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Abstract: Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these
mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of
Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor
cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-
family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by
Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential
role in many cellular signaling pathways. Thus, we cover the available information on the role
and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM
by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-
dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications
of these systems to identify mechanisms that could be targeted for the therapeutic treatment of
human cancers.
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1. Introduction

Peyton Rous [1] was a medical doctor at the Rockefeller Institute for Medical Research
in New York who discovered the transmissibility of a chicken sarcoma [2] due to infection
by what later was named the Rous sarcoma virus, representing the first example of a cancer
produced by a viral infection. The oncogenic potential of this virus is due to the expression
of the tyrosine kinase v-Src (viral Src), which is constitutively active. The discovery of this
chicken oncogene was followed by the discovery of its human homologue, the cellular
proto-oncogene c-Src (cellular sarcoma kinase), and other oncogenes and viruses able to
produce cancer, a history that has been masterfully described in an excellent book by
Gregory J. Morgan [3].

1.1. c-Src/v-Src

The structural organization of c-Src shows that, at its N-terminal region, it contains a
domain denoted SH4 (Src homology 4), which has a sequence that is myristoylated due to its
attachment to the plasma membrane. This domain is followed by a unique domain specific
to each Src-family kinase (SFK) member and the SH3 (Src homology 3) domain, a proline-
rich region involved in protein–protein interactions, allowing interactions with other
proteins and with the SH2 (Src homology 2) domain of the protein, for maintaining c-Src in
a close, inactive conformation (see Figure 1B). The SH3 domain is followed by an SH3–SH2
linker and the SH2 domain, which recognizes and binds phospho-Tyr residues in different
proteins, and importantly, with the auto-inhibitory site phospho-Tyr530 at its C-terminal
tail, which is phosphorylated by CSK (C-terminal Src kinase), further maintaining c-Src
in its close, inactive conformation. Following the SH2 domain is the SH1 (Src homology
1) domain, which contains the catalytic tyrosine kinase site and the auto-phosphorylation
residue Tyr419. The linker region between the SH2–SH1 domains also interacts with the SH3
domain, while in its close inactive locked conformation. Upon Tyr419 auto-phosphorylation
and the dephosphorylation of phospho-Tyr530, most likely by receptor-like protein tyrosine

Biomolecules 2023, 13, 1739. https://doi.org/10.3390/biom13121739 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13121739
https://doi.org/10.3390/biom13121739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-4200-374X
https://doi.org/10.3390/biom13121739
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13121739?type=check_update&version=2


Biomolecules 2023, 13, 1739 2 of 24

phosphatase-α (as reviewed in [4]), c-Src adopts an open, fully active conformation, as
shown in Figure 1C (and as reviewed in [5]). The crystal structure of human c-Src was
previously determined [6,7] (see Figure 1A), and the mechanism for c-Src-mediated Ca2+

mobilization and the role of CaM and phospho-Tyr-CaM in the process of c-Src activation
are depicted in Figure 1C,D.
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Figure 1. c-Src activation and Ca2+/CaM signaling. (A) The figure shows the crystal structure derived
from X-ray diffraction at 1.91 Å resolution of unphosphorylated human c-Src in complex with a
desmethyl analog of the antileukemia drug Imatinib [8]. The structure (SMTL ID: 1y57.1), depicted
in a rainbow color code going from the N-terminus (blue) to the C-terminus (red), was built using
the UniProt SWISS-MODEL database from Biozentrum, University of Basel, feeding the system with
the amino acid sequences obtained from the NCBI (National Center for Biotechnology Information).
Five sulfate ions not bound to c-Src are also shown. (B) The drawing (adapted in part from [7])
shows a model of the close, inactive conformation of c-Src, where phospho-Tyr527, phosphorylated
by C-terminal Src kinase (CSK), binds to the SH2 domain, facilitating the interaction between the
SH2/SH3 domains and the interaction of the linker SH2/N-lobe of the tyrosine kinase domain (TK
N-lobe) with the SH3 domain. (C) The drawing also shows the open, active conformation of c-Src
upon dephosphorylation of Tyr527 and interaction of the SH3 domain with Src-activators containing
proline-rich domains [9], exposing the activation loop (A-loop) with auto-phosphorylated Tyr416.
Active c-Src is able to phosphorylate apo-calmodulin at Tyr99/138 (P-apo-CaM) [10], which in turn
binds to the SH2 domain (not shown), and also upon Ca2+-binding to phospho-CaM (P-Ca2+/CaM).
(D) c-Src-mediated Ca2+ mobilization and formation of the Ca2+/CaM complex occurs upon cytosolic
Ca2+ increase after its release from the endoplasmic reticulum (ER) via the inositol-1,4,5-trisphosphate
receptor (IP3R), followed by Ca2+ entry from the extracellular medium via the Ca2+-channel Orai1
upon depletion of the ER by the Ca2+ sensor stromal interaction molecule 1 (STIM1), which interacts
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with Orai1 upon by changing its conformation and extending its distal segment. For more details, see
text. The structures of Xenopus laevis apo-CaM (NCBI ID: 1CFD) [11], identical to human CaM; human
Ca2+/CaM (NCBI ID: 1CLL) [12]; human IP3R1 (UniProt ID: Q14643) [13]; Drosophila melanogaster
Orai1 (UniProt ID: Q96D31), with 73% identity to human Orai1 [14]; rat CSK (NCBI ID: 1K9A) [15];
and STIM1 (UniProt ID: AF-Q13586-F1) [16,17] were taken from NCBI and UniProt SWISS-MODEL
databases. Cyt, cytosol; Ext, extracellular medium; Lum, endoplasmic reticulum lumen; Myr, myristic
acid; PM, plasma membrane.

The implication of c-Src in oncogenesis has been amply studied, where the overexpres-
sion and the increased activity of this kinase are common findingss in many human cancers,
which exert a prominent role in increased cell proliferation, epithelial-to-mesenchymal
transition (EMT), invasiveness, and metastatic dissemination, among other processes (as
reviewed in [18–20]). The amino acid sequences of the human proto-oncogene c-Src and
the Rous sarcoma virus v-Src differ in 45 amino acid residues. These changes mostly affect
the N- and C-terminal regions of the proteins (see Section 2). In addition, c-Src has 10 extra
residues that are missing in v-Src, particularly 7 of them at its C-terminus, including the
auto-inhibitory Tyr530, what results in the constitutive activation of the latter.

1.2. Other Src-Family Kinases

In addition to c-Src, the family of Src-related kinases are formed by the following
cellular members: Lck (lymphocyte-specific protein tyrosine kinase), Hck (hemopoietic
cell kinase), Fyn (v-Fgr/v-Yes-related tyrosine kinase), Blk (B lymphocyte kinase), Lyn
(Lck/Yes-related novel tyrosine kinase), Fgr (Gardner–Rasheed feline sarcoma viral onco-
gene homolog), Yes (Yamaguchi sarcoma viral oncogene homolog), and Yrk (Yes-related
kinase). All these non-receptor tyrosine kinases play a role in multiple cellular functions,
and they have prominent roles in cancer biology (as reviewed in [21–24]). The sequences of
the genes in these proteins have further confirmed their similarities.

In addition, the oncogenic viral variants v-Fgr and v-Yes also play important roles in
oncogenesis. The similarity of these oncogenic viral proteins was first suspected when an
inhibitory monoclonal antibody raised against v-Src also inhibited the activity of v-Fgr and
v-Yes [25]. Figure 2 shows that human c-Fgr presents more variations than human c-Yes,
with respect to their corresponding viral variants, particularly at their N-terminus. Also, the
sequences to the putative IQ-like CaM-BDs and Ca2+/CaM-BD of c-Src differ from those of
homologous sequences in c-Fgr and c-Yes. In addition, the sequences show a few changes
between the cellular and viral forms of these kinases. There are other structure-related
tyrosine kinases formed by the Brk-family, comprising Brk (breast tumor kinase), Srm
(Src-related kinase with no tyrosine-regulatory and myristoylation sites), Frk (Fyn-related
kinase), and Bsk (β-cells Src kinase) (see review [26]).
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Figure 2. Comparison of the amino acid sequences of human c-Fgr and c-Yes with their viral coun-
terparts. The plot shows the alignment of the amino acid sequences of human c-Fgr (P09769.2) [27]
with Gardner–Rasheed feline sarcoma virus v-Fgr (P00544.1) [28] and human c-Yes (P07947) [29] with
avian sarcoma virus Y73 v-Yes (P00527.2) [30], as prepared with the Cobalt program from the NCBI.
Identical residues are marked in red and variable residues in blue. Extra residues in either protein
are marked in gray. The sequences of c-Fgr/v-Fgr and c-Yes/v-Yes, which are homologous to the
putative IQ-like calmodulin-binding domains (IQ-like CaM-BD) and Ca2+/CaM-binding domain
(Ca2+/CaM-BD) of c-Src/v-Src, are marked with green boxes.

In previous reviews, we described the connection between Src activation and functions
and Ca2+ signaling in normal cells [26,31]. In the present article, we concentrated on studies
describing the interplay between c-Src, along with other SFKs, with Ca2+ signaling in tumor
cells, and cells transformed by the oncogenic v-Src. Also, in this review, we covered the
function of Ca2+-binding proteins, such as calmodulin (CaM), when acting on c-Src/v-Src,
as this Ca2+-sensor protein directly binds to and regulates these tyrosine kinases. Finally,
we considered the potential action of CaM-regulated kinases on c-Src and other SFKs,
as well.
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2. Direct Interaction of CaM with c-Src and v-Src

CaM is a small Ca2+ sensor protein that, in humans and other mammalians, is coded
by three distinct genes localized in different chromosomes that yield distinct mRNAs,
differentially expressed, but are then translated into a protein with identical amino acid
sequence [32]. This protein regulates more than 300 CaM-binding proteins [33–35], control-
ling a plethora of signaling pathways and many cellular functions, in normal and tumor
cells (as reviewed in [36]).

2.1. c-Src Activation by Ca2+-Dependent CaM-Binding

CaM was shown to interact with c-Src. First, the isolation of c-Src from human
pancreatic tumor cells was demonstrated by CaM-affinity chromatography in a Ca2+-
dependent manner [37]. In that work, the CaM/c-Src interaction site had been predicted
to be the sequence 204KHYKIRKLDSGGF214 (residues 204–214 corresponded to the green
fluorescent protein (GST)-tagged protein), located in the SH2 domain, and the authors
indicated that this sequence fit a basic 1–5–10 CaM-binding motif that had the following
general sequence: (RK)(RK)(RK)(FILVW)XXX(FILV)XXXX(FILW). However, the mutation
of that sequence only prevented CaM binding, in part [37], suggesting that additional CaM-
binding sites could exist in c-Src. A study screening compound libraries was conducted to
identify compounds that bind to this CaM-binding site, thus preventing CaM binding, and
it was shown that the selected compounds inhibited the in vitro proliferation of pancreatic
tumor cells [38]. However, the weak therapeutic potential of these compounds was realized,
as they were not specific to tumor cells and exhibited cytotoxic effects on human non-
tumorigenic fibrocystic breast epithelial MCF10A cells [38].

The N-terminus of c-Src, where myristoylation and palmitoylation occurs in order
to anchor the protein to the plasma membrane, was also proposed as a site where CaM
binds to the kinase in a Ca2+-dependent mode [39] (as reviewed in [40]). Also, it was
demonstrated that myristoylation contributed to the binding of Ca2+/CaM to v-Src, as
shown using a peptide corresponding to its N-terminus [41]. The phosphorylation of the
myristoylated peptide by protein kinase C (PKC) at both Ser2 and Ser11, but not at only one
of these residues alone, significantly prevented the Ca2+/CaM binding to the peptide [41].

In a melanoma cell line, it was demonstrated that the chemical ablation of lipid rafts
negatively affected the Ca2+ entry into the cell via a mechanism named store-operated Ca2+

entry (SOCE), which started after the depletion of Ca2+ in the lumen of the endoplasmic
reticulum, and it was mediated by the stromal interaction molecule 1 (STIM1)/Orai Ca2+-
channel system (see Figure 1D). This prevented the Ca2+ -mediated activation of lipid-
raft-associated CaM and the activation of c-Src located in the same membrane domain,
and therefore, it prevented the activation of its downstream kinase Akt (protein kinase B)
signaling pathway, thus decreasing tumor growth [42]. To our knowledge, this represented
the earliest report that clearly showed the c-Src/CaM interactions demonstrated by co-
immunoprecipitation and the activation of c-Src by CaM in a Ca2+-dependent manner [42].
Both processes were prevented by a CaM antagonist and by CaM1,2,3,4, a CaM mutant with
four inactive EF-hand Ca2+-binding sites [42]. In a later study, we demonstrated Ca2+/CaM-
activated c-Src in vitro, in human epidermoid carcinoma and breast adenocarcinoma cells,
a process that was also inhibited by a CaM antagonist [43].

Previous research described an interesting observation: A 67 kDa cytosolic tyrosine
kinase, that also interacts with Ca2+/CaM, phosphorylated estradiol receptors lacking
ligand-binding capacity, inducing their conversion to receptors able to bind estradiol. This
suggested that the reverse process, when catalyzed by a phospho-Tyr-phosphatase, could
be involved in the transformation to the more dangerous hormone-unresponsive form
in estradiol-responsive breast cancers [44], thus making them insensitive to tamoxifen
(TMX) treatment to arrest their growth. The isolated tyrosine kinase was considered to be a
member of the Src family, although its molecular identity was not established. The authors
also described the estrogen receptor as a 67 kDa protein, as well, which was suspiciously
identical to the molecular mass of the newly identified cytosolic tyrosine kinase. The
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canonical human nuclear estrogen receptor alpha has 66.2 kDa [45] (as reviewed in [46])
and the beta receptors 53–59 kDa, depending on its isoforms [45,47,48] (as reviewed in [49]).
Therefore, the molecular mass of the receptor alpha was close enough to the 67 kDa receptor,
as described by theses authors. As the estrogen receptor [50,51] and c-Src [42,43] were
both able to directly bind Ca2+/CaM, this could have explained the isolation of the two
molecules by CaM-affinity chromatography, as carried out in [44], without the need to
adduce the direct interaction between both molecules during the isolation process. Human
neuroblastoma SK-N-SH cells overexpress α-synuclein, and it was demonstrated that this
protein, which also forms part of the Lewy bodies in Parkinson’s disease, enhanced the
interaction of Ca2+/CaM with c-Src, increasing its tyrosine kinase activity [52].

2.2. c-Src Activation by Ca2+-Independent CaM-Binding

Most significantly, we also demonstrated that Ca2+-free CaM (apo-CaM) could bind
to and activate c-Src even more efficiently than the activation exerted by the Ca2+/CaM
complex [43] (as reviewed in [26]). This suggested that the action of CaM on c-Src was
more complex than first envisioned. We identified in silico the potential of two atypical
IQ-like domains as potential binding sites of apo-CaM to human c-Src; the first had the
sequence 143IQAEEWYFGKITR155 located in the proximal region of the SH2 domain, and
the second had the sequence 308LQEAQVMKKLR318 located in the proximal region of the
tyrosine kinase domain [43].

Figure 3 shows the proposed Ca2+-dependent and Ca2+-independent CaM-binding
sites of human c-Src. However, the proposed Ca2+-dependent CaM-binding site at the
N-terminus [39] (as reviewed in [40]) is not shown in Figure 3, as the crystallographic
structure of the N-terminus of c-Src was missing in this structure. A phylogenetic analysis
demonstrated that the two proposed atypical IQ-like CaM-binding sites [43] and the Ca2+-
dependent CaM-binding site [37] of c-Src, were fully or highly conserved in vertebrates (as
reviewed in [26]). Moreover, the three CaM-binding sites were identical in human c-Src
and Rous sarcoma virus v-Src (see Figure 3C).
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MCBI (1FMK), showing the proposed CaM-binding sites. The proposed Ca2+/CaM-binding site with
sequence 204KHYKIRKLDSGGF216 (residues 204–214 correspond to the GST-tagged protein), marked
in cyan, located in the SH2 domain, was described as a basic 1-5-10 CaM-binding motif according
to [37]. Two atypical IQ-like motifs were proposed as putative apo-CaM binding sites, as described
in [43]. The 143IQAEEWYFGKITR155 sequence, located in the proximal region of the SH2 domain,
is marked in blue, and the 308LQEAQVMKKLR318 sequence, located in the proximal region of the
tyrosine kinase domain, is marked in green. The ATP-binding site is marked in gray. The position
numbers of the amino acids indicated in the marked sequences in this figure, as well as in the text,
are directly determined from the crystallographic structure shown and are three positions lower
from those mentioned in references [37,43]. (C) The plot shows the alignment of the amino acid
sequences of human c-Src (NCBI ID: NP_938033.1) [53] and the Rous sarcoma virus v-Src (NCBI ID:
P00524.6) [54], as prepared with the Cobalt program from the NCBI. Identical residues are marked in
red, variable residues in blue, and the 3 extra residues at position 29–31, plus 7 extra residues in the
C-terminus of c-Src, absent in v-Src, are marked in gray. The boxes highlighted in green indicate the
Ca2+-dependent CaM-binding domain (Ca2+/CaM-BD) [37] and the two proposed atypical IQ-like
CaM-BDs [43], likely representing apo-CaM binding sites.

2.3. Potential CaM Binding to Other SFKs

The key residues for CaM binding in the two atypical IQ-like CaM-BDs, as described in
c-Src [43], should be 143IQxxxxxxxKxxR155 and 308LQxxxxxKKxR318 (marked in bold). As
shown in Table 1, in the first sequence, these residues are identical in c-Src, Yes, Fyn and Fgr,
but in the second sequence, only in c-Src and Yes. This suggested that apo-CaM-binding
may not be possible in the SFK members where these key residues are missing. In contrast,
the sequence of the Ca2+/CaM-BD in c-Src [37] appeared to be better conserved in other
SFKs (see Table 1). However, as there were some changes in the homologous sequences in
other SFKs, this did not guarantee that Ca2+/CaM-binding would occur in other SFKs in
addition to c-Src, and future experimental determinations are necessary.

Table 1. Comparison of the sequences of the CaM-binding sites of human c-Src with homologous
sequences in other human Src-family kinases.

SFK Ca2+/CaM-BD in Distal
SH2 Domain [37]

IQ-like apo-CaM-BD in
Proximal SH2 Domain [43]

IQ-like apo-CaM-BD in
Proximal TK Domain [43]

c-Src 203KHYKIRKLDSGGF215 146IQAEEWYFGKITR158 311LQEAQVMKKLR321

Yes 210KHYKIRKLDNGGY222 153IQAEEWYFGKMGR165 318LQEAQIMKKLR328

Fyn 201KHYKIRKLDNGGY213 144IQAEEWYFGKLGR156 312LEEAQIMKKLK322

Fgr 196KHYKIRKLDMGGY208 139IQAEEWYFGKIGR151 304LEEAQVMKLLR314

Lyn 181KHYKIRSLDNGGY193 124LETEEWFFKDITR136 288LEEANLMKTLQ298

Hck 196KHYKIRTLDNGGF208 139LETEEWFFKGISR151 303LAEANVMKTLQ313

Lck 180KHYKIRNLDNGGF192 122LEPEPWFFKNLSR134 286LAEANLMKQLQ296

Blk 175KHYKIRCLDEGGY187 119LEMERWFFRSGGR131 282LGEANVMKALQ292

Frk 163KHYRIKRLDEGGF175 111LQAEPWFFGAIGR123 275LREAQIMKNLR285

The alignment of the amino acid sequences of the Ca2+-dependent CaM-binding
domain (Ca2+/CaM-BD) [37] and the two proposed atypical IQ-like CaM-BD [43], likely
representing apo-CaM binding sites, of human c-Src (NP_938033.1) [53], with homolo-
gous sequences of human c-Yes (P07947.3) [29], Fyn (P06241.3) [55], c-Fgr (P09769.2) [27],
Lyn (P07948.3) [56], Hck (P08631.5) [57], Lck (P06239.6) [58], Blk (P51451.3) [59], and Frk
(EAW48241.1) [60], were obtained from the NCBI. The Brk-family kinase member Frk is
included for comparison. The sequence of human Yrk is not shown, as it was not located in
the NCBI. The numbers in the sequence of c-Src includes the N-terminal methionine that is
removed in the mature protein.
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3. Phosphorylation of CaM by v-Src and c-Src

Tyrosine phosphorylation of CaM by v-Src (see Figure 1C) was first described by
Fukami et al. using Rous sarcoma virus (RSV)-transformed chicken fibroblasts and tu-
mor cells, derived from rats infected by RSV, a process that was inhibited by Ca2+ [61,62].
The inhibition exerted by Ca2+ was explained because Y99 and Y138 were located at the
EF-hand Ca2+-binding sites III and IV of CaM, respectively, and Ca2+ binding occluded
access to these tyrosine residues. CaM was also phosphorylated in vitro by human recom-
binant c-Src [63], and the phosphorylation of CaM occurred in both Y99 and Y138 was
directly demonstrated using Y99F- and Y138/F-CaM mutants presenting as a single tyrosine
residue [64]. To explore the possible biological activity of phospho-Y-CaM, we prepared
phosphomimetic CaM mutants by substituting one or both tyrosine residues with acidic
amino acids (glutamic acid and aspartic acid), and we demonstrated that the Y/D- and
Y/E-CaM mutants exerted distinct effects on the activity of some CaM target enzymes, as
compared with the effect exerted by wild-type CaM [63].

Of interest, phopho-Tyr99-CaM was shown to be an activator of phosphatidylinositol
3-kinase (PI3K) upon binding to the SH2 domains of its regulatory 85 kDa subunit [65].
The oncogenic K-Ras4B formed a ternary complex with PI3K and phospho-Tyr99-CaM.
This occurred upon the interaction between the distal SH2 domain of PI3K and the K-
Ras4B/phospho-Tyr99-CaM complex, where phospho-Tyr99-CaM was in its close Ca2+-
free conformation; while free phospho-Tyr99-CaM, in its extended Ca2+-bound form,
interacted with the proximal SH2 domain of PI3K (as reviewed in [10,66]). The activation
of the PI3K/Akt/mTOR (mammalian target of rapamycin) pathway by this CaM-mediated
mechanism played an essential role in the proliferation and survival of K-Ras-driven tumors
(as reviewed in [66]).

The oncogenic protein tyrosine phosphatase receptor type Z1 (PTPRZ1), found in
highly malignant small-cell lung carcinoma, induced the inactivation of this phosphatase
upon binding its ligand pleiotrophin, resulting in increased levels of phospho-Tyr-CaM [67].
This suggested that CaM phosphorylated by c-Src, among other tyrosine kinases, could
increase in these PTPRZ1-overexpressed tumors, contributing to its malignancy.

4. The Role of CaM-Dependent Kinases in SFKs
4.1. CaM-Dependent Kinase II

CaMK-II has been one of the best-studied CaM-regulated kinases involved in multiple
cellular functions via its role in a variety of signaling pathways (as reviewed in [68–70]).
Early reports demonstrated that v-Src, but not c-Src, was associated with a Ca2+/CaM-
dependent Ser/Thr-protein kinase in a rat sarcoma cell line and in rat fibroblasts trans-
formed with the Rous sarcoma virus [71,72]. At the time, this kinase was considered to
be the 60 kDa subunit of the CaM-dependent protein kinase II (CaMK-II) that was able to
phosphorylate a single 52 kDa endogenous substrate, and to the best of our knowledge, its
nature has yet to be fully understood [72]. The phosphorylation of c-Src by several Ser/Thr-
protein kinases was demonstrated, but CaMK-II was not reported among them (as reviewed
in [73]). Therefore, we used the phosphorylation prediction NetPhos 3.1 server from DTU
Health Tech (available from https://services.healthtech.dtu.dk/services/NetPhos-3.1/,
accessed 28 November 2023) to predict the potential CaMK-II-mediated phosphorylation
site(s) in c-Src and v-Src. We found that the phospho-Ser/Thr prediction scores by c-Src/v-
Src, ranged between 0.401 and 0.479, values which were, in some cases, slightly above
the score of Thr101 in c-Src or below the set threshold. However, in human c-Src, the
phosphorylation motifs of different CaM-dependent kinases, including CaMK-IIδ [74],
of general sequence -(R/K)-X-X-p(S/T)-X-(D/E) [75], where X indicates any amino acid
residue, coincided with the sequence 40KPASAD45 [53], and this suggested that the Ser43
in the mature protein could be phosphorylated by CaMK-IIδ (see Figure 4A).

https://services.healthtech.dtu.dk/services/NetPhos-3.1/
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Figure 4. Action of CaM-dependent Ser/Thr-kinases on SFKs. (A) Upon increasing the cytosolic Ca2+

concentration ([Ca2+]cyt) and formation of the Ca2+/CaM complex, CaMK-II is activated and phospho-
rylates c-Src and Lck. In the case of c-Src, Ser43 could be a potential phosphorylation site. Activation
of the CaMK-II/c-Src/MAPK pathway induces cell proliferation. (B) The Ca2+/CaM-dependent
DAPK1 induces apoptosis, its phosphorylation at Tyr491/492 by c-Src causes its inactivation, and
the receptor tyrosine-phosphatase LAR dephosphorylates phospho-Tyr491/492 reactivating DAPK1
enhancing apoptosis, inhibiting cell survival and cell proliferation. (C) The Ca2+/CaM-dependent
eEF-2K controls c-Src, which phosphorylates and activates the EGFR at Tyr845, activating the Akt1-
mediated cell survival pathway and c-Src/FAK-mediated tumor cell migration and invasiveness. For
more details, see text. The structures of mouse Akt1 (P31750) [76], human CaM (1CLL) [12], mouse
CaMK2δ (Q6PHZ2) [77], human c-Src (P12931) [78], human DAPK1 (AAI43760) [79], human eEF-2K
(O00418) [80], human EGFR (P00533) [81], human FAK (Q05397) [82], human Lck (P06239) [58], and
human LAR (P10586) [83], mostly depicted in a rainbow color code going from the N-terminus
(blue) to the C-terminus (red), were built using the UniProt SWISS-MODEL database from Biozen-
trum, University of Basel, feeding the system with the amino acid sequences obtained from the
NCBI (National Center for Biotechnology Information). Akt1, protein kinase B1; CaM, calmodulin;
CaMK2δ, CaM-dependent protein kinase-2; c-Src, cellular sarcoma kinase homologue; DAPK1, death-
associated protein kinase-1; eEF-2K, eukaryotic elongation factor-2 kinase; EGFR, epidermal growth
factor receptor; FAK, focal adhesion kinase; Lck, lymphocyte-specific protein tyrosine kinase; LAR,
leukocyte common antigen-related.

The phosphorylation of the Src-family kinase Lck (lymphocyte-specific protein tyrosine
kinase) by CaMK-II was inferred in human leukemic Jurkat T cells by artificially increasing
intracellular Ca2+ and using an inhibitor of CaMK-II [84] (see Figure 4). This Ca2+ increase,
followed by CaM-mediated CaMK-II activation, triggered the activation of the extracellular
regulated kinases 1 and 2 (ERK1/2) [85], as well as the activation of apoptosis via the
phosphorylation of the adaptor protein p66Shc [86].

Chloride mobilization appears to control CaMK-II and c-Src activities in breast adeno-
carcinoma cells, as chemically inhibiting or knocking down the chloride-channel ANO1
(anoctamin-1) with a shRNA (short hairpin RNA), reduced both epidermal growth factor re-
ceptor (EGFR) and CaMK-II activation, inducing afterwards a decrease of Akt/c-Src/MAPK
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(mitogen-activated protein kinase) activation, both in vitro cultured cells and in vivo using
xenographted tumor cells, inhibiting therefore cancer progression, and underscoring the
tumor promoting role of these pathways [87]. Moreover, stimulating pancreatic tumor cells
with UTP or suramin, an agonist of the nucleotide receptor P2Y2, activated cell proliferation
by a pathway implicating CaMK-II and c-Src, likely using mechanisms similar to the ones
described above for the CaMK-II/c-Src/MAPK pathway in breast cancer cells [88].

4.2. Death-Associated Protein Kinase

DAPK (death-associated protein kinase) is another CaM-regulated Ser/Thr kinase
that exerts a tumor-suppressing function by inhibiting cell proliferation and cell adhesion
and, most relevantly, inducing apoptosis (as reviewed in [89,90]). c-Src inhibited DAPK
by phosphorylating its residues Tyr491 and Tyr492, a process that was enhanced in tumor
cells with aberrantly elevated c-Src activity [91]. The receptor tyrosine phosphatase, de-
noted LAR (leukocyte common antigen-related) (as reviewed in [92]), dephosphorylated
Tyr491/ Tyr492 (see Figure 4B). However, activating the EGFR pathway in the tumor cells
activated c-Src, which subsequently downregulated LAR, suggesting this process could be
synergistic with DAPK inactivation in order to evade apoptotic cell death [91].

4.3. Eukaryotic Elongation Factor-2 Kinase

The eukaryotic elongation factor-2 kinase (eEF-2K), previously known as CaMK-III,
is a Ca2+/CaM-dependent kinase, belonging to the atypical α-kinase family that controls
protein synthesis, and functions as a major regulator of autophagy by acting downstream
of mTOR. eEF-2K activity was also synchronized with the different phases of the cell cycle
and was overexpressed in many cancerous cells promoting cell survival, enhanced prolif-
eration, and metastatic dissemination, under hypoxic and nutrient-deprived conditions
(as reviewed in [93,94]). Similarly, using human ductal pancreatic PaCa tumor cells, it was
shown that eEF-2K controlled the activity of c-Src via tissular transaminase-2, inducing
cell proliferation, increased motility, extracellular proteolysis by matrix metallopeptidase-2
(MMP-2), and, thus, the invasion and dissemination of tumor cells (see Figure 4C). In
general, this takes place via the β1-integrin/Src/urokinase plasminogen activator surface
receptor (uPAR)/MMP-2 pathway [95].

5. The Role of the CaM-Dependent Phosphatase Calcineurin in SFKs

N-myristoyltransferase (NMT) is the enzyme implicated in the myristoylation of SFKs,
and it was shown that Lyn (Lck/Yes-related novel tyrosine kinase) and Fyn (v-Fgr/v-
Yes-related tyrosine kinase), and to a lesser extent, Lck, phosphorylated the N-terminus
of NMT, and its phosphorylated form was then dephosphorylated by the Ca2+/CaM-
dependent phosphatase calcineurin (CaN), which was also denoted as protein phosphatase
2B (PP2B) [96] (as reviewed in [97]). While this may initially appear anomalous, as CaN
has generally been considered a Ser/Thr-phosphatase (as reviewed in [98]), the role of CaN
dephosphorylating phospho-tyrosine residues has been documented in other instances. For
example, CaN dephosphorylated the transcription factor STAT3 (signal transducer and acti-
vator of transcription 3) when it had been phosphorylated by c-Src and where the possibility
of the involvement of the dual Ser/Thr-Tyr-phosphatase MKP-1 (mitogen-activated protein
kinase phosphatase-1) had been excluded [99]. In addition, an old report had already
demonstrated that CaN dephosphorylated EGFR-(Tyr)-phosphorylated substrates [100],
further demonstrating that CaN was indeed a dual Ser/Thr-Tyr phosphatase.

6. Ca2+ and v-Src Functions in Transformed Cells

6.1. v-Src as Modulator of Ca2+ Channels

The oncogenic v-Src tyrosine kinase has been shown to exert important Ca2+-mediated
cellular functions. To experimentally demonstrate this, v-Src-transformed cells were used.
To this end, a temperature-sensitive v-Src mutant was transfected in rat pheochromocytoma
cells, and it was shown that it increased the expression of diverse Ca2+ channels at the
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permissive temperature, similar to the results after differentiation was induced by neural
growth factor (NGF) [101,102]. Particularly, specific Ca2+-channel blockers for different
channel types were identified at the permissive temperature (37 ◦C), affecting the expression
of a significant percentage (~50%) of N-type channels, a small percentage (~8%) of L-types
channels, and a significant proportion (~42%) of channels that were insensitive to inhibitors
specific for the N- and L-types. This contrasted with the percentages found at the non-
permissive temperature (40 ◦C), ~30%, ~46%, and ~24%, respectively [101]. The changes in
the expression of the Ca2+ channels may contribute to changes in Ca2+ fluxes, as observed
in v-Src-transfected rat fibroblasts [103].

In addition, v-Src-transformed mouse fibroblasts presented an additional electrical
current due to Ca2+-activated K+ channels, either because of de novo expression or the
activation of previously silent channels [104], an important point that was not solved in
this report.

6.2. v-Src and Cell Proliferation

The ability of tumor cells to proliferate in a Ca2+-deprived medium appeared to
be mediated by v-Src. This was demonstrated in rat fibroblasts transformed with the
temperature-sensitive v-Src mutant, as previously mentioned, and the cells did not prolif-
erate at the non-permissive temperature, where the v-Src expression had been prevented,
but rapidly initiated DNA synthesis and proliferation after transferring the cells to the
permissive temperature, which allowed for v-Src expression [105,106]. The authors of
the report pinpointed a target affecting the G1/S transition of the cell cycle, where the
oncogenic transfected kinase had exerted its action without affecting the role of Ca2+/CaM
at this step of the cell cycle [105,106]. It was suggested that the carcinogenic potential of the
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin was related
to the increase in the cytosolic Ca2+ concentration, as it had prevented the refilling of the
endoplasmic reticulum, leading to the rise in the cytosolic Ca2+ concentration inducing
the subsequent Src-mediated activation of the MAPK pathway, which then triggered the
proliferation in the cells transfected with v-Src [107].

6.3. v-Src and Ca2+-Signaling Effectors

Also, v-Src expression modified cellular Ca2+ signaling. The transformation of rat
fibroblasts with v-Src strongly amplified the endothelin-induced production of inositol-
(1,4,5)-trisphosphate (IP3) and the transient increase in cytosolic Ca2+ concentration [108].
On the contrary, the v-Src expression in these transformed fibroblasts decreased the
thrombin- and lysophosphatidic acid (LPA)-mediated IP3 production and the transient
cytosolic Ca2+ peaks induced by these effectors [108,109].

6.4. v-Src and MARCKS Function

In v-Src-transformed NIH3T3 murine fibroblasts, a decreased expression and an en-
hanced translocation of the Ca2+/CaM-regulated enzyme MARCKS (myristoylated alanine-
rich C-kinase substrate) from the plasma membrane to the cytosol was demonstrated,
indicating that v-Src had activated PKC [110]. The authors suggested that the changes in
the MARCKS location could have been responsible, at least in part, for the altered cytoskele-
tal organization and the changes in morphology, as observed in the transformed cells.

6.5. v-Src and Gap-Junction Communication

In v-Src-transformed fibroblasts, it was shown that this kinase phosphorylated con-
nexin43, disrupting gap-junction communication, a functional process shared with the
unrelated Fujiyama sarcoma virus tyrosine kinase p130gag-fps [111]. This should block
the cell-to-cell transfer of calcium ions and the Ca2+-mobilizing signaling molecule IP3, a
phenomenon demonstrated in the human cervix adenocarcinoma HeLa cells transfected
with different connexins, including connexin43 [112].
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7. Ca2+ and SFKs Functions in Tumor Cells

In this section, we considered some examples of the involvement of Ca2+ in c-Src and
other SFKs functions, in tumor cells.

7.1. Role of Ca2+ on c-Src Degradation

The overexposure of the estrogen-dependent human breast cancer cell line T-47D
to exogenous Ca2+ activated the Ca2+-dependent protease calpain, which proteolyzed
c-Src. This resulted in decreased c-Src signaling via the PI3K/Akt survival pathway,
inhibiting tumor cell proliferation in vitro and decreasing tumor growth in vivo when
the tumor cells were xenografted in BALB/c nude mice [113]. Moreover, the exogenous
Ca2+-mediated c-Src degradation in human triple-negative breast cancer MDA-MB-231
cells resulted in the inhibition of c-Src-mediated EGFR transactivation, contributing to
decreased proliferation [114].

7.2. Role of Ca2+ and c-Src in Tumor Cells Invasiveness

The development of a fluorescent Ca2+ biosensor tethered to the N-terminus of the
Orai channels allowed the direct detection of the subplasmalemmal Ca2+ increase in a single
invadopodium of human melanoma cells due to the activation of SOCE, which resulted
in the activation of the Ca2+/CaM-dependent proline-rich tyrosine kinase 2 (Pyk2) [115]
plus the c-Src signaling pathway [116], which was essential for starting the invasiveness of
these malignant tumors. In an apparently conflicting report using STIM1-knockout prostate
cancer cells, it was proposed that Ca2+ entry via SOCE was not required for the activation
of CaMK-II and the c-Src/MAPK pathway, and it instead appeared that STIM1 was a
downstream target of the c-Src/MAPK pathway because ERK1/2 had phosphorylated
STIM1 [117]. Nevertheless, this does not nullify the need of Ca2+ for the activation of
the c-Src/CaMK-II/MAPK pathways, as enough cytosolic Ca2+ could be derived from
intracellular stores.

c-Src participated in the assembly and disassembly of tight junctions, functions that
were mediated by the signaling pathways involving calcium ions [118,119]. Also, Ca2+-
dependent, integrin-mediated cell adhesion to the extracellular matrix and cadherin-based
cell–cell contacts were disassembled during the epithelial–mesenchymal transition (EMT),
where were required as early steps in order to enable the invasion of adjacent tissues and
the migration of the tumor cells to distant organs, resulting in metastases.

The disassembly of cell–cell contacts in carcinomas was concurrent with increased
cell survival and anchor-independent growth, and c-Src, which has enhanced activity
in many carcinomas, participated in these processes. Thus, in a non-invasive mouse
breast carcinoma cell line transfected with a constitutive active chicken c-Src mutant, a
continual phosphorylation of Src at Tyr418 was shown, but it required Ca2+-dependent
integrin-mediated cell adhesion to phosphorylate the focal adhesion kinase (FAK) at Tyr577,
as well as the interaction of c-Src with phospho-FAK. Therefore, the disruption of the
Ca2+-dependent cell adhesion during the anchor-independent growth had induced the
dissociation of the Src/FAK complex and the dephosphorylation of FAK [120].

The metalloprotease ADAM10 (disintegrin and metalloproteinase domain-containing
protein 10) is regulated by c-Src and CaM [121–123]. ADAM10 was overexpressed in
high-grade pituitary adenoma cells, and the invasiveness of these tumors was explained,
at least in part, by the c-Src/CaM-mediated mechanisms [121,122]. The inactive form of
this proteinase, denoted pro-ADAM10, was activated upon Ca2+ influx by reducing the
Ca2+/CaM-pro-ADAM10 interaction, and the activated proteinase subsequently induced
the cleavage of the adhesion molecules CD44 and L1CAM (cell adhesion molecule L1) [123],
disrupting the cell–cell interaction, detaching cells from the extracellular matrix, and
thus enhancing the invasiveness of the tumor cells. In addition to this CaM-mediated
mechanism, it was demonstrated that the activation of PKC with phorbol ester promoted
c-Src activation, and the active kinase was shown to interact with ADAM10, where c-Src
appeared to compete with CaM for ADAM10 binding [121,122], further promoting the
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activation of the proteinase, inducing the cleavage of adhesion molecules, and increasing
the invasiveness of the tumor cells.

7.3. Role of Ca2+ and c-Src in Cell Migration and Tumor Progression

Adducin is an oligomeric (mostly dimers and tetramers) CaM-binding protein that
is involved in recruiting, bundling, and capping the fast-growing end of actin filaments,
as well as spectrin recruitment, among other functions. Both Ca2+/CaM-binding and
PKC phosphorylation inhibited adducin functions by controlling membrane ruffling and
myosin-based cell motility (as reviewed in [124]). As the expression of adducin isoforms is
altered in tumorigenesis, the role of α-adducin and γ-adducin was studied in the migration
and invasiveness of cells from non-small-cell lung cancer (NSCLC). It was determined
that α-adducin had been delocalized and γ-adducin had been highly downregulated, and
these had been concomitant with the development of an invasive mesenchymal pheno-
type. These activities were reverted by the forced overexpression of α-adducin, but not
γ-adducin, which was concomitant with the increased assembly of the focal adhesions and
the hyperphosphorylation of c-Src and paxillin [125].

Curiously, increased levels of bile deoxycholic acid (DCA) were correlated to the de-
velopment of colorectal adenomas and the progression to carcinoma. In this context, in hu-
man DCA-treated colorectal adenocarcinoma HT-29 cells, increased intracellular Ca2+ and
CaMK-II activation was shown, which promoted signaling via the EGFR-mediated MAPK
activation upon c-Src recruitment and the phosphorylation of the receptor at Tyr845 [126].
As discussed by the authors, these findings could explain, at least in part, that excessive
DCA production may promote colorectal tumor growth.

7.4. AKAP12 and Ca2+/c-Src Signaling

Some scaffolding proteins have the ability to negatively regulate tumor progression
and metastases. Among them, AKAP12 (A-kinase anchoring protein 12), also known as
gravin, has one binding site for c-Src and four binding sites for Ca2+/CaM, belonging to
the class denoted 1-5-10 motifs (as reviewed in [127,128]), among many other binding sites
for different proteins. The suppression of metastasis by AKAP12 was mediated, at least in
part, by inhibiting the Src-regulated angiogenesis of distal blood vessels mediated by VEGF
(vascular endothelial growth factor) (as reviewed in [128]). Less is known about the effect of
CaM on AKAP12, although the phosphorylation of the scaffold protein by PKC prevented
CaM binding (as reviewed in [127]). This competition was first described in SSeCKS (Src-
suppressed C kinase substrate), the rodent orthologue of human AKAP12 [129]. It was
suggested that the role of CaM binding to SSeCKS/AKAP12 proteins could most likely be
to prevent the activation of Ca2+/CaM-dependent kinases by sequestering CaM [129].

7.5. Wnt/Ca2+ Signaling and c-Yes Function

The different Wnt (Wingless: integration protein-1) signaling pathways regulate many
cellular functions and play important roles in the development of metastasis, for example,
in bones (as reviewed in [130,131]). Upon the Wnt ligand binding to its plasma membrane-
bound receptor Frizzled and other co-receptors, one of the pathways activated was the
non-canonical Wnt-5a/Ca2+ pathway, which activated the transcription factor NFAT1
(nuclear factor of activated T cells 1) after its dephosphorylation by Ca2+/CaM-activated
calcineurin and its translocation from the cytosol to the nucleus. Using human mammary
epithelial cells and MCF7 adenocarcinoma cells, it was shown that the NFAT1 activation
by the Wnt-5a/Ca2+ pathway was suppressed via a pathway involving Wnt-5a, the SFK
c-Yes, Cdc42 (clone derived 42), and CK1α (casein kinase 1α), where c-Yes, but not c-Src or
c-Fyn, had been activated by Wnt-5a [132]. Therefore, the authors proposed that the loss of
Wnt-5a expression and reduced c-Yes/Cdc42/ CK1α signaling may increase the metastatic
potential of breast cancer through the hyperactivation of NFAT.
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7.6. SFKs and Ca2+ Signaling in the Immune Response

The activation of the CD3 (clone derivate 3)/TCR (T-cell receptor) complex with
an immobilized anti-CD3 antibody in leukemia Jurkat cells increased the cytosolic Ca2+

and induced PKC activation upon translocation to the plasma membrane. In turn, PKC
phosphorylated c-Src at Ser12, resulting in interleukin-2 production and the induction
of cell proliferation [133]. However, using a soluble anti-CD3 antibody did not induce
interleukin-2 production but, instead, blocked cell proliferation. This was in contrast to the
behavior of normal T cells, where both soluble and immobilized anti-CD3 antibodies in-
duced interleukin-2 production and stimulated cell proliferation [133]. The transmembrane
phospho-Tyr-phosphatase CD45 (clone derived 45) also participated in TCR signaling as
well as the dephosphorylation of the C-terminal negative regulatory Tyr residue of SFKs (as
reviewed in [134]). The dephosphorylation of this tyrosine set the kinase in its open, active
conformation [73]. In a report using a Jurkat cell line depleted of CD45 and transfected
with different EGFR/Lck-fusion chimera proteins, it was demonstrated that Ca2+ signaling
by TCR only occurred by the activated EGFR/Lck chimera after CD3 activation and that an
inactive form of EGFR/Lck failed to induce Ca2+ signaling [135].

It was demonstrated that upon the activation of BCR (B-cell receptor) when binding
antigens or anti-receptor antibodies, the active receptor induced a Ca2+ release from the
intracellular stores, which was followed by the extracellular Ca2+ entry via the Ca2+ release-
activated ion channels, and some tyrosine kinases intervened in this process (as reviewed
in [136]). In the cell line DT40, a chicken B-cell lymphoma derived from the bursa of
Fabricius, it was reported that Lyn and the unrelated non-SFK tyrosine kinase Syk (Syk
family) were absolutely necessary for activation of Ca2+-release-activated Ca2+ channels
(CRAC) after emptying the intracellular Ca2+ stores, and this effect was not due to the
increased expression of the Orai1 channel or the STIM1 Ca2+ sensor, but to unknown
phosphorylation events mediated by these tyrosine kinases in order to maintain the function
of the involved target proteins [137]. Also, using wild-type and different mutants of DT40
cells subjected to a massive Ca2+ load upon treatment with the ionophore ionomycin to
bypass BCR Ca2+ signaling, the participation of Syk and Lyn, but not Fyn or Lck, was
established in BCR-independent Ca2+-induced apoptosis [138].

8. Medical Implications

In this section, we describe findings relating the activation or the inhibition of some
SFKs with mechanisms involving Ca2+-dependent events that could be of medical interest
in the field of oncology. Table 2 summarizes some of these processes, and then we illustrate
these events in more detail.

Table 2. SFK/Ca2+ signaling processes of oncological interest.

SFK Tumor Type (Cells) SFK and Ca2+ Signaling Findings Refs.

c-Src, v-Src, Lck, Fyn Assays in vitro with recombinant SFKs.
Useful in many SFK expressing tumors

N4-derivatized and C(3)-derivatized analogs of
PP1 present increased capacity to inhibit SFKs,
and therefore SFK-mediated Ca2+ mobilization

[139]

c-Src Pancreatic carcinoma (MiaPaCa-2,
BxPC-3, AsPC-1 cells)

Blocking the Ca2+/CaM-BD of c-Src inhibits
cell proliferation

[37,38]

c-Src Pancreatic carcinoma (PANC-1 cells)

CaM antagonists (TFP and TMX) enhances
apoptosis in tumor cells resistant to treatment
with the anti-death receptor-5 antibody TRA-8

by preventing CaM/Src interaction

[140]

c-Src Triple-negative breast carcinoma
(MDA-MB-436 cells)

miRNA-603 blocks expression of CaM-regulated
eEF-2K, and hence inhibits cell proliferation,

invasiveness, tumor-associated angiogenesis and
progression mediated by c-Src and

other effectors

[141]
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Table 2. Cont.

SFK Tumor Type (Cells) SFK and Ca2+ Signaling Findings Refs.

c-Src Bcr-Abl positive chronic myeloid
leukemia (K562 cells)

Combined inhibition of c-Src and PI3K in
Imatinib-resistant Bcr-Abl positive CML cells

induces disruption of Ca2+ mobilization,
apoptosis, and autophagy

[142]

c-Src Bcr-Abl positive chronic myeloid
leukemia

The dual c-Src/Bcr-Abl inhibitor bosutinib also
inhibits CaMK-IIγ [143]

c-Src Different cancers
Doxorubicin treatment induces heart and

ovarian toxicity disrupting c-Src-mediated Ca2+

mobilization systems
[144,145]

c-Src Schwannoma (patients isolated MPNST
cells)

Combined inhibition of c-Src with sacaratinib
and CaM with TFP decrease proliferation and

cell survival
[146]

SFKs (ND) Burkitt’s lymphoma (Ramos B cells)
Cholesterol depletion from lipid rafts inhibits

SFK-dependent Ca2+ mobilization and apoptosis
induced by the anti-CD20 antibody rituximab

[147,148]

Lyn
Different cancers; e.g., genito-urinary
tumors (macrophages isolated from

BALB/c mice)

Cisplatin treatment induces expression and
activation of Lyn, and inhibitors of Ca2+

mobilization and CaM antagonists inhibit
Lyn activation

[149]

Lyn Mastocytoma (P815 cells)
Allergen-induced degranulation of mast cells

induced Lyn activation and Ca2+ released by the
IP3 receptor

[150]

Fyn, Lck DMBA-induced T cells leukemia
(HPB-ALL cells)

DMBA activates Fyn and Lck inducing PLCγ

activation, IP3 production and Ca2+ released
from the endoplasmic reticulum

[151]

Lck Thymus-derived mouse lymphoma
(WEHI 7.1 cells)

Dexamethasone-induced inhibition of Lck
changes the pattern of TCR-mediated Ca2+

signals from transient to oscillatory by
downregulating IP3 receptors

[152]

Fyn Astrocytoma (1321N1 cells) Ca2+ mobilization induced by 5-HT6 activation
induces Fyn activation

[153]

The table contains information obtained primarily from human tumor cells, with a
few examples from animal tumor models. Please note the following: 5-HT6, serotonin
receptor-6; Bcr-Abl, break point cluster region-Abelson tyrosine kinase; Ca2+/CaM-BD,
Ca2+/calmodulin-binding domain; CD20, clone derived 20; cisplatin, cis-dichlorodiammine
platinum (II); CML, chronic myeloid leukemia; doxorubicin, (7S,9S)-7-[(2R,4S,5S,6S)-4-
amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-
8,10-dihydro-7H-tetracene-5,12-dione; DMBA, 7,12-dimethylbenz(a)anthracene; eFF-2K,
eukaryote elongation factor-2 kinase; MPNST, malignant peripheral nerve sheath tumor;
ND, not described; PI3K, phosphatidylinositol 3-kinase; PLCγ, phospholipase-Cγ; PP1,
4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-d-3,4-pyrimidine; SFK, Src-family kinase;
TFP, trifluoperazine; TMX, tamoxifen.

Although little progress has been made in regards to inhibiting Src and other SFKs
in order to treat cancer due to the complexity of the signaling pathways involved in the
control of many cellular functions and the development of resistance, increased efforts open
new hopes for success, particularly using combinatorial therapeutic regimes (as reviewed
in [5,154,155]). Among the strategies used to develop SFK inhibitors, one of particular
interest used functionally silent active-site mutants to sensitize the target kinase against an
inhibitor that did not affect the wild-type kinases. Using this technique, N4-derivatized and
C(3)-derivatized analogs of PP1 (a synthetic pyrazolo [3,4-d]pyrimidine) were developed
with increased capacities to inhibit v-Src, c-Src mutants, and the SFKs Lck and c-Fyn (as
reviewed in [139]). Also, as previously mentioned, targeting the proposed Ca2+/CaM-
binding site of c-Src located at the SH2 domain with different chemical compounds [37]
was initiated as a potential therapeutic strategy to inhibit pancreatic tumor growth [38].
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Nevertheless, in a cell line of normal breast cells, the cytotoxic effects of most of these
compounds were also identified in this study, suggesting that this strategy may not be
too promising.

The monoclonal antibody rituximab against the CD20 antigen expressed in neoplastic
B cells was used in a clinic to treat non-Hodgkin lymphomas, usually in combination with
chemotherapy [156]. Rituximab induced the crosslinking of lipid-raft-associated CD20
and the apoptosis of the tumor cells, and these processes were shown to be mediated
by the activation of certain Src-family kinases (SFKs), which induced intracellular Ca2+

mobilization, as shown in Ramos B cells [147,148], a cell line derived from a Burkitt’s
lymphoma of a three-year-old patient. The oncogenic fusion protein Bcr-Abl (breakpoint
cluster region–Abelson tyrosine kinase) was expressed in human chronic myeloid leukemia
cells (as reviewed in [157]), and the effective treatment of these cells with the tyrosine kinase
Imatinib started to fail when mutations appeared in the Bcr-Abl protein [142]. Therefore,
additional strategies have been considered to treat Imatinib-resistant patients. In this
context, the combined inhibition of c-Src and PI3K, which blocked the PI3K/Akt/mTOR
survival pathway, induced in the presence of Imatinib apoptosis and autophagy in Bcr-
Abl-positive leukemia cells. These processes are due to the inhibition of SERCA and Ca2+

released via IP3 receptors [142]. Curiously, the dual c-Src and Bcr-Abl second-generation
kinase inhibitor bosutinib, for the treatment of chronic myeloid leukemia, was shown to
inhibit other kinases, and most relevantly, CaMK-IIγ by blocking its ATP-binding site, a
mechanism that was distinct of other known CaMK-II inhibitors [143].

As in the case of c-Src, the CaM-dependent kinase Pyk2 contributed to the transac-
tivation of EGFR, increasing cell survival and proliferation while favoring invasiveness
and metastasis development. In a study performed with glioblastoma cell lines, it was
shown that the tyrosine kinase inhibitor tyrphostin A9 (also known as malonoben), in addi-
tion to inhibiting EGFR and other tyrosine kinase receptors, also inhibited Pyk2; reduced
glioblastoma cell proliferation and migration; and induced cell death by apoptosis [158].
Also, the experimental c-Src inhibitor sacaratinib, in combination with the CaM antagonist
trifluoperazine (TFP), enhanced the inhibitory capacity of other inhibitors of the ErbB3
signaling pathway, and this was demonstrated by blocking the proliferation and survival
of malignant human Schwannoma cells [146].

The treatment of cancer with cisplatin induced the expression and the activation of the
SFK Lyn in macrophages, a process that was regulated by Ca2+/CaM and CaM-dependent
kinases [149]. Also of medical interest is the observation that in addition to the well-known
cardiotoxic effects of the widely used anti-cancer drug doxorubicin (as reviewed in [144]),
this drug also exerted ovarian toxicity. And, in this case, its action was mediated by an
abnormal increase in the cytosolic Ca2+ in the follicular cells because of its massive release
from the endoplasmic reticulum, which had been mediated by c-Src activation [145].

The monoclonal antibody TRA-8 against the death receptor-5 (DR5) acted as an agonist,
inducing apoptosis in pancreatic tumor cells. However, resistance usually developed, and
additional therapeutic strategies have been implemented in order to solve this problem. Of
interest to our topic in this review, TFP and TMX were used as adjuvants to overcome this
resistance, and c-Src was implicated in its mechanism of action. Thus, in TRA-8-resistant
pancreatic tumor PANC-1 cells, TFP or TMX alone did not induce apoptosis but increased
TRA-8-induced apoptosis in a dose-dependent manner [140]. The reason for this apparently
contradictory observation was that the death-inducing-signaling complex (DISC) associated
to DR5 activation by TRA-8 recruited c-Src/CaM, which elicited survival signals. Therefore,
the inhibition of CaM by TFP/TMX had prevented c-Src/CaM-mediated survival signaling.
But also, TFP/TMX targets the transcription factor Sp1 (specificity protein-1) acting on
the DR5 gene increasing the expression of this receptor, allowing both processes efficient
apoptotic cell death of the tumor cells [140].

A study explored the viability of a gene therapy approach to treat the highly malignant
triple-negative breast cancer (TNBC), which lacks the expression of ErbB2/HER2, estrogen,
and progesterone receptors, by targeting the Ca2+/CaM-dependent kinase eEF-2K, which
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was highly expressed in these tumors [141]. The administration of nanoparticles containing
the tumor-suppressor micro-RNA miR-603 to TNBC-cell-xenografted mice inhibited the
expression of eEF-2K and the activity of downstream signaling systems, including c-Src,
inhibiting tumor cell growth, cell migration, and invasiveness. This was due to the fact that
in untreated cancerous cells, eEF-2K has a prominent role promoting tumorigenesis and
the associated malignant features [141].

Some carcinogenic polycyclic hydrocarbons have been known to activate Fyn and
Lck in the human leukemia T-cell line HPB-ALL, inducing tyrosine phosphorylation and
the activation of phospholipase-Cγ, the synthesis of IP3, and the subsequent release of
Ca2+ from the endoplasmic reticulum, thereby increasing cytosolic Ca2+ levels [151]. In
contrast, in the mouse-thymus-derived lymphoma WEHI 7.1 cell line, low concentrations
of the glucocorticoid dexamethasone were shown to transform the TCR-induced transient
cytosolic Ca2+ increase to an oscillatory behavior upon strong receptor stimulation, and
this was due to the Lck inhibition, which bound to and positively regulated IP3 receptors
type I, while upon weak TCR stimulation, the Ca2+ oscillations stopped [152]. As discussed
by the authors of this report, Lck-mediated mechanisms may explain the suppression of
the immune response mediated by glucocorticoids.

In stably transfected human astrocytoma 1321N1 cells, it was demonstrated that, as
expected, a newly developed agonist of the serotonin (5-hydroxytryptamine) receptor
5-HT6 induced a cytosolic Ca2+ surge, followed by the activation of both Fyn and its
downstream MAPK pathway [153]. The degranulation of P815 mast cells, isolated from a
mouse mastocytoma and induced by an allergenic compound, caused Lyn activation and
Ca2+ mobilization via the opening of the IP3 receptor Ca2+ channels [150].

9. Concluding Remarks

The major issues remaining in the areas covered by this review are as follows: (i) To
determine which is/are the functional action(s), if any, of the direct interaction of Ca2+/CaM,
and possibly apo-CaM, on the enzymatic activity of v-Src/c-Src, by potentially exerting
regulatory functions on these kinases; (ii) To determine whether phospho-Tyr-CaM exerts
any role on v-Src/c-Src functions; and (iii) To determine whether CaM binds and regulates
other SFKs.

Also, it would be interesting to further investigate whether CaMK-II, and other CaM-
dependent kinases, are capable of phosphorylating c-Src/v-Src and other SFKs, despite
the negative analysis that we obtained using the phosphorylation prediction tool of the
NetPhos 3.1 server (see Section 4). Particularly, when some positive experimental results
had been obtained in human Lck using tumoral Jurkat T cells [84], the analysis that we
then performed using the same tool to search for putative phospho-Ser/Thr sites in Lck
phosphorylated by CaMK-II resulted in very low prediction scores (407–469). Nevertheless,
the authors could not conclude that CaMK-IV, instead of CaMK-II, was the kinase phos-
phorylating Lck [84]. Nevertheless, it is well known that informatics-based prediction tools
are not always accurate methods of analysis, and only experimental demonstrations can
solve these issues.

We expect that additional studies on the Ca2+ signaling mechanisms and CaM-
regulated systems, affecting the functions of oncogenic non-receptor tyrosine kinases
belonging to the Src family, may identify new therapeutic targets that can block the hyper-
activity and/or overexpression of these kinases in tumor cells with specificity, in order to
treat patients with SFK-driven cancers.
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