoids has become easier due to recent progress
in metabolic engineering and synthetic biology, offering a potentially more sustainable ap-
proach to carotenoid production. These efforts have primarily focused on optimizing native
pathways, introducing foreign genes to enhance metabolic flux, and achieving co-factor
balance [10].

The identification of various gene targets that demonstrate different mechanisms of
action in relation to a desired phenotype is an essential aspect of engineering strains. The
successful enhancement of cellular phenotypes has been achieved through the utilization of
systematic and combinatorial genetic approaches to identify targets for gene knockout and
overexpression. In this review, we summarize the latest advancements in the exploration
and manipulation of gene targets involved in carotenoid biosynthesis (such as lycopene,
β-carotene, and astaxanthin) in recombinant strains (specifically, E. coli, S. cerevisiae, and Y.
lipolytica). We investigate gene targets in the carotenoid synthetic pathway and in other
pathways associated with and outside the carotenoid biosynthetic pathway. However, we
do not address the systematic manipulation of metabolic pathways for strain engineering.
We encourage interested readers to consult a recent review on this topic [11].

2. Biosynthesis of Carotenoids

Two distinct pathways, namely, the well-established mevalonate (MVA) pathway
and the relatively new 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, facilitate
the production of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphos-
phate (DMAPP). These pathways are crucial for synthesizing all carotenoids [12,13]. DXS
catalyzes the condensation of G3P and pyruvate to produce DXP, as shown in Figure 1.
Following that, DXP reductoisomerase (DXR or IspC) facilitates the transformation of
DXP into MEP as part of the MEP pathway. Moreover, a sequential enzymatic path-
way that includes multiple enzymes, specifically, CDP-ME cytidylyltransferase (IspD),
CDP-ME kinase (IspE), MEC synthase (IspF), HMBPP synthase (IspG), and HMBPP
reductase (IspH), is accountable for the gradual transformation of MEP into IPP. This
pathway also involves the corresponding intermediates CDP-ME, CDP-MEP, MEC, and
HMBPP. Afterwards, the enzyme IDI aids in the conversion of IPP to DMAPP through
isomerization [14,15].

The start of the MVA pathway includes the transformation of acetyl coenzyme (acetyl-
CoA) into MVA via three consecutive reactions, facilitated by acetoacetyl-CoA thiolase
(ACCT), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), and HMG-CoA reductase
(HMGR). Following this, MVA is further converted into mevalonate-5-phosphate (MVAP)
by mevalonate kinase (MK). MVAP is converted into IPP through various pathways.
Eukaryotes use a pathway that includes two back-to-back reactions aided by MVAP kinase
(PMK) and MVAPP decarboxylase (MDD), while archaea utilize a pathway comprising
two reactions catalyzed by MVAP decarboxylase (MPD) and isopentenyl phosphate kinase
(IPK) [16,17].
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glucose-6-phosphate dehydrogenase; GND, 6-phosphogluconate dehydrogenase; TKL, transketo-
lase; TAL, transaldolase; DXP, 1-deoxy-D-xylulose-5-phosphate; MEP, methylerythritol phosphate; 
CDP-ME, 4-diphosphocytidyl-2C-methyl-d-erythritol; CDP-MEP, 4-diphosphocytidyl-2C-methyl-
D-erythritol-2-phosphate; MEC, 2C-methyl-D-erythritol-2,4-cyclo-diphosphate; HMBPP, 4-hy-
droxy-3-methyl-2-(E)-butenyl-4-diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; Meva-
lonate-5-P, mevalonate-5-phosphate; Mevalonate-PP, mevalonate-5-diphosphate; IPP, isopentenyl 
diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl pyro-
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HMGR, HMG-CoA reductase; MK, mevalonate kinase; PMK, mevalonate-5-P kinase; PMD, meva-
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Figure 1. Overview of metabolic pathways for carotenoid biosynthesis. HXK, hexokinase; PGI,
phosphoglucose isomerase; PFK, phosphofructokinase; FBPA, fructose-bisphosphate aldolase; ZWF,
glucose-6-phosphate dehydrogenase; GND, 6-phosphogluconate dehydrogenase; TKL, transketo-
lase; TAL, transaldolase; DXP, 1-deoxy-D-xylulose-5-phosphate; MEP, methylerythritol phosphate;
CDP-ME, 4-diphosphocytidyl-2C-methyl-d-erythritol; CDP-MEP, 4-diphosphocytidyl-2C-methyl-D-
erythritol-2-phosphate; MEC, 2C-methyl-D-erythritol-2,4-cyclo-diphosphate; HMBPP, 4-hydroxy-3-
methyl-2-(E)-butenyl-4-diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; Mevalonate-5-P,
mevalonate-5-phosphate; Mevalonate-PP, mevalonate-5-diphosphate; IPP, isopentenyl diphosphate;
DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl pyrophosphate; GGPP,
geranylgeranyl diphosphate; DXS, DXP synthase; DXR, DXP reductoisomerase; IspD, CDP-ME cytidy-
lyltransferase; IspE, CDP-ME kinase; IspF, MEC synthase; IspG, HMBPP synthase; IspH, HMBPP
reductase; ACCT, acetoacetyl-CoA thiolase; HMGS, HMG-CoA synthase; HMGR, HMG-CoA reduc-
tase; MK, mevalonate kinase; PMK, mevalonate-5-P kinase; PMD, mevalonate-PP decarboxylase;
IDI, isopentenyldiphosphate isomerase; IspA, FPP synthase; CrtE, GGPP synthase; CrtB, phytoene
synthase; CrtI, phytoene desaturase; CrtY, lycopene cyclase; CrtW, β-carotene ketolase; CrtZ, β-
carotene 3-hydroxylase; LCYB, lycopene β-cyclases; LCYE, lycopene ε-cyclases; CHYB, carotene
β-hydroxylase; CHYE, carotene ε-hydroxylase; ZEP, zeaxanthin epoxidase.
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After the combination of IPP and DMAPP, the condensation reaction of these two
compounds leads to the creation of geranyl diphosphate (GPP). In E. coli, ispA encodes FPP
synthase, which is responsible for the synthesis of GPP and farnesyl diphosphate (FPP). In
contrast, crtE encodes GGPP synthase, which catalyzes the formation of geranylgeranyl
diphosphate (GGPP). The combination of two GGPP molecules, facilitated by phytoene
synthase produced by crtB, results in the creation of colorless C40 phytoene. Additional
desaturation of phytoene through the action of phytoene desaturase (encoded by crtI) leads
to the formation of lycopene, which exhibits a red hue due to the presence of 11 conjugated
double bonds. To synthesize cyclic carotenoids, lycopene undergoes cyclisation of either
one or both of its end groups. Lycopene β-cyclases (encoded by crtY) enable the enzymatic
process of lycopene cyclisation, leading to the production of β-carotene. α-carotene con-
tains one ε-ring and one β-ring; thus, the conversion of lycopene to α-carotene requires
both lycopene β-cyclases (LCYB) and lycopene ε-cyclases (LCYE). Following that, crtZ
expression leads to β-hydroxylase synthesis, and crtW expression produces ketolase, which
transform β-carotene into zeaxanthin and canthaxanthin, respectively. Through combined
efforts, these enzymes ultimately convert canthaxanthin into astaxanthin. Furthermore,
zeaxanthin epoxidase (ZEP) and carotene β-hydroxylase (CHYB) can convert β-carotene
to violaxanthin. Similarly, lutein is generated from α-carotene by CHYB and carotene
ε-hydroxylase (CHYE) [18,19].

3. Technology for Discovering Novel Gene Targets

Identifying gene targets to enhance a specific phenotype through knockout or over-
expression is a challenging endeavor [20,21]. Historically, knowledge-based empirical
methods have been employed for the straightforward identification of targets within the
MEP, MVA, or local central metabolic pathways that could improve carotenoid produc-
tion [22,23]. Additionally, random approaches led to the discovery of several regulatory
targets using the shotgun method, and co-expression of appY with dxs produced an eight-
fold improvement in lycopene yield [24]. In one study, transposon mutagenesis to identify
gene targets that could be deleted to improve the supply of cofactors or precursors resulted
in a four-fold increase in lycopene yield following the deletion of gdhA, aceE, and yjiD [25].
In another study, the authors examined the potential genes that influence the overall net-
work properties and cellular phenotype by performing a genome-wide stoichiometric flux
balance analysis. A total of seven mutants with single or multiple stoichiometric gene dele-
tions were identified, showing a 37% improvement in lycopene yield in a gdhA/aceE/fdhF
triple-knockout construct [26]. Another group conducted a multi-dimensional search to
identify gene targets, and a 3.7-fold increase in lycopene production was observed by
the deletion of gdhA/aceE/fdhF and the overexpression of yjiD/ycgW [27]. The extensive
scope and nature of intricately interconnected cellular networks have significantly im-
peded the identification of new targets across the entire genome [28]. However, the use of
computer-based in silico modeling methods has made it easier to systematically discover
new genome-scale targets, ultimately improving the efficiency of industrial strains and
boosting the production of various bio-products. Various methods, including the mini-
mization of metabolic adjustment (MOMA), the analysis of flux distribution comparison
(FDCA), and flux scanning based on enforced objective flux (FSEOF), have been utilized to
forecast potential targets for knockout or up-regulation [29–32].

The complex structure of cellular metabolic networks and our limited understanding
of regulatory information related to the targeted chemicals are obstacles in the advance-
ment of effective biosynthetic systems in microorganisms through conventional metabolic
engineering strategies [33]. As a result, metabolic engineering frequently depends on
serendipitous findings to augment chemical production [34]. Considering the inherent
pigmentation of carotenoids, straightforward, color-centric high-throughput screening tech-
niques have been devised to isolate favorable mutants [35]. Consequently, researchers have
developed numerous mutagenic approaches to facilitate carotenoid production. A type
of plasma known as atmospheric and room temperature plasma (ARTP) has the potential
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to induce the production of astaxanthin and allowed the discovery of three specific genes
(CSS1, YBR012W-B, and DAN4) linked to astaxanthin biosynthesis. CSS1 deletion, achieved
by ARTP mutagenesis, led to a 75.6% increase in astaxanthin yield [36]. Adaptive laboratory
evolution (ALE) proved to be a valuable approach to enhance the phenotype or physiolog-
ical attributes of strains [34]. Indeed, researchers successfully identified numerous gene
targets by using ALE; for example, the overexpression of the class E protein gene Did2
led to a 2.1-fold increase in β-carotene yields [37–40]. By employing ALE, our group also
identified two novel gene targets, cho2 and pfk1, whose regulation can increase lycopene
yield by 3.4 and 5.1 times, respectively [41,42]. Different methods for the discovery of novel
gene targets associated with carotenoid synthesis are summarized in Figure 2.
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adaptive laboratory evolution are conducted to identify favorable mutants. Then, whole-genome se-
quencing, RNA-seq sequencing, and reverse metabolic engineering are used to revel the gene targets.

4. Gene Targets in the Carotenoid Synthetic Pathway

Microbial cell factory hosts commonly lack the complete set of genes necessary for
carotenoid biosynthesis. Consequently, the introduction of heterologous genes is necessary
to establish a carotenoid biosynthetic pathway [43]. Wild-type enzymes that have been
identified and screened typically exhibit limited activity, affinity, and expression levels in
heterologous hosts. To enhance carotenoid production, various strategies involving protein
engineering have been devised [44]. It is worth mentioning that the transformation of
DMAPP into GGPP through the action of GGPP synthase was recognized as the pivotal
step that restricts the rate of carotenoid biosynthesis [45]. To enhance the flow of molecules
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along this pathway, researchers have employed directed evolution techniques on GGPP
synthase to augment carotenoid production [46–48].

Similarly, directed evolution was used on a dual-function enzyme consisting of phy-
toene synthase (crtYB) and lycopene cyclase (crtE) [49] and on the individual enzyme
β-carotene ketolase (OBKT) [50], resulting in increased carotenoid production. Further-
more, a mutated form of FPP synthase, which exhibits modified chain-length specificity,
could enhance GGPP synthesis and the production of its downstream metabolites [51]. In
another study, researchers aimed to enhance lycopene and astaxanthin production in S.
cerevisiae by a combining metabolic and protein engineering strategies. Specifically, they
enhanced the expression of CrtE and produced an engineered CrtI mutant (Y160F&N576S),
resulting in a 60% increase in lycopene production [52]. In another study, researchers
increased the activity of the rate-limiting enzyme OBKT through protein engineering, ob-
taining a 34% improvement in astaxanthin production [50]. To address the limitation posed
by lycopene as the sole aggregating precursor and its significant impact on carotenoid
biosynthesis, researchers employed a structure-guided protein engineering approach. They
aimed to mitigate the inhibitory effect of lycopene cyclase through targeted modification.
They developed a variant, namely, CarPR(Y27R), that exhibited complete elimination of
substrate inhibition while maintaining enzymatic activity [53].

5. Gene Targets Involved in the Carotenoid Biosynthetic Pathway
5.1. Central Metabolic Pathway

In the MVA pathway, three molecules of acetyl-CoA are required per isoprene unit.
Acetyl-CoA also serves as the precursor for lactate, acetate, and ethanol; hence, the removal
of these byproducts has the potential to enhance carotenoid production [54]. Furthermore,
acetyl-CoA flux into the MVA pathway can be enhanced by reducing the consumption of
acetyl-CoA in the tricarboxylic acid (TCA) cycle via the elimination of the gene that encodes
a component of 2-oxoglutarate dehydrogenase (SucAB) [55]. In addition, to increase
carotenoid production, techniques like redirecting the pentose phosphate (PP) pathway
to enhance the availability of acetyl-CoA and converting pyruvate directly to acetyl-CoA
have been utilized [56]. Additionally, researchers found that an increase in cytosolic citrate
levels enhanced acetyl-CoA synthesis and subsequently promoted lycopene biosynthesis.
They overexpressed the AMP deaminase-encoding gene (AMPD) to inhibit the activity
of isocitrate dehydrogenase, resulting in an elevated citrate supply and an approximately
three-fold increase in lycopene content [57].

As shown in Figure 3, many gene targets were identified in the PP pathway and TCA
pathway. For instance, both G3P and pyruvate are used in equal amounts as precursors
in the MEP pathway. The biosynthesis of carotenoids can be reduced by limiting either of
these precursors. The conversion of G3P to pyruvate is the main bottleneck in this pathway,
leading to an imbalanced flow towards pyruvate, which is a significant constraint [58].
The authors achieved a 250% increase in lycopene production by overexpressing phos-
phoenolpyruvate (PEP) synthase (PPS) and diverting the flow from pyruvate to G3P [59].
Furthermore, the Entner–Doudoroff (ED) pathway, known for producing equivalent quan-
tities of G3P and pyruvate, can be utilized and enhanced to attain increased carotenoid
synthesis [60]. Moreover, manipulation of the central metabolic pathway, specifically
through the knockout of the zwf gene, significantly enhanced lycopene production by over
130% [61]. Similarly, deletion of the zwf gene increased the β-carotene content in the resul-
tant strain by 32.5% [62]. Conversely, inhibiting the bypass pathway redirected carbon flow
towards lycopene synthesis. Researchers knocked out the aceE and gdhA genes, resulting in
an enhanced carbon metabolic flux towards lycopene production [63]. These above studies
provide evidence for the potential to manipulate the central metabolic pathway to ensure
an adequate supply of precursors for IPP synthesis.
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glucose-6-phosphate dehydrogenase; GND, 6-phosphogluconate dehydrogenase; PGI, glucosephos-
phate isomerase; PGL, 6-phosphogluconolactonase; GdhA, glutamate dehydrogenase; PykFA, pyru-
vate kinases; AceE, pyruvate dehydrogenase.

5.2. MEP and MVA Pathways

As shown in Figure 3, many gene targets were also identified in the MEP pathway. The
combination of pyruvate and G-3-P through the DXS enzyme is widely acknowledged as
the step that limits the rate of the MEP pathway [64]. Consequently, by the overexpression
of dxs, which encodes 1-deoxy-D-xylulose-5-phosphate synthase, in E. coli, carotenoid pro-
duction was enhanced 3.5-fold [65]. Furthermore, dxs overexpression could greatly enhance
β-carotene levels, particularly when optimized for astaxanthin production in E. coli [66].
The overabundance of the IspD (MCT) and IspF (MDS) enzymes in the MEP pathway led
to a significant boost of 71% in the synthesis of astaxanthin [67]. To boost the production of
lycopene, it is crucial to promote the formation of IPP, a product of the MEP/MVA path-
way, and guarantee an ample availability of acetyl-CoA or pyruvate. To accomplish this,
scientists expressed the foreign MEP pathway genes dxs and idi simultaneously in E. coli.
According to their report, there was an increase of 16.5 times in lycopene yield, along with
the upregulation of genes in the downstream isoprenoid pathway [68]. In another study,
the authors used directed co-evolution of the key enzymes (DXS, DXR, and IDI) of the
MEP pathway to enhance lycopene production [69]. IDI is a crucial enzyme in the lycopene
biosynthetic pathway and a significant focus of metabolic engineering. To enhance the activ-
ity of S. cerevisiae IDI, authors employed a directed evolution strategy involving error-prone
polymerase chain reaction (PCR). Subsequent fermentation experiments demonstrated that
the mutant IDI exhibited a 1.8-fold increase in lycopene production [70].

As shown in Figure 4, many gene targets were identified in the MVA pathway. For
example, the addition of the MVA pathway genes mvak1, mvak2, mvaD, and idi resulted
in the provision of the precursors IPP and DMAPP, leading to a significant > three-fold
increase in lycopene production [71]. The MVA bottom pathway facilitates the conversion of
MVA into IPP and DMAPP through four enzymatic steps. When researchers overexpressed
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tHMGR from X. dendrorhous, a truncated form of HMGR that spans the membrane, in S.
cerevisiae, there was a 2.2-fold enhancement in β-carotene production [72]. In Y. lipolytica,
overexpression of the bottleneck genes HMG1 and GGS1 led to a remarkable 10.8-fold
improvement in lycopene yield [73].
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Figure 4. Overview of the gene targets for engineering the regulatory networks to enhance carotenoid
production in yeast. Gene targets are labeled in red. PA, phosphatidicacid; DAG, diacylglycerol;
TAG, triacylglycerol; PS, phosphatidylserine; PE, phosphatidylethanolamine; MMPE, phosphatidyl-
monomethylethanolamine; DMPE, phosphatidyldimethylethanolamine; PC, phosphatidylcholine;
CHO2, phosphatidylethanolamine N-methyltransferase; OPI3, phosphatidyl-N-methylethanolamine
N-methyltransferase; GDA1, Diacylglycerol O-acyltransferase 1; PAH1, phosphatidate phosphatase;
CKI1, choline kinase; PCT1, phosphocholine cytidyltransferase; CPT1, choline phosphotransferase.

5.3. Lipid Pathway

The genes implicated in the formation of lipid droplets have shown promise as viable
targets to enhance the production of hydrophobic products [74]. This is because enlarging
lipid droplets, which serve as natural repositories for neutral lipids, enable the inclusion of
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a greater quantity of lipophilic substances [75]. It has been common practice to manipulate
the genes involved in the synthesis, size determination, and breakdown of lipid droplets
to augment the droplets’ storage capacity and thus enhance carotenoid accumulation [76].
For example, deletion of FLD1, a gene known for its ability to control the dimensions of
lipid droplets, resulted in a 25% increase in lycopene yield [77]. Similarly, overexpression of
ACC1, PHA1, and DGA1, which, respectively, encode acetyl-CoA carboxylase, phosphatide
phosphatase (PAP), and diacylglycerol acyltransferase, led to a 22.7% enhancement in β-
carotene production [78]. It is worth mentioning that increasing lipid droplets by enhancing
lipid synthesis provides a larger storage capacity, although it comes at the cost of redirecting
the metabolic flux from the intended pathway. Hence, it is necessary to ensure appropriate
spatial control. Furthermore, the recent discovery of opi3 and hrd1 as engineering objectives
revealed their ability to enhance astaxanthin production by moderately stimulating lipid
synthesis rather than excessively upregulating it [79].

S. cerevisiae, a yeast that is not oleaginous, has a restricted ability to produce lipophilic
substances like β-carotene. Researchers aimed to enhance the accumulation of β-carotene
in S. cerevisiae by overexpressing the sterol ester synthesis genes ARE1 and ARE2. The
results indicated a 1.5-fold increase in β-carotene yield. Additionally, deletion of PAP genes
(PAH1, DPP1, and LPP1) led to a two-fold increase in β-carotene yield. The combination
of these two strategies resulted in a 2.4-fold improvement in β-carotene production [80].
Y. lipolytica possesses lipid bodies that facilitate the storage of β-carotene, which makes
it a promising candidate for β-carotene production. By overexpressing DID2, β-carotene
production was further enhanced by 260% [81].

6. Gene Targets Outside the Carotenoid Biosynthetic Pathway

The heterologous biosynthesis of target metabolites in a microbial chassis can be influ-
enced by seemingly unrelated genes. Indeed, several other genes outside the carotenoid
pathway affect carotenoid production [82]. As an instance, when SOD1, a gene responsible
for producing superoxide dismutase, was overexpressed in S. cerevisiae, the carotenoid yield
increased by 2.6 times [83]. Lycopene yield was also increased 74.6-fold by the simultane-
ous overexpression of OLE1, which encodes delta-9 fatty acid desaturase, and STB5 [84].
Deletion of the DAN4 gene, which encodes a cell wall mannoprotein, resulted in a 36.3%
increase in astaxanthin production [36]. Similarly, deletion of HRD1 and overexpression
of the transcription factor Pdr3 led to a 61.61% improvement in astaxanthin yield [85].
Furthermore, deletion of YPL062W in S. cerevisiae had advantageous effects on carotenoid
production by redirecting carbon towards the synthesis of carotenoid precursors, namely,
acetyl-CoA and MVA [86].

Plants and bacteria primarily store carotenoids in their cell membranes, and it is
important to note that an overabundance of carotenoids within cells can harm the host or-
ganism [87]. By employing membrane engineering, it is possible to augment the production
and storage capacity of carotenoids (Figure 5) [88]. By overexpressing almgs, plsb, and plsc,
introducing membrane-bending proteins and enhancing membrane synthesis pathways,
the storage capacity for lycopene was augmented 1.32-fold [89]. Additionally, the simul-
taneous manipulation of membrane morphology and the membrane synthesis pathway
exhibited a synergistic impact, resulting in a 2.9-fold enhancement of β-carotene yield [90].
Morphological engineering has also been employed to enhance astaxanthin production [91].
To mitigate the morphological transition in the engineered microorganisms, researchers
deleted CLA4 and MHY1, reverting the mycelium to the yeast form and thereby further aug-
menting β-carotene production by 139% [92]. Due to the intricate interconnections between
engineered metabolic pathways and inherent cellular metabolism, as well as their stringent
regulation, achieving a balanced metabolic flux necessitated the deletion of exg1 and the
overexpression of POS5, ALD6, and ACS (which encodes acetyl-CoA synthetase) [93].
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Figure 5. Overview of a membrane engineering strategy to increase carotenoid production. By
overexpressing membrane-bending protein (almgs), glycerol-3-phosphateacyltransferase (plsb), and
1-acylglycerol-3-phosphate-acyltransferase (plsc), introducing membrane-bending proteins, and
enhancing membrane synthesis pathways, the storage capacity for carotenoid was amplified. The
fusion of β-carotene ketolase (crtW) and hydroxylase (crtZ) with the glycerol channel protein GlpF
facilitated the localization of the enzymes to the membrane, leading to a remarkable enhancement in
carotenoid production. Artificial membrane vesicles (AMVs) were constructed to effectively secrete
hydrophobic molecules.

The toxicity of carotenoid products poses a significant obstacle to microbial carotenoid
production, and the implementation of transporter-mediated carotenoid secretion presents
a promising solution to this issue [94]. Enhancing the capacity of the host organism to store
carotenoids while mitigating the toxic effects of these molecules represents a substantial
challenge. Following their synthesis, carotenoids are expected to associate with lipid
membranes owing to their hydrophobic nature [95]. The localization of enzymes to the
membrane can enhance the likelihood of enzyme–substrate interactions, thereby enhancing
the overall efficiency of substrate conversion. For example, co-localization of crtZ to the E.
coli membrane by utilizing the signal peptide derived from the outer membrane protein
(OmpF) resulted in a significant 60% increase in astaxanthin production [67]. Likewise,
the fusion of crtZ and hydroxylase with the glycerol channel protein GlpF facilitated their
localization to the membrane, leading to a remarkable 215% enhancement in astaxanthin
production [96]. The manipulation of endogenous plasma membrane ATP-binding cassette
(ABC) transporters represents a promising strategy for the efficient efflux of hydrophobic
products in S. cerevisiae [97]. Furthermore, researchers engineered E. coli with a novel
transport system utilizing artificial membrane vesicles to effectively secrete hydrophobic
molecules, resulting in a notable 61% increase in β-carotene production [98]. To enhance
the release rate of lycopene, a highly permeable E. coli strain was created by deleting the lpp,
nlpI, mlaE, and tolA genes [99]. The presence of lipopolysaccharides, which are the primary
constituents of the outer membrane in E. coli, significantly influences bacterial behavior,
particularly outer membrane permeability. Consequently, deletion of the waaC and waaF
genes greatly promoted lycopene production [100]. These examples serve to illustrate the
significance of genes beyond the target carotenoid synthetic pathway and emphasize the
necessity of acknowledging their crucial roles. The above representative gene targets are
listed in Table 1.
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Table 1. Carotenoid production characteristics by recombinant strains using the representative gene
targets discussed in this review.

Types of Gene Target/Organisms Genetic Modifications Phenotypic Changes Reference

In the synthetic pathway

S. cerevisiae Directed evolution of β-carotene ketolase (BKT) 34% improvement in astaxanthin yield [50]

S. cerevisiae Engineered CrtI mutant (Y160F&N576S) 60% increase in lycopene yield [52]

Y. lipolytica Engineered carRP mutant (Y27R) 1441-fold improvement in β-carotene production [53]

Involved in the synthetic
pathway

Y. lipolytica Overexpressed AMP deaminase-encoding gene AMPD approximately 3-fold increase in lycopene content [57]

E. coli Deletion of central carbon metabolic gene zwf 130% enhancement in lycopene production [62]

E. coli Directed evolution of isopentenyl diphosphate
isomerase (IDI) 2.1-fold increase in lycopene yield [70]

S. cerevisia Overexpressed the fatty acid desaturase gene OLE1;
deletion of the Seipin gene FLD1 25% increase in lycopene yield [77]

Y. lipolytica Overexpressed the bottleneck genes HMG1 and GGS1 increased the lycopene content 10.8-fold [73]

S. cerevisia
Overexpression of the sterol ester synthesis genes ARE1
and ARE2; deletion of phosphatidate phosphatase (PAP)
genes (PAH1, DPP1, and LPP1)

2.4-fold increase in β-carotene yield [80]

S. cerevisia Deletion of TGL3, TGL4, and TGL5, encoding TAG lipase
and SE hydrolase 37% improvement in β-carotene yield [78]

S. cerevisiae Deletion of opi3 and hrd1 43.5% improvement in astaxanthin yield [79]

S. cerevisia Deletion of pfk1 5.1-fold increase in lycopene yield [42]

S. cerevisiae Deletion of cho2 3.2-fold increase in lycopene yield [41]

S. cerevisiae Overexpression of SOD1 2.6-fold increase in lycopene yield [83]

Outside the synthetic pathway

S. cerevisia Deletion of the HRD1 gene; overexpression of the
transcription factor gene Pdr3 61.61% higher astaxanthin yield [85]

S. cerevisia Deletion of CSS1 59% improvement in astaxanthin yield [36]

S. cerevisia Deletion of YMRCTy1-3 2.1-fold improvement in astaxanthin yield [38]

E. coli Deletion of waaC 142% higher lycopene yield [100]

E. coli Overexpression of Almgs, plsb, plsc, and dgka 1.32-fold increase in lycopene yield [89]

Y. lipolytica Deletion of CLA4 and MHY1 139% improvement in β-carotene yield [92]

E. coli Overexpression of Almgs, Plsb and plsc 2.9-fold increase in β-carotene yield [90]

S. cerevisia Overexpression of the DID2 gene 2.1-fold increase in β-carotene yield [39]

E. coli Deletion of yadC and overexpression of rnb 32% improvement in astaxanthin yield [33]

S. cerevisia Deletion of YPL062W 146% increase in lycopene yield [86]

E. coli Localization of crtW to the membrane using the signal
peptide of the outer membrane protein OmpF 60% higher astaxanthin production [67]

E. coli Localization of crtW and crtZ to the cell membrane by
the glycerol channel protein GlpF 215% increase in astaxanthin production [96]

E. coli Deletion of gdhA, eutD; overexpression of tpiA, ompE,
and ompN 174% increase in lycopene titer [32]

E. coli Deletion of aceE and gdhA 140.85% increase in lycopene yield [63]

Y. lipolytica Overexpression of the DID2 gene 2.6-fold increase in β-carotene yield [81]

S. cerevisia Deletion of exg1; overexpression of POS5, ALD6, and
acetyl-CoA synthetase, ACS 55% increase in lycopene production [93]

E. coli Deletion of lpp, bamB, uspE, and yggE 82% higher astaxanthin yield [91]

E. coli Deletion of nlpI and tolR; overexpression of AccABCD
and PlsBC 61% increase in β-carotene [98]

E. coli Deletion of lpp, nlpI, mlaE, and tolA 59.34-fold improvement in extracellular
lycopene production [99]

S. cerevisia Overexpression of the ABC transporter gene Snq2 5.80-fold higher extracellular
β-carotene production [97]

7. Gene Targets Involved in Regulatory Networks

As previously stated, most research pertaining to carotenoid biosynthesis has concen-
trated on enhancing the expression of pivotal enzymes that govern the rate of carotenoid
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production, as well as on eliminating or deactivating alternative pathways that compete for
the metabolic flux. Manipulating the regulation of metabolic pathways offers a potential
means of reprogramming metabolic genes to enhance the output of the desired products
by rectifying any imbalances [101]. To illustrate this, the global regulator cAMP recep-
tor protein (CRP) was subjected to transcriptional engineering through the utilization of
error-prone PCR and site-directed mutagenesis, resulting in subtle adjustments to the inter-
connected metabolic pathways and ultimately leading to improved lycopene production.
A mutant strain with an engineered CRP produced approximately 25% more lycopene than
the control strain [102]. Additionally, the manipulation of global regulatory proteins such
as RpoS, AppY, and Crl also increased lycopene production [103]. It follows that the use
of engineered regulators to control gene expression could significantly contribute to the
design of metabolic pathways that produce carotenoid.

8. Bioprocess Engineering

Aside from the development of an efficient upstream process, separation, purifica-
tion, and analysis of carotenoids from microbial biomass play a crucial role. To extract
carotenoids from the microbial biomass, two essential steps must be undertaken: disrup-
tion of the membrane of the microbial cells and extraction of the carotenoids. A variety
of techniques for cell disruption can be found in the literature. The choice of the method
is highly dependent on the specific microorganism used for carotenoid production and
the intended application of the extract [104]. Carotenoids are susceptible to degradation
from light, high temperatures, and solvents. Therefore, it is essential to carefully select
and implement appropriate steps and procedures to ensure their stability. To achieve this,
biomass lyophilization is frequently employed, although it does result in increased time
and costs [105]. Additionally, metabolites and cell slurry are collected for the subsequent
extraction of carotenoids. Despite the high yields obtained with solvent extraction methods,
the chemical compounds commonly used exert harmful effects on human health and the en-
vironment, prompting the scholarly community to explore more environmentally friendly
alternatives. This objective has been achieved using a variety of techniques, including
ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted extraction,
ionic liquid extraction, and supercritical fluid extraction [106].

9. Conclusions and Future Perspectives

This review provides a comprehensive analysis of the current state of microbial
carotenoid research, with a focus on the discovery and engineering of gene targets. Given
their health benefits and natural origin, biotechnologically produced natural carotenoids
are gradually replacing synthetic carotenoids. Hence, the utilization of microorganisms
for carotenoid production holds significant promise and offers opportunities within the
pharmaceutical and food industries. However, there are several processing challenges in
the industrial context, such as the exorbitant expenses associated with the current pro-
duction and extraction technologies, as well as the reliance on substantial quantities of
non-environmentally friendly solvents as extraction agents. We contend that the utilization
of integrated upstream and downstream platforms, coupled with environmentally friendly
solvents and the advancement of inventive and energy-efficient extraction techniques,
will effectively address the existing limitations. Furthermore, advances in scientific re-
search have the potential to enhance the quality and value-added attributes of microbial
carotenoids, rendering this field and market highly appealing to numerous biotechnological
industries.
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