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Abstract: β3-Adrenoceptors mediate several functions in rodents that could be beneficial for the
treatment of obesity and type 2 diabetes. This includes promotion of insulin release from the pancreas,
cellular glucose uptake, lipolysis, and thermogenesis in brown adipose tissue. In combination, they
lead to a reduction of body weight in several rodent models including ob/ob mice and Zucker
diabetic fatty rats. These findings stimulated drug development programs in various pharmaceutical
companies, and at least nine β3-adrenoceptor agonists have been tested in clinical trials. However,
all of these projects were discontinued due to the lack of clinically relevant changes in body weight.
Following a concise historical account of discoveries leading to such drug development programs we
discuss species differences that explain why β3-adrenoceptors are not a meaningful drug target for
the treatment of obesity and type 2 diabetes in humans.
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1. Introduction

Obesity is generally defined as a body mass index exceeding 30 kg/m2. Its prevalence
has markedly increased in past decades, irrespective of ethnicity, gender, socioeconomic
status, or geographical location. Based on affecting one third of the global population, it is
now considered to be a pandemic [1]. Obesity increases the risk for multiple conditions,
most importantly type 2 diabetes (T2DM). Other conditions occurring more frequently
in obese subjects include lower urinary symptoms such as the overactive bladder syn-
drome [2], which is the only established and approved indication for β3-adrenoceptor (AR)
agonists [3].

Behavioral modification is the first line management of obesity but often is insuffi-
ciently effective, leading to a need for medical or even surgical treatment. Agonists of
glucagon-like peptide 1 receptors such as semaglutide have recently proven to be effective
pharmacological treatments of obesity, but not all obese subjects are responsive to this drug
class and, even in responders, their use can be limited by tolerability issues [4]. There-
fore, a continuing medical need exists for alternative pharmacological treatment options.
This manuscript discusses how the idea of targeting β3-AR for the treatment of obesity
and T2DM developed and which evidence supports and argues against the validity of
this concept.

In principle, a reduction of body weight and/or improvement of hyperglycemia can
be achieved by three main means. A reduction of caloric intake (dieting) is a domain
of behavioral modification, but the recently introduced glucagon-like peptide 1 receptor
agonists also use this mechanism [4,5]. However, there is no evidence linking β3-AR to
control of food intake. A second approach is to increase energy expenditure leading to a
negative energy balance if caloric intake does not increase to a similar extent. This can be
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attained by exercise (not covered here) and increased lipolysis and thermogenesis. More
recently, an enhanced renal excretion of glucose has emerged as an additional mechanism
to increase energy expenditure; this mechanism is used by sodium glucose transporter 2 in-
hibitors [6]. Various members of the latter drug class, including canagliflozin, dapagliflozin,
and empagliflozin, have been found to decrease body weight in T2DM patients; however,
with an average weight loss of <2 kg, these effects are too limited to be considered as
anti-obesity drugs [7]. While limited evidence in rodents points to a role of β3-AR in the
regulation of renal function [8], there is no evidence linking them to renal glucose excretion.
A third option linked to glycemic control but not necessarily to body weight is modulation
of insulin release from pancreatic β cells and/or cellular glucose uptake.

Brown adipose tissue (BAT) activation has been considered a corner stone in improving
metabolic health because it is a metabolic sink for glucose and free fatty acids (FAA) and
correlates to improved glucose and insulin sensitivity [9–12]. Therefore, it was suggested
to target BAT by β3-AR agonists such as mirabegron as a potential treatment for metabolic
dysfunction and obesity [12–14].

Following a concise review of historical aspects leading to the initiation of research
and development programs in the β3-AR field, this manuscript will summarize limited
data on modulation of insulin release and/or cellular glucose uptake and then mainly focus
on their effects on lipolysis and thermogenesis. In line with their proposed mechanisms of
action in T2DM, β3-AR agonists did not improve hyperglycemia in rodent models of type 1
diabetes (T1DM), e.g., as induced by streptozotocin or alloxan [15]; therefore, data related
to T1DM will not be covered here systematically.

2. Historical Aspects

Soon after Lands had proposed a subdivision of β-AR into the subtypes β1 and β2 [16],
emerging evidence supported that some responses to β-adrenergic agonists such as isopre-
naline were not mediated by either of these two subtypes. Notably, this included evidence
that an atypical receptor subtype, i.e., different from β1- and β2-AR, may mediate lipolysis
in rodents [17–19]. Other physiological responses attributed to an atypical β-AR included
inhibition of intestinal motility in rats [17,20] and relaxation of human urinary bladder [21].
The latter has meanwhile led to β3-AR agonists being a guideline recommended drug class
for the treatment of the overactive bladder syndrome [3].

The initial research and development programs on β3-AR agonists as potential treat-
ments of obesity and T2DM were stimulated by lipolysis and other functional studies [22].
The field gained traction upon the cloning of the human β3-AR [23] and its homologs of
rats [24] and mice [25]. Of note, the latter study found that the rank order of potency of
agonists to stimulate cAMP formation in transfected CHO cells correlated well with that to
induce lipolysis in rat brown adipocytes. Moreover, the mRNA expression of the newly
cloned rat receptor was reduced by 71% in obese Zucker rats as compared to lean animals.
The interpretation of the findings from rodents was limited by the fact that the human and
the rodent β3-AR genes differ in multiple ways. They differ in the presence and location of
introns [26–28] and in their 5′ flanking regions and regulatory sequences [29], leading to
possible differences in their transcriptional control.

2.1. Insight from Gene Polymorphism Association Studies

Soon after the cloning of the human β3-AR gene, it was reported that a Trp64Arg
polymorphism in the coding region of the human β3-AR gene was associated with an
increased capacity for weight gain [30] and an earlier onset of T2DM, particularly in Pima
Indians [31]. While similar findings were obtained by some investigators [32–35], others
did not confirm such associations, particularly in Caucasian populations [36–38]. Others
reported an association of the polymorphism with some but not other parameters related
to metabolism and obesity [39] or that the polymorphism was associated with responses to
some but not other β3-AR agonists [33].
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A major review of these and other studies, mostly on cardiovascular phenotypes,
concluded that the available evidence was insufficient to establish a link between the
Trp64Arg polymorphism and obesity or diabetes but indicated a trend for the Arg64 allele
as being a possible risk factor [40]. This conclusion was also supported by lipolysis studies
in adipocytes from genotyped obese and normal weight subjects upon stimulation with
the atypical agonist CGP 12,177 [32] or similar studies involving subjects with multiple
ethnicities and isoprenaline as the agonist [33,36]. Such a link would imply that the 64Arg
variant of the receptor is hypofunctional. However, dedicated in vitro studies based on
site-directed mutagenesis did not consistently find the 64Arg variant to be hypofunc-
tional [41]. Importantly, the β3-AR locus has not shown up as a trait for obesity or diabetes
in any of the genome-wide association studies. Evidence for an association of β3-AR gene
polymorphisms and lower urinary tract function has also remained inconclusive [41].

2.2. Insight from β3-AR Knock-Out Studies

Independent groups have generated β3-AR knock-out mice that exhibited several
metabolism related phenotypes. One set of knock-out mice exhibited a 34% and 131%
increase in total body fat in males and females, respectively [42]. The other knock-out
line, reporting on male mice only, had a 42% increase in total body fat [43], implying
a sex difference in the role of β3-ARs in metabolic control. The latter line also had an
attenuated respiratory rate response to the β3-AR agonist CL 316,243 in white adipose
tissues (WAT) and BAT, whereas those to the β1- and β2-AR agonists dobutamine and
terbutaline, respectively, were preserved [44]. Surprisingly at the time, the response to CGP
12,177 was attenuated in WAT but not BAT of the knock-out mice. This may be explained
by more recent findings that CGP 12,177 is a partial agonist at β3-ARs, an orthosteric
antagonist at the β1- and β2-AR, and an agonist at a non-orthosteric site of the β1-AR [45].

2.3. Early Research and Development Programs

A detailed account of the early research and development work on β3-AR agonists
as potential treatments of obesity and T2DM has been provided [22]. A starting point had
been observations that ephedrine [46–48] and other sympathomimetic agents including
various β-AR agonists increased thermogenesis and caused weight loss in the genetically
obese ob/ob mice [49,50].

While the initial studies suggested that the weight loss response involves a β-AR, the
challenge became to find compounds that mimic this effect but do not cause hypertension,
tachycardia, tremor, or hypokalemia, side effects known to be mediated by β1- and/or β2-
ARs [51]. As some of these effects apparently exhibit non-linear receptor-effector coupling
(receptor reserve, also known as spare receptors) [52], a high degree of selectivity for the
β3-AR relative to the other subtypes is required to avoid such adverse effects [53].

The apparently first research program on β3-ARs as a drug target for the treatment
of obesity and T2DM was launched at Beecham Pharmaceuticals (now part of GSK). It
led to the discovery of atypical β-AR agonists including BRL 28,410, BRL 35,135 and BRL
37,344, which were effective on lipolysis but lacked the above side effects attributed to β1-
and/or β2-ARs [54]. The compounds identified at Beecham Pharmaceuticals turned out to
be agonists at the cloned β3-AR, although their selectivity for this subtype has meanwhile
been challenged, particularly for the human β3-AR [55]. Subsequently, multiple companies
filed patents disclosing β3-AR agonists and their potential use in the treatment of obesity
and T2DM (see Section 8).

Taken together, the knock-out mouse studies supported a role for the β3-AR in the
regulation of total body fat in rodents. In contrast, human gene polymorphism studies
remained inconclusive, and the β3-AR gene locus did not point to a role of this receptor in
obesity and diabetes in genome-wide association studies. With hindsight, these findings
challenge the wisdom behind obesity and T2DM drug discovery programs targeting β3-AR.
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3. Insulin Release and Cellular Glucose Uptake

A physiological function of insulin is stimulation of cellular glucose uptake mostly
into adipocytes, e.g., after a meal. While this helps to acutely maintain euglycemia, it can
chronically lead to excessive lipid storage, i.e., obesity. Therefore, several studies have
addressed the effects of β3-AR agonists on insulin release and circulating insulin levels,
and on the interaction of insulin and β3-ARs in the control of cellular glucose uptake.

3.1. Insulin Release

An early study reported that BRL 26,830 increased plasma insulin concentrations
in fasted rats and improved glucose disposal after a glucose load in non-diabetic rats
and mice [15]. Subsequent studies by others reported dose-dependent increases of blood
insulin and glucagon concentrations along with a lowering of blood glucose in fasted
mice; propranolol at 10–50 mg/kg attenuated these responses whereas metoprolol and ICI
118,551 at 50 mg/kg mimicked the propranolol response only partly [56]. No increase of
blood insulin concentrations was observed in mice with streptozotocin-induced T1DM,
implying that these effects required intact pancreatic β cells. Within the same report, BRL
26,830 also increased blood insulin and glucagon in dogs; while glucose levels were not
affected, those of free fatty aicds (FFA) increased markedly, pointing to a site of action not
in the pancreas but rather in adipose tissue (AT) in canines.

In cultured rat pancreatic islet cells, neither BRL 26,830 nor the related compound
BRL 28,410 stimulated insulin release in the presence of 2.8 or 5.6 mM glucose. The same
group also studied the β3-AR agonist CL 316,243 in in situ perfused mouse pancreas [57].
The agonist concentration-dependently stimulated insulin secretion, which was partially
inhibited by propranolol and ICI 118,551, but not by metoprolol; based on an only incom-
plete inhibition by even high concentrations of propranolol (200 µM, expected to saturate
β1- and β2-ARs), the investigators proposed that a major part of this effect was mediated
by β3-ARs.

Experiments in the rat insulinoma cell line RIN 1040-38 (a model for pancreatic β cells)
found β3-AR expression and increased insulin release in the presence of BRL 37,344 and CL
316,243 [58]. However, this release had two characteristics that complicate interpretation of
the data. First, both agonists had bell-shaped concentration-response curves with maximal
effects at 1–10 nM but a lack of effect at 100 nM. Second, the effect was transient with a
peak after 30 min and return to control levels after 60 min. If the cells were transfected
with the human wild-type β3-AR, the bell-shaped concentration-response curve remained;
upon transfection with the 64Arg variant of the β3-AR, responses to CL 316,243 were not
detected, again pointing to this variant being hypofunctional.

CL 316,243 increased pancreatic islet blood flow and plasma insulin concentration in
rats while not affecting overall pancreatic blood flow [59]. This was prevented by a high
dose of bupranolol (general β-AR antagonist also inhibiting β3-ARs) but not by nadolol (not
inhibiting β3-ARs), implying involvement of a β3-AR. Based on these findings, the authors
proposed that insulin release by a β3-AR agonist may occur at least partly secondary to
vasodilation of microvessels in the islet of Langerhans. Of note, while vasodilation is
typically attributed to β2-ARs, it can occur via β3-ARs in some vascular beds [60]. Others
have proposed that the insulin release promoted by β3-AR agonists in mice may occur at
least partly secondary to lipolysis and release of free fatty acids [61].

A study with three selective β3-AR agonists for 14 days in db/db mice, including
solabegron that has been tested clinically in overactive bladder patients [62], reported
dose-dependent reductions of plasma insulin concentrations [63], which may be sec-
ondary to overall metabolic improvements as shown by concomitant reductions of glucose
and HbA1c.

The involvement of β3-AR in insulin release, food intake, and oxygen consumption
induced by CL 316,243 in rat WAT was confirmed by experiments in genetically modified
mouse models with either transgenic expression of the β3-AR in AT or in β3-AR knockout
mice [64].
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Taken together, these data indicate that β3-AR agonists can promote insulin release
from the pancreas of rats and mice upon acute administration, but the underlying cellular
and molecular mechanisms remain unclear and may be indirect, i.e., secondary to vasodila-
tion. Moreover, these acute effects were not observed in dogs and, at least in hyperglycemic
mice, turn into the opposite upon chronic administration.

These studies, in combination with the expression of β3-AR mRNA and protein in
the human pancreas, specifically in the islets of Langerhans [58], have prompted limited
investigations in human subjects. Eight healthy subjects received single oral doses of BRL
35,135 (8 mg) or salbutamol (8 mg) after pre-treatment with placebo, bisoprolol (5 mg) or
nadolol (20 mg) [65]. Both agonists lowered serum potassium concentrations, a known
β2-AR response, and increased serum glucose, insulin, and lactate. All three metabolic
responses were blocked by nadolol but not bisoprolol, indicating that they occurred via
β2-AR Interestingly, BRL 35,135 but not salbutamol increased serum FFA and glycerol
concentrations (similar to findings in dogs [56]), but that also appeared to be a β2-AR effect.
A recent study administered a high dose of mirabegron (100 mg q.d.) to 14 healthy women
of various ethnicities for a period of 4 weeks [13]. Insulin responses in a glucose tolerance
test were similar prior to and after 27 days of treatment. Taken together, these limited data
do not support a relevant β3-AR-mediated insulin release in humans, which is similar to
dogs but contrasts findings in rats and mice.

3.2. Cellular Glucose Uptake

Despite the controversial data concerning the role of β3-AR in mediating insulin
release, several lines of evidence have indicated the possible involvement of β3-AR in
enhancing glucose tolerance and uptake. El Hadri et al. attributed this phenomenon to the
complex interaction between feeding/fasting status and the expression of β3-AR in AT [66].
Nevertheless, insulin stimulated glucose transport in rat adipocytes with a rank order
implying a β3-AR involvement [67–70]. Several studies supported this claim. For instance,
using CL 316,243 in transgenic mouse models with either β3-AR specific expression in
AT or with β3-AR knockout mice, suggested that insulin release, food intake, and oxygen
consumption induced by CL 316,243 is mediated by β3-AR in WAT [64]. Moreover, CL
316,243 seemed to increase glucose uptake in a tissue dependent manner, and variations
were observed in different models of diabetes. CL 316,243 was effective in improving
glucose uptake in BAT but not in inguinal WAT in T2DM mice. The opposite was observed
in T1DM animals [71]. One study included different organs to examine the effect of BRL
37,344 in male Sprague Dawley rats. As expected, BRL 37,344 improved glucose uptake in
skeletal muscle, heart, and diaphragm, in addition to BAT and WAT [72]. Other than that,
a one week treatment with CL 316,243 (1mg/kg/day) induced glucose uptake in Wistar
rat WAT but not in guinea pigs, alongside upregulation of GLUT4 mRNA expression in
subcutaneous WAT (scWAT) and BAT of treated rats [73]. These data indicate a variation of
β3-AR role and response in glucose uptake across species.

Functional evidence unravelling β3-AR induced glucose uptake in humans is limited;
however, it is speculated that β3-AR agonists such as mirabegron improve glucose tolerance
and uptake [74]. One study indicated that in obese subjects, mirabegron improved glucose
tolerance and insulin sensitivity [75]. Another clinical trial indicated that a supratherapeutic
dose of 200 mg of mirabegron in healthy subjects stimulated BAT glucose uptake and resting
metabolic rate [76]. Other researchers proposed that glucose uptake in BAT both in human
subjects and in vitro is modulated by GLUT4 and uncoupling protein 1 (UCP1) is diurnal
bound [77]. On another note, cold induced BAT activation increased glucose uptake in
the supraclavicular and paraspinal regions [78], but it remains unclear whether β3-AR are
involved in this effect.

In conclusion, β3-AR agonists consistently seemed to improve glucose uptake in
various organs in human and animal models. This effect was more prominent in BAT and
was mostly associated with a better metabolic status. However, given the limited presence
of BAT in adult humans, it remains unclear how much this contributes to systemic glucose
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handling. More functional studies must be conducted, especially in humans, to further
support these conclusions.

4. Lipolysis and Adipose Tissue Remodeling

AT is unlike other organs in the body. It has peculiar morphology, physiology, and
function that differ based on the location and the shade of the fat pad [79]. WAT mainly
consists of unilocular adipocytes with lower mitochondrial and UCP1 expression and
a large single lipid droplet; it chiefly serves as energy reservoir in addition to secretory
function of various adipokines and hormones [80–82]. Plus, it counts for almost 80% of
total body fat that is primarily found in subcutaneous and visceral pools [83]. On the other
hand, BAT is a more heterogenous pool of adipocytes; the majority are of multilocular
morphology with higher mitochondrial and UCP1 levels and small lipid droplets, hence
the brown color [79,84]. BAT is largely used in thermogenic responses, using UCP1 to
dissipate energy as heat rather than ATP [85–87]. Thus, WAT and BAT store fat and can use
such stores by lipolysis; however, WAT mainly serves as energy storage and BAT mostly to
generate heat.

Accordingly, BAT plays an important physiological role in rodents and hibernating
animals but less so in other groups of mammals, including humans. While it has long
been assumed that adult humans lack BAT, more recent studies including those using
fluorodeoxyglucose positron emission tomography have revealed the presence of at least
some BAT in adult humans [88]. These were located differently than in rodents, i.e., mostly
in the supraclavicular and neck regions. However, these new findings do not affect the
more general concept that BAT plays only a minor role in adult humans as the prevalence
of BAT does not exceed some tens of percent. This may be too little to mediate robust
systemic lipolytic responses.

Human brown adipocytes have been described to be comparable to murine beige
adipocytes rather than brown, which are distinguished by having intermediate charac-
teristics of white and brown adipocytes (unilocular and multilocular, respectively) [89].
Beige AT expresses specific genes such as transcription factor Tbx1, fatty acid transporter
Slc27a1, as well as CD40 and CD137 [89]. Beige (also known as brite) adipocytes are the
latest to be identified among the different shades of adipocytes; they are multilocular with
fewer mitochondrial and UCP1 count than brown, but with more lipid droplets than white
adipocytes [89,90]. Hence, the term beiging or browning refers to the transformation of
WAT into a pool with beige characteristics in response to wide range of stimuli, increasing
its thermogenic capacity, which has been associated with numerous positive metabolic
outcomes and a target to treat these anomalies [91].

Adrenergic activation is known to be a positive modulator of metabolism, adipose
physiology, and activity in both human and animal models [76,92]. Still, divergence in
adrenergic response and expression in AT have been documented across species [93,94].
Henceforth, in this section we will dwell further on the role of β3-AR and AT across species.

4.1. β3-Adrenoceptor Expression in Adipose Tissue

Numerous reports have described the presence of β3-AR in rodent AT. This includes
rat [24,67,95–98] and mouse WAT [99–102] and rat [24,96] and mouse BAT [42,99–102].
Among the two splice variants of murine β3-AR, the β3b-AR dominates in WAT, whereas
the β3a-AR does so in BAT [100]. Of note, β3-AR mRNA expression in rodent AT markedly
exceeds that of β1- and β2-AR [24]. β3-AR mRNA was also found abundantly in cell lines
derived from murine WAT, e.g., 3T3-F422A cells [68,103,104]. The expression of β3-AR
mRNA was markedly reduced in AT from ob/ob as compared to lean mice [102].

In contrast, the data on β3-AR expression at the mRNA level in human AT are not
fully conclusive. Some investigators found it in human WAT [105–107], and in infant [106]
and adult cervical and inter- and suprascapular BAT [92,108,109]; however, other reports
did not confirm this [110,111]. Of note, most of these studies only reported qualitatively
and lacked comparison to other subtypes. The technically most advanced study in the field,
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comparing expression of all three subtypes in more than 30 human tissues, reported that
expression in AT was much lower than for the other two subtypes and below the detection
limit (β1 2.29, β2 12.60, β3 0.19 fragments per kilobase of transcript length per million
of mapped reads) [112] (Table 1). Thus, β3-AR mRNA is abundantly detected in rat and
mouse WAT and BAT, whereas its detection in human BAT is inconsistent. Accordingly,
β3-AR are the most abundantly expressed β-AR subtype in rodent AT [24] but the least
abundantly expressed subtype in human AT [112]. Interestingly, Riis-Vestergaard et al.
suggested, based on using both CL 316,243 and mirabegron, that sympathetic activation of
human BAT is mediated by β1-AR activation and not β3-AR [113].

Table 1. Quantification of β-AR subtype mRNA expression in human tissues. All data are shown as
fragments per kilobase of transcript length per million mapped reads, a transcript abundance unit, in
descending order of β3-AR expression and represent the median of samples from 3–7 patients.

β1-AR β2-AR β3-AR

Ovary 0.02 0.79 6.89
Gall bladder 0.10 4.43 2.57
Placenta 28.77 5.99 2.53
Urinary bladder 0.29 6.63 1.54
Fallopian tube 0.09 4.38 0.64
Colon 0.75 2.07 0.54
Appendix 0.38 2.34 0.41
Prostate 4.01 9.64 0.29
Small intestine 1.18 1.66 0.25
Endometrium 0.07 2.20 0.22
Adipose tissue 2.29 12.60 0.19
Duodenum 0.73 1.54 0.19
Rectum 0.87 2.63 0.16
Brain 4.58 2.02 0.12
Myometrium 0.13 3.62 0.12
Stomach 0.76 6.68 0.11
Lung 6.55 18.01 0.07
Lymph nodes 0.11 3.08 0.07
Esophagus 0.99 8.55 0.03
Skin 0.16 5.60 0.02
Tonsil 0.31 5.51 0.02
Heart 11.57 4.92 0.02
Bone marrow 0.32 7.82 0
Spleen 0.90 6.90 0
Skeletal muscle 0.06 4.19 0
Liver 1.03 4.12 0
Salivary gland 4.93 2.54 0
Adrenal 0.16 1.48 0
Thyroid 0.21 1.07 0
Kidney 0.99 0.68 0
Pancreas 0.65 0.58 0
Testis 0.26 0.52 0

Adapted with permission from [112].

4.2. Lipolysis and Thermogenesis
4.2.1. Non-Primate Animals Studies

Lipolysis studies in rodents were instrumental in postulating that a third β-AR subtype
must exist [22]. Thus, initial studies from the Zaagsma group and others found that the rank
order of potency of various agonists and antagonists to stimulate and inhibit rat AT lipolytic
responses, respectively, did not match those at the β1- and β2-AR [17–19,54,114–119].
However, studies specifically performed in WAT mainly found an involvement of β1-
AR [119]. Studies published after the cloning of the human [23], rat [24], and mouse
β3-AR [25] confirmed the involvement of β3-AR in lipolytic responses in rats [120–128].
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Thus, lipolytic responses in rats have a strong β3-AR involvement, although some of
these studies have detected a β1-AR contribution. Interestingly, the lipolytic response
isoprenaline or CL 316,243 in rat AT in the absence of insulin did not depend on the
presence of the enzyme adenosine deaminase, whereas the stimulation in the presence of
insulin was markedly attenuated by presence of the enzyme, with even stronger inhibition
by the enzyme in the combined presence of insulin and glucose [69].

The initial report on the cloning of the murine β3-AR described that the potency of
various agonists to stimulate cAMP formation in transfected CHO cells correlated well with
that to induce lipolysis in rat brown adipocytes [25]. Subsequent studies confirmed the
involvement of β3-AR in lipolytic responses in mice [44,129]. Studies in dogs also found
that lipolytic responses are largely mediated by β3-AR [130,131].

4.2.2. Human and Primate Studies

The role of β3-AR in lipolysis in humans and primates has been investigated exten-
sively. An early study compared WAT from rat, dog, marmoset (Callithrix jacchus), baboon
(Papio papio), macacque (Macaca fascicularis), and humans [132]. Isoprenaline was similarly
potent in all six species. The intrinsic activity (expressed as fraction of maximum isopre-
naline response) was about 1 in all species for noradrenaline. It also was about 1 for the
β1-AR agonist dobutamine in rat and dog, about 0.9 in marmoset, and about 0.7 for baboon,
macaque, and human. In contrast, it was about 1 for BRL 37,344 in rat and dog, about 0.6
for marmoset, and about 0.1 or less in baboon, macaque, and human. Other β3-AR agonists
including CGP 12,177, CL-316,243, D7114, and SR 58,611 also had low potency and/or low
efficacy in the latter three species. Antagonist experiments also supported the view that the
lipolytic effects in baboon, macaque and human primarily involved β1- and β2-AR. Studies
in isolated subcutaneous adipocytes from rhesus monkey reported that the β3-AR agonist
L-750,355 concentration-dependently stimulated lipolysis; while its potency at the cloned
monkey β3-AR was 28 nM, the lipolytic response did not reach an identifiable maximum
even at 10 µM and was ≤20% of the isoprenaline response in concentrations close to its
EC50 at the cloned receptor [133].

Several studies have explored the role of β3-AR in the regulation of lipolysis in
humans, and the early studies have been reviewed previously [134]. One of the first
experiments found that the activity of stereoisomers of β-AR antagonists could not be
explained by involvement of β1/β2-AR in rats, but no such contradiction was found
in human AT [19]. Later work from the same group found that BRL 37,344 stimulated
lipolysis in human AT with much lower potency than in rat AT [118,126]. BRL 37,344 caused
lipolysis in omental and subcutaneous white adipocytes by stimulating β2-adrenoceptors;
lipolytic effects of CGP 12,177 may occur at least partly by a receptor distinct from β1-
and β3-adrenoceptors [105]. Additionally, alprenolol, an antagonist with low affinity
for β3-adrenoceptors, blocked the lipolytic response to isoprenaline in human but not
rodent subcutaneous WAT [124], indicating that the human response is not mediated by
β3-ARs. Others reported that the lipolytic effect of noradrenaline in human and monkey AT
involved β1- and/or β2-AR with no evidence for an involvement of β3-AR [132]. Others
found that lipolysis responses to CGP 12,177 were antagonized by bupranolol but only
poorly by β1- and β2-AR antagonists; moreover, CGP 12,177 promoted lipolysis more
effectively in human omental than in subcutaneous AT [135]. Thermogenic responses to
an infusion of isoprenaline were attenuated by atenolol, indicating that they occurred by
β1-AR stimulation. Several β3-AR agonists were tested in a follow-up study in human
omental adipocytes: While some of them had lipolytic effects (BRL 37,344, CGP 12,177, CL
316,243, SM 11044 with some being only partial agonists), others did not (ICI D7114, SR
58611A, ZD 2079) [136], indicating that a lipolytic response in human AT may be limited to
certain compounds and is not a universal response to β3-AR stimulation. Others also found
that lipolytic responses in human WAT were only inconsistently achieved with β3-AR
agonists [137].
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Excitingly, these findings were negated by Cero et al. using mirabegron on human
derived brown adipocytes. Mirabegron stimulated lipolysis and thermogenesis, while
silencing β3-AR in BAT blocked these processes [109]. Moreover, the aforementioned
Trp64Arg mutation in β3-AR gene (see Section 2.1) reduces lipolysis in human WAT in
response to L-755,507 [33]. Furthermore, a dose of 100 mg of mirabegron was enough
to induce thermogenesis in supraclavicular skin in humans, without inciting off-target
binding in comparison to higher doses [14]. These contradicting lines of evidence furtherd
the debate concerning the involvement of β3-adrenoceptors in human lipolysis.

On a different note, thermogenesis is a hallmark of BAT activity that is chiefly achieved
by sympathetic activation and generally associated with positive metabolic outcomes [46,
50,84,85,92,109,138]. In healthy adult subjects, paracervical and supraclavicular brown
adipose tissues were biopsied; these pools had 1000 times higher UCP1 expression than
the adjacent WAT, with higher glucose uptake after cold exposure [86]. Interestingly,
caffeine intake (leading to various stimulant effects based on its antagonism of adenosine
receptors) was suggested to ignite BAT thermogenesis in humans since it induces overall
positive metabolic effect in obese and non-obese subjects, including thermogenesis, lipolysis,
improved glucose tolerance, and insulin [59,139,140]. Consequently, it was implied that
caffeine might modulate β3-AR activation in BAT [141]. Since thermogenesis can be
achieved by cold induction and other safe compounds such as caffeine, the use of β3-AR
agonists to activate this process might not be a feasible option.

4.2.3. In Vitro Studies

Brown adipocytes sourced from adult cynomolgus monkeys were the focal point of a
study that delved into the roles of β-AR in triggering lipolysis and thermogenesis. This
investigation, employing agonists for the three β-AR subtypes (β1, β2, and β3), namely
denopamine, procaterol, and CGP12177A, unveiled their shared responsibility in these
metabolic processes [142]. Another study on immortalized brown adipocytes showed
the additive role of β-AR subtypes in increasing cellular cAMP formation, evidenced by
the activation of adenylyl cyclase by noradrenaline after these cells being incubated with
CL 316,243. Hence, this activation was achieved by multiple β-AR subtypes, not only
by β3-AR. Moreover, all β-AR agonists induced UCP1 expression, and the maximal rate
was obtained by isoproterenol (100microM) [104]. Still, primary cell culture of mouse BAT
showed that β3-AR activation using BRL 37,344 was the most effective one in inducing
UCP1 synthesis [143]. Also, heat production from brown adipocytes of older rats (40 weeks
old) was lower compared to their younger obese littermates (12 weeks). Furthermore,
thermogenesis was found to be activated equally in both groups by β3-AR agonist BRL
37,344 compared to non-selective agonist isoproterenol which exerted a significant lower
response in obese rats [144]. Furthermore, mirabegron stimulated UCP1 expression in
mouse brown adipocytes and 3T3-L1 cells [145]. Indicating the role of β3-AR in promoting
UCP1 mediated thermogenesis in rodent adipocytes.

Most recently, immortalized human brown adipocytes were studied using not only
subtype-selective agonists but also receptor knock-down experiments to determine the
β-AR subtype involved in lipolysis and UCP1 expression [113]. Lipolysis and UCP1
expression were stimulated by isoprenaline and dobutamine but not by procaterol, CL
316,243, or mirabegron. Similarly, knock-down of β1-AR attenuated the isoprenaline-
induced UCP1 expression. These data strongly support the idea that β1-AR and not β3-AR
is largely responsible for the modulation of human BAT.

In conclusion, a major contribution of β3-AR to lipolytic responses has consistently
been shown in rats, mice, and dogs. On the other hand, the role of β3-AR in humans
has been reported only inconsistently and equivocally. Additionally, where detected,
β3-AR often played a smaller role than β1- and/or β2-AR. Henceforth, studying β3-AR
involvement in murine models can be considered irrelevant to human physiology.
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4.3. Adipose Tissue Remodeling

AT is a dynamic endocrine organ that exhibits physiological changes in response to
a range of stimuli, both positive and negative [146,147]. These alterations mainly involve
variations in the adipokines profile, cell heterogeneity particularly within brown and beige
pools, and thermogenic capacity that is mainly driven by UCP1. This process is referred to
as adipose tissue remodeling [146–150].

Sympathetic activation is essential to maintain a healthy function and plasticity of
AT, by inducing positive remodeling [109,151–153]. Cold has been used as a natural
sympathetic activator of BAT [78,154,155]. Pharmacological interventions have been used
to modulate and activate AT as well. For example, mirabegron was found to improve
scWAT dysfunction and to induce positive adipose remodeling indicated by increasing
UCP1 expression and lipolysis in obese and insulin resistant human subject [75].

Notwithstanding, it has been debated whether the upper hand in sympathetic ac-
tivation of AT is mediated by β3-AR or not across species. As shown in a recent study
by Blondin et al., adrenergic mediated thermogenesis and lipolysis of BAT is driven by
different adrenergic receptors. In humans, it was found to be mediated through β2-AR
activation rather than β3-AR; while in rodents, the opposite was documented. Not only the
activation but rather the expression of ARs was different; human BAT was noted to have a
higher expression of β2-AR as well [94].

As stated before, adipose tissue, particularly BAT, exhibits considerable disparities
between humans and rodents, encompassing differences in localization, physiology, mor-
phology, and function. Importantly, BAT relative to body mass is notably lower in humans
compared to rodents [87,156]. Different β-ARs subtypes are active and predominant as
well. Indeed, β3-AR is believed to be the key modulator of positive AT remodeling in
rodents [80].

In fact, treatment with CL 316,243 for one week was found to induce AT remodeling in
Wistar rats [73]. It also doubled the metabolic rate and raised body temperature, induced
WAT browning and activation in wild type C57Bl/6 mice [157]. In fact, CL 316,243 infusion
in Wistar rats fed on high fat diet was found to increase FFA uptake and lipolysis in BAT
as well [158]. Additionally, mirabegron treatment (2 mg/kg of body weight) for 3 weeks
seemed to lower body weight and adiposity in high fat diet fed mice. It also reduced
brown adipocytes’ size in the interscapular pool while increasing UCP1 expression, in-
creasing beiging in the inguinal depot, while improving insulin sensitivity and glucose
tolerance compared to the vehicle treated mice [145]. Moreover, knockout of β3-AR ex-
hibited impaired lipolysis in mice [156], upregulation of β1-AR mRNA in BAT and WAT,
and increased adiposity [42]. These findings emphasize the role of β3-AR in rodent AT in
inducing metabolic activity. However, these positive metabolic alterations in BAT were
produced by caffeine intake in obese and non-obese rodents [140,159], giving off more
convenient options in inducing positive adipose remodeling than β3-AR agonists.

The wide gap in results concerning the role of β3-AR in AT remodeling across species
and models makes translational research of β3-AR agonists in targeting AT dysfunction in
rodents less predictive for humans.

5. Obesity

Being a metabolic sink for glucose and FFA, BAT activation has been considered a
corner stone in improving metabolic health, since it is correlated to improved glucose and
insulin sensitivity [9–12,160]. Studies with ephedrine [46–48] and other sympathomimetic
agents including various β-AR agonists had reported increased thermogenesis and weight
loss in the genetically obese ob/ob mice [49,50] or a prevention of high-fat diet-induced
weight gain [161]. Therefore, it was suggested that targeting β3-AR in BAT pharmacologi-
cally has therapeutic potential for metabolic dysfunction and obesity [12–14,22,162].
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5.1. Non-Primate Animal Studies

Conclusive evidence regarding the β3-AR/AT axis in developing obesity and metabolic
derangements has been presented in rodents. For instance, in lean and obese diabetic
Zucker diabetic fatty rats (a model of type 2 diabetes), CL 316,243 infusion revealed an
anti-obesity and anti-diabetes effect by improving glucose tolerance, insulin sensitivity,
thermogenesis, mitochondrial biogenesis, WAT, BAT, and skeletal muscle glucose uptake
and reducing plasma FFA levels [163]. Administration of CL 316,243 in rats fed on a high
fat diet, seemed to increase energy expenditure, UCP1 in BAT, and prevented WAT hyper-
plasia [164]. Moreover, treating the ob/ob mouse model of obesity with BRL 37,344 seemed
to rescue from metabolic dysfunction, by improving systemic levels of glucose, FFA and
insulin. Similarly, treatment with CL 316,243 prevented the body weight gain induced by a
high-fat diet in AJ mice [161]. Indeed, β3-AR agonists reduced fat mass without affecting
lean body mass in multiple studies in ob/ob mice [22]. Interestingly, chronic infusion of
1 mg/d of BRL 37,344 for 20 days increased UCP1 mRNA expression in BAT compared to
acute intervention for 1 day [165]. BRL 35,135 also caused weight loss in ob/ob mice and in
Zucker diabetic fatty rats.

UCP-DTA transgenic mice with toxigene-mediated ablation of BAT were significantly
obese on week 12 of western diet feeding, which was not stimulated by hyperphagia
compared to the wild type. They also presented deleterious metabolic anomalies such as
insulin resistance, glucose intolerance, and hyperlipidemia. Moreover, these mice seemed
to have lower rates of GLUT4 and β3-AR mRNA, and increased expression of tumor
necrosis factor-α compared to the control littermates [166]. Similar findings were reported
by Lowell et al. using the same transgenic mouse model in the absence of western diet.
Moreover, using CL 316,243 exerted 50% lower thermogenic activity compared to the wild
type [167]. Another model of β3-AR knockout mice, showed that after 8 weeks of high fat
diet, the mice had glucose intolerance with hyperlipidemia, increased adiposity of WAT
with inflammatory markers compared to the wild type [156].

5.2. Human and Primate Studies

In contrast to rodents, non-human primates, such as prepubertal baboons, did not
seem to exhibit metabolic activity in WAT and BAT in response to different β3-AR agonists
including SR 58,611A, BRL 37,344, CGP 12,177, and CL 316,243. Furthermore, β3-AR mRNA
was not found to be abundant in these fat pads as well, which was also not correlated to
UCP1 expression [168].

Similarly, the results from human studies regarding BAT β3-AR modulation of obesity
remain inconclusive. On one hand, body mass index and body compositions were found to
be strongly associated with lower BAT activity in morbidly obese individuals as well as cold
induced thermogenesis [169]. A study on BAT+ and BAT- men with similar age, body mass
index, and adiposity showed that after prolonged cold exposure, insulin sensitivity, glucose
regulation, and resting metabolic rate were all increased in BAT+ subjects only [170]. These
data indicate a discrepancy in metabolic impact based on the presence of BAT in these
subjects. Moreover, the presence of BAT per se does not ensure BAT activation, as it might be
affected by environmental factors such as cold. For instance, a study evaluated BAT activity
by integrated positron-emission tomography and computer tomography scanning with
18F-fluorodeoxyglucose in 14 overweight and obese compared to 10 lean men. BAT activity
was found during cold exposure but not under thermoneutral conditions, and it was lower
in obese than in lean subjects [154]. Of note, comparing cold induced thermogenesis with
mirabegron treatment in lean and obese subjects from both sexes showed that upon 10 days
of placing ice packs on one thigh for 30 min was enough to induce beiging in subcutaneous
AT in both legs. Meanwhile, 10 weeks of daily 50 mg of mirabegron showed signs of
beiging indicated by UCP1 expression from the same pool. In addition to that, no sex
differences were found in beiging of scWAT in both arms of intervention [155]. Intriguingly,
ephedrine did not seem to induce thermogenesis in intrascapular fat in healthy subjects,
although it induced oxygen intake, flood flow to the area, and skin temperature, in addition
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to lipolysis. These results indicate the possible increased temperature due to increased
blood flow induced by sympathetic activation rather than thermogenesis, since brown
adipocytes were not detected from the biopsies [171].

Importantly, it was suggested that mutations of β3-AR gene, especially Trp64Arg muta-
tion, were associated with obesity and metabolic dysfunction in humans [30,33,37,172–174].
Contradictory data were reported, where scientists found no association between of β3-AR
gene mutation and obesity or adiposity [32,175,176]. As such, results from two cohorts, the
Québec Family Study and the Swedish Obese Subjects, concluded that Trp64Arg mutation
in β3-AR gene was not associated with cardiometabolic insults, obesity, adiposity, or body
composition change over the period of 12 years in the former. Similar outcomes were
recorded in the latter, as this mutation was not associated with any weight gain over time
and no difference was found in this gene between the obese and non-obese subjects [175].

The current body of evidence concerning the involvement of β3-AR in obesity remains
inconclusive, leaving uncertainty about whether mutations in β3-AR contribute to the
pathogenesis of obesity or aid in its management by activating it. This ambiguity casts
doubt on the efficacy and adequacy of targeting β3-AR in AT as a therapeutic approach for
tackling obesity.

6. Clinical Development Programs

Based on the promising results in rodents and on some of the gene polymorphism
studies, several pharmaceutical companies launched clinical development programs for
their β3-AR agonists in obese and/or diabetic patients. These have been reviewed by
Larson [177], who had played an active part in the program by Merck & Co.

The Beecham program on BRL 26,830 was apparently the first to enter clinical develop-
ment and has been tested in at least four trials. A short-term infusion of BRL 26,830 in obese
subjects increased insulin sensitivity [178]. Chronic administration studies, published in
abstract form only, found an increase in placebo-adjusted energy expenditure across three
studies [177]. However, the overall effects on body weight were unimpressive, and they
were accompanied by tremor [179], a typical adverse effect from β2-AR stimulation [180].
Therefore, this program was discontinued, and another with the backup compound BRL
35,135 was initiated. Administration of single oral doses of BRL 35,135 or of salbutamol in
the absence and presence of antagonists were studied in healthy volunteers [65]. Decreases
of serum potassium and increases of glucose, insulin, and lactate were apparently mediated
by β2-AR; an increase in FFA occurred with BRL 35,135 but not with salbutamol. While both
agonists increased basal metabolic rate, this was a β2 response for salbutamol and possibly
included a β3 component for BRL 35,135. The induction of a thermogenic response to BRL
35,135 in non-obese men was confirmed in another study [181], but this did not determine
the β-AR subtype being involved. Treatment of obese subjects for 10 days improved insulin
sensitivity but did not lower body weight [182]. No subsequent studies were reported,
indicating that the program was discontinued because the overall effects on body weight
were discouraging.

CL 316,243 has good selectivity for β3- relative to β1- and β2-AR but its efficacy is only
about 60% of that of isoprenaline [183]. Despite several studies showing beneficial effects in
rats and in immortalized human brown adipocytes [113], it improved insulin effects with
only moderate effects on energy expenditure in an 8-week, placebo-controlled clinical trials
in healthy lean men [184].

After the phenylethanolamine RO 16-8714 had shown beneficial effects in rodents [95,
185], its infusion in humans increased energy expenditure but also heart rate [186,187].
No follow-up studies were reported. ICI D-7114 has been studied in a 14-day, double-
blind, randomized trial in obese patients but the results on energy expenditure and body
weight also did not support further investigation [188]. Similarly, TAK-677 [189] (0.1 and
0.5 mg b.i.d. for 29 days) resulted in a statistically significant but small increase in energy
expenditure relative to placebo in obese patients but did not affect body weight or fasting
levels of glucose, insulin or FFA [190].
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L-796,568 has been administered in single doses of 250 and 1000 mg to healthy over-
weight men in a placebo-controlled, 3-way cross-over trial [191]. The 1000 mg dose in-
creased energy expenditure by about 8%, which was accompanied by an increase in plasma
glycerol and FFA. While heart rate and diastolic blood pressure remained unchanged,
systolic blood pressure increased by about 12 mm Hg. It was also tested in a 28-day
placebo-controlled study with daily doses of 375 mg in non-diabetic overweight men [192].
The two groups did not differ in energy expenditure at study end, and glucose tolerance
was not altered either. No additional clinical studies were reported.

Mirabegron [193] and solabegron [62] have been tested in phase II studies in obese/T2DM
patients but no clinical outcomes were disclosed by Astellas and GSK, respectively; neither
compound advanced to phase III studies in an obesity or T2DM indication. However, based
on clinical availability of mirabegron for the overactive bladder syndrome indication [194],
academic investigators have performed additional clinical studies. A supra-therapeutic
single dose of mirabegron (200 mg) increased BAT metabolic activity in healthy male
subjects as assessed by fluorodeoxyglucose in positron emission tomography [76]. In a
follow-up study with single doses of 50 and 200 mg mirabegron, the effect on BAT metabolic
activity increased more than dose-proportionally by the greater dose [92].

Based on the accumulated clinical evidence, it has been concluded that β3-AR agonists
yielded “a statistically significant elevation in total energy expenditure but this did not
translate into a biologically meaningful negative energy balance”, i.e., a releavant loss of
body weight [177].

7. Why Do Rodent and Primate Studies Differ?

While the above data show that β3-ARs are a promising target for the treatment of obe-
sity, and perhaps T2DM, in rodents, the data in humans and non-human primates are less
conclusive and generally show quantitatively much smaller, if any, effect (Table 2, Figure 1).
Accordingly, clinical development programs of β3-AR agonists by multiple pharmaceutical
companies yielded small effects on thermogenesis that failed to translate into clinically
relevant effects on body weights and led to the discontinuation of such programs. The
above data indicate why a drug target promising in rodents was insufficiently responsive
in humans.

First, the relative lack of efficacy in obese or diabetic humans is not due poor efficacy
of drug candidates at the human receptor. Compounds that failed in clinical studies in
obese and/or diabetic patients including mirabegron have been highly successful in other
indications such as the overactive bladder syndrome. Second, a key factor in such species
differences is the abundance of BAT, which is high in rodents but sparse in adult humans. It
had already been concluded in the late 1990s that the body weight effects of β3-AR agonists
(even in mice) depend on the presence of functional BAT [161]. While some maneuvers
can promote the beiging of AT in humans, the presence of BAT or beige AT relative to
body weight appears limited in humans. Third, β3-AR agonists promote pancreatic insulin
release in rodents but have limited effects in humans. Fourth, the expression of β3-AR
in AT appears to be considerably lower in humans than in rodents. While the lipolysis
response in rodent WAT has a considerable β3-AR component, the response in human
WAT is largely carried by β1-AR. Accordingly, the lipolytic and thermogenic responses
in humans upon systemic administration are much smaller than in rodents. All of these
factors in combination lead to a pronounced body weight reduction in rodents but not
in men.
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Table 2. Comparison of parameters linked to β3-AR and metabolism of rodent (rat, mouse) vs.
human and other primate species. For details see main text.

Rodent Humans and Other Primates

BAT presence in adults abundant sparse
Insulin release by β3-AR agonists +++ -
β3-AR expression in AT +++ +
Glucose uptake in BAT +++ +
Lipolysis/thermogenesis +++ +
Lipolysis in WAT β3-AR β1-AR
Weight loss ++ inconclusive
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Figure 1. Differential metabolic impact of β3-adrenoceptor (AR) agonists across species. In rodents,
β3-AR agonists, such as mirabegron, CL 316,243 and BRL 37,344, were found to promote positive
metabolic implications by improving insulin release (indicated by the green plus sign), increasing
glucose uptake in brown adipose tissue (BAT) and white adipose tissue (WAT) and lipolysis in the
former only. In addition to upregulating uncoupling protein 1 (UCP1) expression and thermogenic
capacity in BAT. On the other hand, data from human studies concerning insulin release, glucose
uptake and lipolysis by WAT were inconsistent and inconclusive (indicated by the red question mark).
Only glucose uptake human BAT was modulated consistently by β3-AR agonists. However, the data
on β3-AR induced thermogenesis and UCP1 expression in human BAT were equivocal.

8. Conclusions and Future Perspectives

Rodent studies generally support the role of β3-AR as a target for the treatment of
obesity and diabetes, whereas human studies mostly do not. This includes studies at
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the genetic level (gene knock-out studies in mice vs. genome-wide association studies in
humans; see Section 2.3). Despite commercial efforts in various pharmaceutical companies
(see Sections 6 and 9), no β3-AR agonist has become a clinically available drug for the
treatment of obesity and/or T2DM. To the contrary, at least nine β3-AR agonists have
been tested clinically, some even in phase II studies, but failed to provide efficacy signals
of sufficient strength to merit further development as anti-obesity/anti-diabetic drugs.
In contrast, multiple β3-AR agonists have shown efficacy in patients with overactive
bladder syndrome [62] and two of them, mirabegron [194] and vibegron [195], have become
approved and guideline recommended treatments for this condition. In some cases, such as
mirabegron, they had insufficient effects sizes in the obesity/T2DM indication but became
approved drugs in the overactive bladder indication, indicating that the disappointing
clinical data in the obesity/T2DM indication were not due to testing of an ineffective
compound. Clinical development efforts in obesity and/or T2DM largely failed because
of a sparse present of BAT in adult humans, differences in β3-AR expression, and other
factors (see Section 6). As obesity is a market of huge potential commercial interest, it is
telling that presently no major pharmaceutical company appears to be active in this space,
including those who had active programs and discontinued them.

Some academic efforts have focused on inducing BAT or at least ‘beiging’ of WAT but
it remains to be seen whether this will lead to a more successful use of β3-AR agonists as
weight-lowering/anti-diabetic treatment. We personally are skeptical about these efforts for
three main reasons: Firstly, clinical studies using β3-AR with various chemical structures
have mostly found stimulation of thermogenesis in acute studies (single administration),
whereas the limited chronic studies (multiple weeks) typically did not confirm this. This
points to a possible role of desensitization of β3-AR [196]. Second, while β3-AR agonists
generally are well tolerated, at least for mirabegron warnings on cardiovascular effects in a
small fraction of patients have been issued [112]. It has been speculated that such adverse
effects are related to a phenyl ethanolamine backbone, which is present in mirabegron
and several other β3-AR agonists and may cause indirect sympathomimetic activity [197].
Moreover, at least mirabegron has additional off-target effects such as antagonism at α1-
adrenoceptors [198–200]. Such off-target effects were neither reported nor are expected for
the β3-AR agonists with other chemical backbones.

Third and most importantly, the key question is not whether β3-AR agonists will cause
some weight loss relative to placebo; to make a clinical development program commercially
viable, the candidate drugs must match the success of glucagon-like peptide 1 receptors
such as semaglutide. Of note, compounds combining such agonism with that at receptors
for glucose-dependent insulinotropic polypeptide, e.g., tirzepatide, apparently cause even
greater weight loss [5]. We consider it highly unlikely that β3-AR agonists even with
substantial beiging will ever reach such efficacy. This is further complicated that treatments
with agents that first induce beiging and then stimulate β3-AR are highly complex, both
in medical use and regarding a viable regulatory strategy. Not surprisingly, to the best of
our knowledge, no major pharmaceutical company is maintaining clinical programs in this
respect, including companies that have β3-AR agonists in their portfolio (see Section 9).

9. Patents

Following the lead of Beecham Pharmaceuticals (now a part of GSK) and its original
drug discovery programs of β3-AR agonists as potential treatments of obesity [54], nu-
merous pharmaceutical companies have filed patents seeking exclusivity for their β3-AR
agonists as potential treatment of obesity and/or diabetes as reviewed elsewhere [201].
These patents cover thousands of compounds of various chemical structures [202]. They
include patents from companies such as American Home Products, American Cyanamid
Co., Asahi Kasei Pharma Corporation, Astellas Pharma, Bayer AG, Boehringer Ingelheim
International, Bristol-Myers Squibb Co., Dainippon Pharmaceutical Co., Eli Lilly & Co.,
Fujisawa Pharmaceutical Co., Glaxo Group Ltd., Glenmark Pharmaceuticals Ltd., Imperial
Chemical Industries Plc, Kaneka Corporation, Kissei Pharmaceutical, Merck & Co., Pfizer
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Inc., Sanofi SA, Smithkline Beecham Plc, Sumitomo Pharma, Tokyo Tanabe Co. Ltd., and
Toyko Shinyaku Co. Ltd.; for details see [201]. Several of the compounds covered in those
patents have entered clinical development (see Section 6), but none has proceeded beyond
phase II or even been approved in the obesity/T2DM therapeutic field.
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