
1

Supplementary Documents

Collagen Structured Hydration

Satyaranjan Biswal, Noam Agmon∗

Institute of Chemistry, Hebrew University of Jerusalem.

Table of contents:

Table S1: Average root mean square deviation (RMSD) for the collagen-like peptide

[(PPG)10]3 in aqueous solution at two different temperatures, 300 K and 250 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Table S2: Comparison of the average end to end distance for five collagen

mimetic peptides, [(PPG)n]3, n = 4, 5, 7, 9, and 10, in aqueous solution at two different

temperatures, 300 K and 250 K.

Table S3: Position of the RDF maxima and minima, r in Å, for water surrounding GLY-CO

or PRO(Y)-CO, in the collagen-like peptide [(PPG)10]3 [AMBER14SB+TIP4P/2005, 62306

WMs, 100 ns simulation (10000 frames)].

Table S4: (A-C). (Capped protein) Solvent accessible surface area (SASA, in Å2) for the bb-

carbonyl oxygen system for the three chains of the collagen-like peptide [(PPG)10]3 at 300 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Table S5: (A-C). (Capped protein) Solvent accessible surface area (SASA, in Å2) for the bb-

carbonyl oxygen system in the thee chains of the collagen-like peptide [(PPG)10]3 at 250 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Figure S1: The time dependence of the root mean square displacement (RMSD) for the

collagen-like peptide [(PPG)10]3 at three different temperatures, 300 K (red) 250 K (black)

and 100 K (blue). [AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000

frames)].

Figure S2: The time dependence of the radius of gyration (Rg) for the collagen-like peptide

[(PPG)10]3 at three different temperatures, 300 K (red) 250 K (black) and 100 K (blue)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Figure S3: The number of water molecules hydrogen-bonded to the backbone carbonyl (bb-

CO) sites in the crystal structure of [(PPG)9]3 (PDB ID -2CUO), as a function of residue

number.

Figure S4: Oxygen–oxygen radial distribution function for liquid water at T = 300 K for the

TIP4P/2005 (red) and TIP3P (black) water models, in comparison with the experimental

results of Skinner et al., J. Chem Phys. 138, 074506 (2013), Fig. 9(a), at T = 298 K.

Figure S5: Comparison of the RDF profiles of water around the carbonyl oxygen of the Gly

and Pro (Y) residues of [(PPG)10]3 for the TIP4P/2005 (red) and TIP3P (black) water models

2

(both with the AMBER14SB FF and 10,000 saved frames), at 300 and 250 K [TIP4P/2005,

62306 WMs; TIP3P, 61801 WMs].

Figure S6: Comparison of the RDF profiles of water around the carbonyl oxygen of the Gly

and Pro (Y) residues of [(PPG)10]3 for two different FFs, CHARMM36m (black) and

AMBER14SB (red), both with the TIP4P/2005 water model [T = 300 K, 62306 WMs, 10000

frames].

Figure S7: Number of water neighbors in the first solvation shell of the Res-CO sites on all

three chains of the [(PPG)10]3 peptide, obtained from integrating g(r) at two different

temperatures, 250 K (black) and 300 K (red) [AMBER14SB+TIP4P/2005, 62306 WMs, 100

ns simulation (10000 frames)]. This figure extends Figure 8.

Figure S8: Number of water neighbors in the first solvation shell of the Res-CO [where Res =

(A) Gly and (B) Pro (Y)] sites on the all three chains of the [(PPG)10]3 peptide, obtained from

integrating g(r) at two different temperatures, 250 K (black) and 300 K (red)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Figure S9: Comparison of the number of water neighbors in the first solvation shell of the

Res-CO sites on all three chains of the [(PPG)10]3 peptide, for the TIP4P/2005 (black line)

and TIP3P (red line) water models, obtained from integrating g(r) from Figure S5.

[TIP4P/2005 (62306 WMs), TIP3P (61801 WMs), 10000 frames].

Figure S10: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains of the [(PPG)10]3 peptide at 250 K (black) and 300 K (red)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation, 10000 frames]. This extends

Figure 9.

Figure S11: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains residues of the [(PPG)10]3 peptide at 250 K (black) and 300 K (red) (A) Gly

and (B) Pro (Y) [AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000

frames)].

Figure S12: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains residues of the [(PPG)10]3 for the TIP3P water model (black) in comparison

with (red) [TIP4P/2005,62306 WMs, TIP3P (61801 WMs), 10000 frames].

Figure S13: Correlation plot of the number of water neighbors with the oxygen carbonyl

SASA values in our simulations of collagen triple-helix at 250 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns trajectory (10000 frames)]. To be

compared with Figure 10 at 300 K.

Tcl Scripts.

Tcl script: S1 Average number of neighbors for each atom in a given selection

Tcl script: S2 Calculate SASA for each residue or atom of a selection

3

Tcl script: S3 Residence time and its distribution

Tcl script: S4 RMSD: Measures average RMSD & std for given selections in a trajectory

Tcl script: S5 RMSF (Root Mean Square Fluctuation) in a trajectory

Tcl script: S6 Radius of gyration (without the mass scaling)

Tcl script: S7 Measures distance, average distance & std, for any given 2 atoms

Table S1: Average root mean square deviation (RMSD) for the collagen-like peptide

[(PPG)10]3 in aqueous solution at two different temperatures, 300 K and 250 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Temperature RMSD [Å]

300 K 1.95

250 K 1.77

100 K 0.27

Table S2: Comparison of the average end to end distance for five collagen

mimetic peptides, [(PPG)n]3, n = 4, 5, 7, 9, and 10, in aqueous solution at two different

temperatures, 300 K and 250 K.

SYSTEM (Average end to

end distance)

[(PPG)9]3

(Standard

deviation)

[(PPG)9]3

(Average end to

end distance)

[(PPG)10]3

(Standard

deviation)

[(PPG)10]3
Chain-A (300 K) 72.71 1.14 81.50 (A) 1.06

Chain-B (300 K) 72.59 1.17 81.49 (A) 1.01

Chain-C (300 K) 72.17 1.23 81.24 (A) 1.08

Chain-A (250 K) 72.64 0.83 81.45 (A) 0.93

Chain-B (250 K) 72.50 1.02 81.47 (A) 0.89

Chain-C (250 K) 72.09 1.00 81.22 (A) 0.97

SYSTEM (Average end to

end distance)

[(PPG)7]3

(Standard

deviation)

[(PPG)7]3

(Average end to

end distance)

[(PPG)5]3

(Standard

deviation)

[(PPG)5]3
Chain-A (300 K) 54.07 1.38 38.98 0.94

Chain-B (300 K) 55.02 1.15 39.06 0.78

Chain-C (300 K) 54.12 1.02 38.49 0.95

Chain-A (250 K) 54.01 0.85 38.40 0.91

Chain-B (250 K) 55.01 0.80 39.02 0.66

Chain-C (250 K) 54.09 0.94 38.51 0.77

4

SYSTEM (Average end to

end distance)

[(PPG)4]3

(Standard

deviation)

[(PPG)4]3

(Average end to

end distance)

[(PPG)3]3

(Standard

deviation)

[(PPG)3]3
Chain-A (300 K) 32.96 0.96 23.07 0.61

Chain-B (300 K) 32.93 0.92 23.11 0.55

Chain-C (300 K) 32.46 1.00 22.76 0.54

Chain-A (250 K) 32.59 0.93 23.06 0.57

Chain-B (250 K) 32.61 0.91 23.02 0.52

Chain-C (250 K) 32.43 0.96 22.75 0.57

Table S3: Position of the RDF maxima and minima, r in Å, for water surrounding GLY-CO or

PRO(Y)-CO, in the collagen-like peptide [(PPG)10]3 [AMBER14SB+TIP4P/2005, 62306

WMs, 100 ns simulation (10000 frames)].

Systems r 1st maxima

[Å]

r 2nd maxima

[Å]

r 1st minima

[Å]

r 2nd minima

[Å]
GLY-CO-- OW (250 K) 2.65 4.35 3.15 5.65

GLY-CO-- OW (300 K) 2.65 4.45 3.25 5.55

PRO(Y)-CO-- OW (250 K) 2.65 4.35 3.25 5.55

PRO(Y)-CO-- OW (300 K) 2.65 4.35 3.25 5.55

Table S4: (A-C). (Capped protein) Solvent accessible surface area (SASA, in Å2) for the bb-

carbonyl oxygen system for the three chains of the collagen-like peptide [(PPG)10]3 at 300 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Table-4A (Chain -A)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly9 Pro10 Pro11 Gly12 Pro13 Pro14 Gly15

SASA 6.99 0.003 13.18 6.61 0.006 13.20 6.31 0.004 13.30 6.23 0.007 13.77 6.32

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.007 14.19 6.78 0.007 14.15 6.98 0.004 13.54 6.82 0.006 13.25 16.73 6.14

 Table-4B (Chain -B)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly9 Pro10 Pro11 Gly12 Pro13 Pro14 Gly15

SASA 6.33 0.03 13.48 6.32 0.004 13.75 6.33 0.004 14.02 6.83 0.005 14.42 6.84

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.004 13.42 7.11 0.003 13.25 6.36 0.005 13.41 6.41 0.012 13.23 6.09 0.42

5

Table-4C (Chain -C)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly19 Pro10 Pro11 Gly12 Pro13 Pro14 Gly16

SASA 6.18 0.010 13.98 6.69 0.005 14.21 6.84 0.003 13.69 7.04 0.003 13.28 6.36

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.008 13.43 6.32 0.003 13.50 6.34 0.005 13.77 6.42 0.005 14.21 6.40 0.052

Table S5: (A-C). (Capped protein) Solvent accessible surface area (SASA, in Å2) for the bb-

carbonyl oxygen system in the thee chains of the collagen-like peptide [(PPG)10]3 at 250 K

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Table-5A (Chain -A)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly9 Pro10 Pro11 Gly12 Pro13 Pro14 Gly15

SASA 6.70 0.266 12.40 6.35 0.001 12.63 6.06 0.003 12.75 6.05 0.001 13.43 6.07

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.004 14.33 6.48 0.001 13.41 6.56 0.001 12.47 6.94 0.003 15.68 6.26 0.58

Table-5B (Chain -B)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly9 Pro10 Pro11 Gly12 Pro13 Pro14 Gly15

SASA 6.08 0.001 11.63 6.08 0.003 13.55 6.35 0.001 15.69 6.76 0.007 13.06 6.52

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.002 14.37 6.22 0.026 13.66 6.84 0.005 12.42 6.74 0.008 12.40 7.02 0.256

6

Table-5C (Chain -C)

Resi Gly3 Pro4 Pro5 Gly6 Pro7 Pro8 Gly9 Pro10 Pro11 Gly12 Pro13 Pro14 Gly15

SASA 6.62 0.032 15.96 6.54 0.001 14.18 6.29 0.004 13.33 5.97 0.003 13.88 6.09

Resi Pro16 Pro17 Gly18 Pro19 Pro20 Gly21 Pro22 Pro23 Gly24 Pro25 Pro26 Gly27 Pro28

SASA 0.001 12.77 5.72 0.002 12.48 6.36 0.007 12.70 6.09 0.004 12.78 6.75 0.038

Figure S1: The time dependence of the root mean square displacement (RMSD) for the

collagen-like peptide [(PPG)10]3 at three different temperatures, 300 K (red) 250 K (black)

and 100 K (blue). [AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000

frames)].

7

Figure S2: The time dependence of the radius of gyration (Rg) for the collagen-like peptide

[(PPG)10]3 at three different temperatures, 300 K (red) 250 K (black) and 100 K (blue)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

Figure S3: The number of water molecules hydrogen-bonded to the backbone carbonyl (bb-

CO) sites in the crystal structure of chain α of [(PPG)9]3 (PDB ID = 2CUO, 1.33 Å

resolution), as a function of residue number. Compare with Figure 5.

8

Figure S4: Oxygen–oxygen radial distribution function for liquid water at T = 300 K for the

TIP4P/2005 (red) and TIP3P (black) water models, in comparison with the experimental

results of LB Skinner et al., J. Chem Phys. 138, 074506 (2013), Fig. 9(a), at T = 298 K.

9

Figure S5: Comparison of the RDF profiles of water around the carbonyl oxygen of the Gly

(A, C) and Pro (Y) residues (B, D) of [(PPG)10]3 for the TIP4P/2005 (red) and TIP3P (black)

water models (both with the AMBER14SB FF and 10,000 saved frames), at 300 K (A, B) and

250 K (C,D) [TIP4P/2005, 62306 WMs; TIP3P, 61801 WMs].

Figure S6: Comparison of the RDF profiles of water around the carbonyl oxygen of the Gly

(A) and Pro (Y) residues (B) of [(PPG)10]3 for two different FFs, CHARMM36m (black) and

AMBER14SB (red), both with the TIP4P/2005 water model [T = 300 K, 62306 WMs, 10000

frames].

10

Figure S7: Number of water neighbors in the first solvation shell of the Res-CO sites on all

three chains of the [(PPG)10]3 peptide, obtained from integrating g(r) at two different

temperatures, 250 K (black) and 300 K (red) [AMBER14SB+TIP4P/2005, 62306 WMs, 100

ns simulation (10000 frames)]. This figure extends Figure 8.

Figure S8: Number of water neighbors in the first solvation shell of the Res-CO [where Res =

(A) Gly and (B) Pro (Y)] sites on the all three chains of the [(PPG)10]3 peptide, obtained from

integrating g(r) at two different temperatures, 250 K (black) and 300 K (red)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000 frames)].

11

Figure S9: Comparison of the number of water neighbors in the first solvation shell of the

Res-CO sites on all three chains of the [(PPG)10]3 peptide, for the TIP4P/2005 (red line) and

TIP3P (black line) water models, obtained from integrating g(r) from Figure S5. [T=300 K,

TIP4P/2005 (62306 WMs), TIP3P (61801 WMs), 10000 frames].

12

Figure S10: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains of the [(PPG)10]3 peptide at 250 K (black) and 300 K (red)

[AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation, 10000 frames]. This extends

Figure 9.

Figure S11: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains residues of the [(PPG)10]3 peptide at 250 K (black) and 300 K (red) (A) Gly

and (B) Pro (Y) [AMBER14SB+TIP4P/2005, 62306 WMs, 100 ns simulation (10000

frames)].

13

Figure S12: Solvent accessible surface area (SASA, in Å2) for the bb-carbonyl oxygen atoms

of all three chains residues of the [(PPG)10]3 for the TIP3P water model (black) in comparison

with (red) [T=300 K, TIP4P/2005 (62306 WMs), TIP3P (61801 WMs), 10000 frames].

Figure S13: Correlation plot of the number of water neighbors with the oxygen carbonyl SASA

values in our simulations of collagen triple-helix at 250 K [AMBER14SB+TIP4P/2005, 62306

WMs, 100 ns trajectory (10000 frames)]. To be compared with Figure 10 at 300 K.

14

Tcl Scripts.

Tcl script: S1. Average number of neighbors for each atom in a given selection

Noam Agmon, HUJI, March 2022

This Tcl script is designed to find and list neighbors of a given selection (using the VMD atom

selection language)

Example for usage: neighbors "resname Gly and name O" "output.dat"

proc neighbors {select output} {

 set outfile [open $output w]

 puts $outfile "index ave-neighbors"

 set sel [atomselect top $select frame 0]

 set selist [$sel list]

get the atomindex from the list and calc its average number of neighbors

 foreach atomindex $selist {

 set neb [neighbor $atomindex]

 puts $outfile "$atomindex $neb"

 puts stdout "$atomindex $neb"

 }

 close $outfile

}

proc neighbor {atomindex} {

Number of water neighbors within r_min of an atom of given index, averaged over all frames

#input: minimum in g(r) for TIP4P water

 set r_min 3.225

#main loop over frames

 set nf [molinfo top get numframes]

 set neighbor 0

 # loop over frames

 for {set i 0} {$i < $nf} {incr i} {

saving the previous index and getting a new one

15

 set oldneighbor $neighbor

 set s2 [atomselect top "(water and oxygen) and within $r_min of index $atomindex" frame $i]

 set neighbor [$s2 num]

This gets the number of water O atoms within r_min of selected atom

 set neighbor [expr {$oldneighbor + $neighbor}]

 }

 set neighbor [expr {($neighbor + 0.0) / $nf}]

Tcl script: S2 Calculate SASA for each residue or atom of a selection

Satyaranjan Biswal,HUJI July 2022

This Tcl script is designed to calculate the Solvent Accessible Surface Area (SASA)

For each residue in a specified selection of a molecular simulation trajectory. (The script is intended

for use with VMD software)

The output, which includes the average SASA for each residue, is written to a file.

Example usage: sasa_resid "resname GLY” (For each residue)

Example usage: sasa_resid "resname GLY and name O” (For each residue specified atom)

proc sasa {selection} {

selection

set fr [open "SASA_$selection.dat" w]

set nf [molinfo top get numframes]

puts $fr "\n Total Frames found : $nf \n"

 set prt [atomselect top "protein"]

 set allsel [atomselect top $selection]

 # get list of residues

 set sellist [lsort -integer -unique [$allsel get index]]

 #set sellist [lsort -integer -unique [$allsel get resid]]

 ##setting sasa for every residue to zero

 foreach r $sellist {

 set resSASA($r) 0.0

16

#puts "setting 0.0 for residue $r"

 }

 for {set i 0} {$i <= $nf} {incr i} {

 $allsel frame $i

 $prt frame $i

 #$sellist frame $i

 $allsel update

 $prt update

 #$sellist update

 foreach r $sellist {

 #set sel1 [atomselect top "resid $r" frame $i]

 set sel1 [atomselect top "index $r" frame $i]

 set rsasa [measure sasa 1.4 $prt -restrict $sel1]

 #set user value for this frame

 #set rsasa [measure sasa 1.4 $sel1]

 #$sel1 set user $rsasa

 #$sel1 delete

 set sum 0.0

 foreach {tmp sum} [split [array get resSASA $r]] break

 #puts "residue $r, sasa; $rsasa, old: $sum"

 set resSASA($r) [expr { $sum + $rsasa }]

puts "$r resSASA is $resSASA($r)"

 } }

 foreach r $sellist {

 foreach {tmp sum} [split [array get resSASA $r]] break

puts $fr "$r, sasa: $sum"

}

 #set AvgSASA 0.0

 foreach r $sellist {

 foreach {tmp sum} [split [array get resSASA $r]] break

 #-----------Avg over trajectory

 set AvgSASA($r) [expr $sum/$nf]

17

 #puts $fr "Resid $r, Avg SASA: $AvgSASA($r)"

 #puts $fr " $selection , Resid_atomic_index $r, Avg SASA: $AvgSASA($r)"

 #puts $fr " Resid_atomic_index $r, Avg SASA: $AvgSASA($r)"

 puts $fr " index $r, Avg SASA: $AvgSASA($r)"

 }

 puts $fr "###"

 close $fr }

Tcl script: S3 Residence time and its distribution:

Noam Agmon, HUJI, March 2022, November 2022

(a) Residence time (in frames) of the closest particle from a selection (sel)

on a given atomic site (atom) that hosts a single particle at a time

replacement of a residing particle for a single frame is ignored

output is a list of atoms and their residence times, "$index $res"

(b) The residence time distribution in the interval [0, res_max], binned into N_d bins, where for the

division: |---|---| we have N_d = 2

When averaging over several trajectories, the script should be executed with the same res-max and

N_d values.

sample input:

residence-d "resid 6 and name O" "water and name OW and within 3.5 of resid 6" "res.out"

"res_max" "N_d" "dist.out"

Based on distance.tcl in VMD tutorial.pdf

proc residence-d {atom sel output1 res_max N_d output2} {

#main loop over frames

 set nf [molinfo top get numframes]

Part (a) getting the residence time array and its average

 set outfile [open $output1 w]

 puts $outfile "atom = $atom , sel = $sel\n"

 #setting the stage at frame 1 of the loop, skipping frame 0

 set s1 [atomselect top "$atom" frame 1]

 set s2 [atomselect top "$sel" frame 1]

 set mindex [mind1 $s1 $s2]

18

 set res 1

 set total 0

 # An empty array to hold the residence time vector:

 array set resvec {}

 # The initial length of the array

 set nres 0

 # loop over frames, checking at each step whether

 # the index of the closest particle has changed

 for {set i 2} {$i < $nf} {incr i} {

 set s1 [atomselect top "$atom" frame $i]

 set s2 [atomselect top "$sel" frame $i]

 # saving the previous index and getting a new one

 set index $mindex

 set mindex [mind1 $s1 $s2]

 if {$mindex == $index} {

 #increase the residence time by one unit frame and continues with the next for iteration

 incr res

 continue

 }

 # we get here only if the index changed in frame i

 # we check if it reverts in next frame, i+1

 set i1 [expr {$i + 1}]

 set s1 [atomselect top "$atom" frame $i1]

 set s2 [atomselect top "$sel" frame $i1]

 set mindex1 [mind1 $s1 $s2]

 if {$mindex1 == $index} {

 incr res

 set mindex $index

 # so a single frame change in index of the resident particle is ignored

 # else write "$index $res" and restart the count for a new residence event

 } else {

 puts $outfile "$index $res"

19

 set total [expr {$total + $res }]

 incr nres

 set resvec($nres) $res

 puts "$nres $index $res $total"

 set res 1

 }

 }

 set meanres [expr {1.0 * $total / $nres}]

 puts $outfile "total = $total meanrestime = $meanres number restimes = $nres"

 close $outfile

 #################

Part (b) calculate the restime distribution, in a new file

 set outfile [open $output2 w]

 #determine binsize, dr

 set dr [expr {1.0 * $res_max / $N_d }]

 puts $outfile "atom = $atom , sel = $sel , res_max = $res_max , N_d = $N_d, dr = $dr"

 puts "dr $dr"

 # set elements of the distribution array to zero

 for {set k 0} {$k < $N_d} {incr k} {

 set distribution($k) 0

 }

 # The distribution is obtained by looping over previously read frames

 # adding 1 to bin k if resvec(k) is within the k'th bin

 for {set i 1} {$i <= $nres} {incr i} {

 set k [expr int($resvec($i) / $dr)]

 incr distribution($k)

 }

 # Write the distribution to file

 for {set k 0} {$k < $N_d} {incr k} {

 #puts $outfile "[expr ($k + 0.5) * $dr] $distribution($k)"

 }

 close $outfile

20

 parray distribution

 puts "done"

}

A procedure for obtaining the index (mindex) of the closest particle

(from a selection, sel) to a given atom

proc mind1 {atom sel} {

#Get the atom's coordinates

set ax [$atom get x]

set ay [$atom get y]

set az [$atom get z]

#Get the selection's list of coordinates

set sx [$sel get x]

set sy [$sel get y]

set sz [$sel get z]

set si [$sel get index]

#Set the minimal distance to the 1st atom in the selection

set minx [lindex $sx 0]

set miny [lindex $sy 0]

set minz [lindex $sz 0]

set mindex [lindex $si 0]

set mind [expr {sqrt (($ax - $minx) ** 2 + ($ay - $miny) ** 2 + ($az - $minz) ** 2)}]

#Iterate over the selection's list of coordinates

foreach x $sx y $sy z $sz index $si {

set distance [expr {sqrt (($ax - $x) ** 2 + ($ay - $y) ** 2 + ($az - $z) ** 2)}]

if {$distance < $mind} {

set mind $distance

set mindex $index }

}

Output the selection index achieving minimal distance from atom

return $mindex

}

21

Tcl script: S4 RMSD: Measures average RMSD & std for given selections in a

trajectory

Satyaranjan Biswal,HUJI July 2022

This Tcl script is designed to calculate the Root Mean Square Deviation (RMSD). (The script is

intended for use with VMD software)

This script returns both the average RMSD and its standard deviation across the trajectory.

Example usage: rmsd "backbone" "top" 1

Example usage: rmsd "protein" "top" "top"

proc rmsd {sel molid1 molid2} {

 # Get the number of frames in the first molecule

 set n [molinfo $molid1 get numframes]

 # Open the output file for writing

 set outfile [open "RMSD.dat" w]

 # Print input information to the output file and console

 puts $outfile "Given Input:\n=================="

 puts $outfile "Selection: $sel\nMolecule ID 1: $molid1\nMolecule ID 2: $molid2\n"

 puts $outfile "Total Frames: $n\n\n"

 puts "Given Input:\n=================="

 puts "Selection: $sel\nMolecule ID 1: $molid1\nMolecule ID 2: $molid2\n"

 puts "Total Frames: $n\n\n"

 # Initialize variables

 set sum 0

 set rmsd_list {}

 # Cycle through each frame

 for {set i 0} {$i < $n} {incr i} {

 # Select atoms in the two molecules

 set selA [atomselect $molid1 $sel frame $i]

 set selB [atomselect $molid2 $sel frame $i]

22

 # Align molecule B onto molecule A using the 'measure fit' command

 set transform_matrx [measure fit $selB $selA]

 $selB move $transform_matrx

 # Calculate the RMSD of the aligned molecules

 set rmsdAB [measure rmsd $selA $selB weight mass]

 # Print the RMSD value for the current frame to the output file and console

 puts [format "Frame: %5d RMSD: %7.2f" $i $rmsdAB]

 puts $outfile [format " %5d %7.2f" $i $rmsdAB]

 # Add the RMSD value to the list for later use

 lappend rmsd_list $rmsdAB

 # Accumulate the RMSD values for calculating the average RMSD

 set sum [expr $sum + $rmsdAB]

 }

 # Calculate the average RMSD

 set avg_rmsd [expr $sum / $n]

 # Calculate the standard deviation of the RMSD values

 set sum_of_sq_diffs 0

 foreach rmsd $rmsd_list {

 set diff [expr $rmsd - $avg_rmsd]

 set sum_of_sq_diffs [expr $sum_of_sq_diffs + $diff*$diff]

 }

 set std_rmsd [expr sqrt($sum_of_sq_diffs / ($n-1))]

 # Print the average RMSD, standard deviation, and closing messages to the output file and console

 puts [format "\n\nAvg. RMSD: %7.2f" $avg_rmsd]

 puts [format "Std. Deviation: %7.2f\n\n" $std_rmsd]

 puts "Data has been saved to RMSD.dat."

 puts $outfile [format "\n\nAvg. RMSD: %7.2f" $avg_rmsd]

 puts $outfile

23

Tcl script: S5 RMSF: Measures RMSF (Root Mean Square Fluctuation) in a trajectory

Satyaranjan Biswal,HUJI July 2022

This Tcl script is designed to calculate the Root Mean Square Fluctuation (RMSF). (The script is

intended for use with VMD software)

RMSF provides a measure of the positional fluctuation of individual atoms (relative to a reference

structure over a simulation).

Example usage: rmsf "name CA and protein" "1" (e.g., the C-alpha atoms of a protein and specify

the molecule ID for which RMSF should be computed).

proc rmsf {sel molid} {

 # Get the number of frames in the molecule

 set n [molinfo $molid get numframes]

 # Create a list to hold the squared deviations for each atom

 set sqdevs [list]

 # Cycle through each frame

 for {set i 0} {$i < $n} {incr i} {

 # Select atoms in the molecule for the current frame

 set selA [atomselect $molid $sel frame $i]

 # Calculate the center of mass for the selected atoms

 set comA [measure center $selA]

 # Cycle through each selected atom

 foreach atom [$selA get index] {

 # Get the coordinates of the atom in the current frame

 set coords [lindex [$molid get coords $atom] $i]

 # Calculate the squared deviation of the atom's position from the center of mass

 set sqdev [expr {pow($coords(0)-$comA(0),2) + pow($coords(1)-$comA(1),2) +

pow($coords(2)-$comA(2),2)}]

 # Add the squared deviation to the list

24

 lappend sqdevs $sqdev

 }

 }

 # Calculate the average squared deviation for each atom

 set avg_sqdevs [lmap s [lrange $sqdevs 0 end] {expr {double($s)/$n}}]

 # Calculate the RMSF for each atom

 set rmsfs [lmap s $avg_sqdevs {expr {sqrt($s)}}]

 # Return the list of RMSF values

 return $rmsfs

}

Input: set sel "name CA and protein"

set molid 1

set rmsfs [rmsf $sel $molid]

Tcl script: S6 Radius of gyration (without the mass scaling)

Satyaranjan Biswal,huji Feb 2023

This Tcl script calculates the radius of gyration for a molecular simulation trajectory using VMD

software. (without atomic mass scaling)

Example usage:gyration "protein"

proc gyration {sel_string} {

 # Open an output file named "gyration.out" in write mode.

 set outfile [open "gyration.out" w]

 # Retrieve the number of frames in the trajectory of the top molecule.

 set nf [molinfo top get numframes]

 # Initialize variables to store the cumulative radius of gyration and a list to store the radius of

gyration for each frame.

 set total_Rg 0

25

 set Rg_list {}

 # Select the atoms as specified by the user's input selection string.

 set sel [atomselect top $sel_string]

 # Loop through every other frame in the trajectory.

 for {set i 0} {$i < $nf} {incr i 2} {

 # Update the frame for the selected atoms.

 $sel frame $i

 # Compute the radius of gyration for the current frame.

 set Rg [measure rgyr $sel]

 # Write the frame number and the computed radius of gyration to the output file.

 puts $outfile "$i,$Rg"

 # Store the computed radius of gyration in the Rg_list for later calculations.

 lappend Rg_list $Rg

 # Update the cumulative radius of gyration.

 set total_Rg [expr {$total_Rg + $Rg}]

 }

 # Compute the average radius of gyration over the frames.

 set avg_Rg [expr {$total_Rg / ($nf / 2)}]

 # Calculate the standard deviation of the radius of gyration values.

 set sum_of_sq_diffs 0

 foreach Rg $Rg_list {

 set diff [expr {$Rg - $avg_Rg}]

 set sum_of_sq_diffs [expr {$sum_of_sq_diffs + $diff*$diff}]

 }

26

 set std_Rg [expr {sqrt($sum_of_sq_diffs / ($nf/2 - 1))}]

 # Write the average radius of gyration and its standard deviation to the output file.

 puts $outfile "Average radius of gyration: $avg_Rg"

 puts $outfile "Standard deviation: $std_Rg"

 # Notify the user that the data has been saved to the output file.

 puts "Data has been saved to gyration.out."

 # Close the output file.

 close $outfile

}

Tcl script: S7 Measures distance, average distance & std, for any given 2 atoms

Satyaranjan Biswal,HUJI Feb 2023

Tcl script to measure the distance, average distance, and standard deviation between any given two

atoms in a molecular simulation trajectory using VMD software.

The script is particularly useful for tracking the end-to-end distance of proteins during a simulation

by specifying the indices of the first and last atoms of each protein chain.

Procedure Usage:calc_distance <selection1> <selection2>

Where <selection1> and <selection2> are atom selection strings (e.g., "resid 3 and name CA").

The function will calculate the distance between these two atoms for each frame in the trajectory.

Example usage:# To compute the distance between the C-alpha atoms of residues 2 and 30 across a

trajectory: calc_distance "resid 2 and name CA" "resid 29 and name CA"

proc calc_distance {sel1 sel2} {

 # Select the two atoms of interest

 set atom1 [atomselect top $sel1]

 set atom2 [atomselect top $sel2]

 # Get the number of frames in the trajectory

 set n [molinfo top get numframes]

 # Open the output file for writing

 set outfile [open "distances.dat" w]

27

 # Calculate the distance between the two atoms for each frame and write to output file

 set dist_list {}

 for {set i 0} {$i < $n} {incr i} {

 # Set the current frame of the atom selections

 $atom1 frame $i

 $atom2 frame $i

 # Calculate the distance between the two atoms

 set dist [measure bond $atom1 $atom2]

 # Write the frame number and distance to the output file

 puts $outfile "$i $dist"

 # Add the distance to the list for calculating the standard deviation

 lappend dist_list $dist

 }

 # Close the output file

 close $outfile

 # Calculate the average and standard deviation of the distances

 set avg_dist [expr {[tcl::mathop::sum $dist_list] / [llength $dist_list]}]

 set sum_of_sq_diffs 0

 foreach dist $dist_list {

 set diff [expr {$dist - $avg_dist}]

 set sum_of_sq_diffs [expr {$sum_of_sq_diffs + $diff*$diff}]

 }

 set std_dist [expr {sqrt($sum_of_sq_diffs / [expr [llength $dist_list] - 1])}]

 # Delete the atom selections

 $atom1 delete

 $atom2 delete

 # Return the average and standard deviation of the distances

 return [list $avg_dist $std_dist]

}

Print the results

puts "Average distance: [lindex $result 0] angstroms"

puts "Standard deviation: [lindex $result 1] angstroms"

