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Abstract: Over the past decade, genetic engineering has witnessed a revolution with the emergence
of a relatively new genetic editing tool based on RNA-guided nucleases: the CRISPR/Cas9 system.
Since the first report in 1987 and characterization in 2007 as a bacterial defense mechanism, this
system has garnered immense interest and research attention. CRISPR systems provide immunity
to bacteria against invading genetic material; however, with specific modifications in sequence and
structure, it becomes a precise editing system capable of modifying the genomes of a wide range
of organisms. The refinement of these modifications encompasses diverse approaches, including
the development of more accurate nucleases, understanding of the cellular context and epigenetic
conditions, and the re-designing guide RNAs (gRNAs). Considering the critical importance of
the correct performance of CRISPR/Cas9 systems, our scope will emphasize the latter approach.
Hence, we present an overview of the past and the most recent guide RNA web-based design tools,
highlighting the evolution of their computational architecture and gRNA characteristics over the
years. Our study explains computational approaches that use machine learning techniques, neural
networks, and gRNA/target interactions data to enable predictions and classifications. This review
could open the door to a dynamic community that uses up-to-date algorithms to optimize and create
promising gRNAs, suitable for modern CRISPR/Cas9 engineering.

Keywords: CRISPR/Cas9; machine learning; gRNA; neural networks; deep learning

1. Introduction

Historically, biotechnology has undergone remarkable advancements and refinements,
leading to significant improvements in its methodologies and outcomes [1]. Notably, great
progress has been made in the purification, amplification, and editing of genomes. In the
context of genome editing and gene insertion, biotechnology has witnessed groundbreak-
ing developments. Various tools and technologies have been devised to manipulate and
modify genetic material with unprecedented precision. The advent of techniques such as
CRISPR-Cas9 has revolutionized the field by enabling targeted and efficient gene editing,
paving the way for potential treatments of genetic disorders and the creation of genetically
modified organisms [2,3]. Concurrently, the field of machine learning has been revolu-
tionized by neural networks and deep learning algorithms, facilitating the extraction of
valuable insights and identification of patterns in intricate datasets across diverse research
areas [4–6]. In this review, we aim to explore the synergistic potential of the fusion of
both cutting-edge technologies, CRISPR and machine learning, specifically focusing on the
design evolution of guide RNAs (gRNAs) for CRISPR/Cas9-mediated gene editing.

1.1. CRISPR/Cas: From a Bacterial Defense to a Genetic Engineering Tool

The first contact with this system occurred when Ishino et al. [7] described the nu-
cleotide sequence of the iap gene in Escherichia coli in 1987. Until those days, scientists
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had purely basic and trivial knowledge about this system, and they related it as a cluster
of repeated sequences solely spaced by different sequences. In 2007, it was proved that
CRISPR/Cas is a defensive bacterial, immunity-providing system against aggressive for-
eign genetic material such as invading plasmids or bacteriophage DNA [8]. Figure 1 shows
the CRISPR locus present in CRISPR-harboring bacteria. The CRISPR array is formed by
an AT-rich leader sequence containing promoter sequences; integrated foreign sequences
known as spacers; and palindromic repeats serving as spacer separators [9–12]. Even more,
The CRISPR-associated (Cas) proteins are translated from the Cas cluster that is commonly
surrounding the neighborhood of the CRISPR array [9].

Figure 1. The CRISPR cluster. The CRISPR-associated (Cas) cluster consists of genes coding for the
needed proteins for the correct function of the system, such as Cas9, or adaptation-involved proteins
(Cas1, Cas2, etc.). The leader sequence controls the expression of the CRISPR array when it becomes
necessary; spacers are non-repetitive sequences that separate the repeats; and repeats are strongly
conserved palindromic sequences capable of hairpin formation.

To date, this defense system must complete three stages to provide immunity in the
host cell: adaptation, expression, and interference stages [9,13]. The adaptation stage starts
as a response to viral infection. A host Cas1-Cas2 multimeric protein complex recognizes
the foreign DNA, cuts a specific sequence known as a protospacer, and integrates it into the
CRISPR array [10,12]. This array is transcribed and processed in the expression stage to
produce the crRNA:tracrRNA complex. Next, this complex is bounded to the Cas9 protein
in the interference stage, assembling the Cas9:RNA structure [14,15], which performs the
target recognition and target degradation activity [13], incapacitating the bacteriophage
from damaging the host (see Figure 2). Protospacer-adjacent motifs (PAMs) located in
the non-target DNA strand, adjacent to the target sequence, are recognized by the Cas9
to initiate the cleavage process [14,16,17]. In 2012, the type II CRISPR/Cas9 system was
reprogrammed by its pioneers so it could be used as genome editing machinery [3,18]. This
reprogramming involved the substitution of the crRNA:tracrRNA complex by a synthetic
single guide RNA (sgRNA) [18], simplifying the whole system (Figure 3). The term sgRNA
(single guide RNA) is commonly interchangeable with gRNA (guide RNA). For agility and
practical concerns, gRNA will be used in this review.

1.2. gRNAs and CRISPR On-and-Off Targets

gRNAs and Cas proteins are the foundation for mediating the desired cuts in the gene
of interest. Therefore, we must be familiar with some characteristic features of gRNAs.
Firstly, the common total number of nucleotides that constitute the gRNA recognition site
is approximately 20 nucleotides [18–21], mostly sufficient to have precise target recognition.
The seed sequence at the 3′ side of the recognition site plays a major role in the target recog-
nition specificity of the Cas9:gRNA. The specificity is significantly diminished when there
are two or more mismatched nucleotides between the gRNA’s seed sequence and the target
sequence [17,19]. Mismatches in the PAM-distal positions also reduce the specificity of the
Cas9:gRNA, but they are much more tolerated than PAM-surrounding mismatches [22,23].
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Figure 2. Immunity acquisition during viral infection. (1) The Cas1-Cas2 multimeric complex recog-
nizes and cuts a specific sequence in the viral DNA known as a “protospacer”. (2) Sequentially, the
complex integrates the protospacer upstream of the CRISPR array, exactly next to the leader sequence.
(3) When the bacteriophage reinfects, the leader sequence initiates the CRISPR array expression,
which yields a pre-crRNA. Then, it undergoes selective ribonucleotide sequence degradation by
RNase III with parallel binding of the tracrRNA to the desired sequence, (4) generating the mature
crRNA:tracrRNA complex. (5) The latter complex binds to the Cas9 protein, which digs into the viral
DNA to target the complementary sequence to the crRNA for its cleavage.

Distinct interactions between the target sequence and the gRNA:Cas9 complex can
be categorized into two types: off- and on-target bindings. In this context, on-target refers
to the ideal hybridization between the complex and the target, and off-target bindings
are understood as the hybridization between undesired DNA sequences and the complex.
A high similarity between the gRNA sequence and undesired, non-targeting sequences
leads to an elevated percentage of off-target bindings. These off-target bindings can be
classified based on distinct genetic events. Manghwar, Zhang, and Niu [24–26] delineated
three types of off-targets: two out of three refer to bulge-based occurrences (i.e., gaps in the
DNA/RNA hybridization), and the remainder refers to simple mismatches. Conversely,
Borrelli et al. [27] have simplified the classification into two general types, which describe
if the off-target is between sequences with high similarity, or between random, non-similar
sequences. Off-target bindings and their consequential undesirable effects are inherent to
CRISPR experiments. Consequently, numerous strategies have been devised to minimize
off-target activity associated with the CRISPR-Cas9 system. These strategies encompass
diverse methodologies, including modification of the Cas9 structure, meticulous titration of
Cas9 and gRNA delivery, and alterations of the gRNA ribonucleotide structure [21,24,28].
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Figure 3. Single guide RNA. Rather than possessing a double RNA (crRNA and tracrRNA), a single
RNA is synthesized using a linker loop, yielding the single guide RNA. The protospacer-adjacent
motif (PAM) is composed of three to six nucleotides that are recognized by the Cas9 protein.

Regarding alterations in the ribonucleotide structure, significant in silico advance-
ments for gRNA design aimed to enhance the performance of the CRISPR/Cas9 system.
Strategies such as adding nucleotides at the 5′ end to differentiate between off-target and
on-target sites [19], extending the tracrRNA-fused portion for partial target cleavage im-
provement [22], and strategically positioning specific nucleotides near the PAM region,
middle, or end of the sequence for gRNA stability [20,29,30] have been explored.

Up to now, it has been reported that off-target bindings occur even when there are
various mismatches between the gRNA and the off-target site [22,31,32]. Machine learning
and deep learning are powerful methods that combine informatics and statistics, and have
been successfully used in the design of gRNAs [33]. These methods focus their architectures
on predicting or classifying off-target and on-target bindings. The results thus generated
only differ in principle; on-target models focus on predicting the effectiveness of the gRNA
in cutting a specific target gene. These models identify gRNAs that effectively target a
desired gene and are often used in gene editing applications. On the other hand, off-target
prediction models focus on identifying potential unintended effects of a gRNA in cutting
other genes in the genome that are not premeditated targets.

Furthermore, the correct computational and biological prediction of gRNAs hinges
upon other key factors including the correct selection of the promoter sequence for the
transcription of the gRNA [34], the genetic context of the target (e.g., how accessible the
target is for the Cas9), and the datasets used in the distinct algorithms. Considering the
critical significance of gRNA in Cas9 protein-mediated recognition and nuclease activity,
substantial endeavors have been dedicated to designing, optimizing, and developing highly
effective gRNAs. This review presents a meticulous description of the computational ap-
proaches employed in gRNA design, elucidating the intricate intricacies and underlying
mechanisms. Through an exploration of these approaches, readers can attain a compre-
hensive understanding of the evolutionary progression in time and refinement in gRNA
design, encompassing both theoretical foundations and practical implementation.

2. Machine Learning in gRNA Design

Machine learning is a branch of artificial intelligence [35] that includes algorithms
and mathematical models that allow computers to learn from data without being explicitly
programmed for each task. The machine learning algorithms follow some steps, starting
with data processing, feature extraction, training, and classification or prediction [36,37].
For data processing, the input data are DNA or RNA sequences that require processing to
be transformed into a numerical sequence or a format that the computers can work with.
There are three general approaches to encode the sequence into a numeric representation:
ordinal encoding, one-hot encoding, and k-mer word embedding [38].

In ordinal encoding, each nucleotide is assigned a real value, while in one-hot encoding,
a binary vector is assigned [39]. One-hot encoding does not capture any information about
the relationship between nucleotides or the context in which they appear, while k-mer word



Biomolecules 2023, 13, 1698 5 of 21

embedding does. However, k-mer word embeddings do not preserve the original sequence
of nucleotides and can be sensitive to rare or unseen sequences [40]. Once the data are
processed, they undergo feature extraction, which involves selecting and transforming
the essential characteristics or patterns of the raw data [41]. Common extracted features
from gRNAs are positions of nucleotides, secondary structures of gRNAs, GC count,
nucleotide content, nucleotides appearing in a k-mer guide, nucleotides adjacent to the
PAM, presence of DNA motifs [42,43], etc. The major features of off-target prediction
are the number, composition, and combination of mismatches [22]. During training, a
machine learning model searches for patterns in the data. This process also requires setting
the hyperparameters, which are variables that control the algorithm’s behavior during
learning [36]. For example, the number of layers, neurons, or the type of optimizer are
types of these hyperparameters. The manipulation of these items is essential for enhancing
the evaluation metrics of the model, so association between biologists and computists is
always useful.

Machine learning models can output a sequence for prediction tasks or a categorical
label for classification tasks. Classification models can be applied to classify between two
options; in our context, this would be whether a given RNA sequence has potential on-
target or off-target activity. Prediction models of CRISPR can forecast the effectiveness of a
particular CRISPR-Cas system on a given target sequence [37]. The main machine learning
algorithms for predicting or classifying DNA sequences are linear regression algorithms,
logistic regression, Decision Trees, Random Forest, and Support Vector Machines (SVMs).
Neural Networks (NNs) are another algorithm of artificial intelligence, but due to their
complexity, these will be explained in another section.

Linear regression (LR) is a learning algorithm used for prediction tasks. Linear re-
gression models fit a linear function between the dependent variable and the indepen-
dent variables [36]. Some of the studies using this algorithm are CRISPRScan [44] and
CRISPRater [45]. A decision function can be added to a regression model to separate the
data into two groups. In Logistic Regression (LG), a linear function is transformed through
a sigmoid function to produce a probability value between 0 and 1. Some models using
this algorithm are Broad GPP [29] and SCC [46].

Decision Trees (DTs) are a supervised learning method used for classification and
prediction tasks in DNA analysis. The algorithm builds a tree-like model of decisions and
their possible consequences, where each node represents a feature of the DNA sequence and
each branch represents a possible outcome based on that feature. The algorithm recursively
splits the data into subsets based on the most informative features until a stopping criterion
is met. An algorithm derived from decision trees is the Random Forest (RF) [35]. Random
Forest (RF) solves the decision tree by using an ensemble process to build multiple decision
trees under randomly selected subsets of the data and features, then combines the results
of these trees until a good classification or prediction result is obtained [36]. Random forest
has been widely used in the prediction of DNA-binding proteins, microarray data analysis,
and regulatory element prediction [47]. Examples of these algorithms are CRISTA [48],
Elevation [49], and CHANGE-seq [50].

Support Vector Machines (SVMs) are learning algorithms for classification and predic-
tion tasks. The goal of SVM is to separate the data into at least two distinct classes, similar to
Linear Regression finding the best line that fits the data [36]. SVM can handle complex data
distributions and cases where the classes are not entirely separable by a straight line. An
SVM involves two separate steps: feature extraction and training. In these steps, the SVM
algorithm learns how to separate the different categories by finding an optimal boundary.
Examples of studies using SVM are WU-CRISPR [51], SgRNAScorer [52], Azimuth [53],
ge-CRISPR [54], and Predict CRISPR [55].

Despite the several models and their different architectures, the mechanism behind
them is very similar, and the models differ mainly in the way they are trained (Figure 4). In
the case of machine learning algorithms, we highlight the RF and SVM algorithms since
they are the most representative and have a more complex mechanism compared to the LR
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and LG algorithms. In the case of RF, Figure 4A shows that training is performed on each
decision tree. This mechanism is similar to that of SVM (Figure 4B), but in the latter, the
algorithm is trained iteratively on the data and produces a single output. In the case of NNs,
their mechanism is much more complex than in the case of machine learning algorithms,
but as an introduction, NNs have layers of neurons that perform a specific computation
and process different types of data. In the case of Recurrent Neural Networks (RNNs),
the layer of neurons that defines them is the Hidden Layer (Figure 4C), and in the case of
Convolutional Neural Networks (CNNs), it is the Convolutional Layer (Figure 4D). In the
next section, we describe in depth NNs and the mechanisms that govern them.

Figure 4. Some of the CRISPR prediction machine learning algorithms. (A) Random Forest creates
multiple decision trees on different subsets of the dataset and combines their predictions to obtain
the final output. (B) Support Vector Machine (SVM) separates RNA sequences into two classes that
can be non-linear. (C) In the RNN architecture, hidden layers are fed back as input to the next layer,
allowing the network to capture the temporal dependencies between nucleotides. (D) CNN uses a
series of convolutional layers to extract features and learn from the DNA sequence. The convolutional
layers detect specific patterns. * The CNN architecture is the only architecture capable of dealing
with images.

3. Advances in Neural Networks for gRNA Design

NN represents a branch of machine learning and artificial intelligence [35] inspired
by the complex organization and functioning of the human brain. NNs process input
data and generate predictions by combining interconnected artificial neurons arranged in
layers. These models employ mathematical operations, activation functions, and adjustable
weights to transmit and transform information across the network [36], enabling them
to discern patterns in the data and process complex information. The output layer of an
NN produces predictions or classifications based on the learned information. Through
the iterative backpropagation process, where inputs are repeatedly fed into the network,
and their outputs are compared to desired results, the NN adjusts its parameters (weights
and biases) to minimize the discrepancy [35]. This iterative refinement continues until the
network converges upon optimized weights that minimize the loss function.

In gRNA prediction, NN has emerged as an indispensable tool for evaluating gRNA
effectiveness [56]. NN models are trained using vast datasets, enabling them to extract
complicated patterns from the data, facilitating precise gRNA prediction. NN learns to
predict gRNA by iteratively adjusting its parameters, namely the weights and biases of
its neurons, through a process known as backpropagation. During backpropagation, the
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network receives input data, compares its output to the desired output, and updates
the parameters to minimize the discrepancy between them [35]. This iterative process is
repeated multiple times until the network converges to optimal weights that minimize
the loss function. As a result, the NN acquires the ability to make accurate predictions or
classify inputs based on the discerned patterns within the training data.

The architecture of an NN plays a key role in its performance, with Feed Forward
Neural Networks (FNNs), CNNs, and RNNs being prevalent choices designed for se-
quences [34,57]. The absence of feedback connections between neurons characterizes the
FNN architecture. The inputs are propagated forward through the network, with each
neuron receiving inputs from the previous layer. This flow of information occurs in a single
direction, without any loops or cycles. CNNs, initially designed for image processing,
have been adapted for gRNA prediction tasks using the 1D-CNN architecture [58]. They
excel in extracting features and training simultaneously and have become integral to gRNA
prediction models [41]. Conversely, RNNs are specifically tailored for sequential data and
can capture dependencies in gRNA sequences due to their recurrent connections, so the
information flows in two directions [35].

The utilization of NN in CRISPR prediction has witnessed substantial progress over
time, driven by advancements in architectural designs and empirical investigations. Re-
searchers have explored various NN configurations and conducted experimental studies
to enhance the accuracy and efficacy of gRNA predictions. In the following sections, we
shall elucidate the evolutionary trajectory of these computational approaches, delineating
the architectural refinements and pivotal experimental discoveries that have propelled the
advancement of gRNA design.

4. Evaluating Model Metrics

Evaluation metrics are important measures used to assess the performance of pre-
dictive models. In CRISPR gRNA prediction, the most commonly used metrics are the
Spearman correlation coefficient, the AUROC (Area Under the Receiver Operating Char-
acteristic) curve, and the accuracy. The latter is a commonly used metric to evaluate
classification models. It measures the proportion of correctly classified instances over the
total number of instances. The accuracy provides a single scalar value representing the
prediction’s overall correctness [35].

The Spearman coefficient measures the relationship between two variables and is more
appropriate than Pearson’s correlation [59]. In experimental data analysis, high Spearman
coefficients indicate a strong correlation between the predicted and experimental rankings
and consequently high moel accuracy [60]. In the context of CRISPR gRNA prediction,
the Spearman correlation coefficient serves as a robust benchmark to evaluate the pre-
dictive performance of a tool. This coefficient has been widely employed in the existing
literature as a reliable measure of the correlation between predicted and experimental
rankings [34,48,49,61–63].

The AUROC curve evaluates the ability of a model to distinguish between positive
and negative samples. It measures how well the predictions are on balanced or unbalanced
data, with a higher AUROC score indicating better performance. AUPRC (Area Under the
Precision-Recall Curve) is a useful performance metric, particularly in scenarios involving
imbalanced data where identifying positive instances is extremely important. A higher
AUPRC score signifies superior classifier performance, with a score of 1 indicating a
perfect classifier and 0 representing poor performance [64]. Compared to AUROC, AUPRC
is typically smaller in magnitude and provides a more suitable measure for off-target
prediction. This is crucial in clinical applications where false negatives have far more
adverse effects than false positives [65].

While all these metrics are used to assess a model’s performance, they are not directly
comparable because they measure different aspects of a model. Additionally, most studies
use different datasets, further complicating a meaningful comparison. However, these
metrics analyze each model’s individual performance and give insight into how models
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have evolved. If needed, these metrics will be inspected in the subsequent section to assess
the temporal evolution and advancements in the models. By considering these metrics, we
can gain insight into the extent of changes and improvements observed over time.

5. Reaching Efficiency: A Journey of Optimization

Since the beginning of gRNA design algorithms, scientists have widely used these
programs to find the ideal gRNA for their experiments. The efficiency of these programs
is important for research, and it can be measured according to the evaluation metric
previously presented. For every tool described below, metrics and details are present in
Tables 1 and 2. Furthermore, in Figures 5 and 6 we present a timeline with a description of
each tool, their computational architecture, and specialization.

Table 1. Off-target models.

Name Model Year Evaluation Metric Detail Reference

CRISPRtool/MIT
Design

Conventional
non-learning 2013 NA The first tool for

gRNA design. [22]

CRISPOR Self-assembled
algorithm 2016

Spearman:
0.71–0.77.

AUROC: 0.91

Datasets of gRNA
sequences and
their off-targets
from different

studies.

[66]

CRISTA RF 2017
Spearman: 0.81.
AUROC: 0.96.
AUPRC: 0.96

Assembled dataset
for training and

validation:
GUIDE-Seq,
HTGTS, and

BLESS.

[48]

Predict CRISPR SVM 2018 AUROC: 0.99.
AUPRC: 0.45

One-hot encoding
over the Haeussler

dataset.
[55]

Elevation DT 2018 Spearman: 0.98

One-hot encoding
over GUIDE-seq.
Boench V2 and

Haeussler.

[49]

DeepCRISPR CNN 2018
Spearman: 0.246.
AUROC: 0.804,
AUPRC: 0.303

One-hot encoding
over GUIDE-seq

data.
[67]

CNN_std CNN 2018 AUROC: 0.972

One-hot encoding
over CRISPOR

dataset and
GUIDE-seq

dataset.

[39]

SynergizingCRISPR FNN, RF, SVM, DT 2019 Spearman: 0.938.
AUPRC: 0.299

GUIDE-Seq and
Haeussler dataset. [61]

CHANGE-seq DT 2020 AUROC: 0.995.
AUPRC: 0.881 One-hot encoding. [50]

CRISPcut LG, RF, DT. 2020 Accuracy: 0.9149.
AUROC: 0.97

One-hot encoding
over CIRCLE-seq
and CRISPcup.

[68]

CRISPR-Net RNN-CNN 2020 AUROC: 0.969.
AUPRC: 0.477

One-hot encoding
over CIRCLE-Seq
and GUIDE-seq

datasets.

[69]
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Table 1. Cont.

Name Model Year Evaluation Metric Detail Reference

R-CRISPER RNN 2021 AUROC: 0.991.
AUPRC: 0.319

One-hot encoding
over CIRCLE-Seq,
SITE and GUIDE

datasets.

[26]

piCRISPR RNN-CNN 2021 AUROC: 0.995.
AUPRC: 0.725

One-hot encoding
over crisprSQL

dataset.
[65]

CROTON CNN 2021 AUROC: 0.94

One-hot encoding
over FORECasT

and SPROUT
datasets.

[70]

AttCRISPR Embedding
method 2021 Spearman: 0.872

One-hot encoding
over DeepHF

dataset.
[62]

CRISPR-IP CNN 2022
Accuracy: 0.990.
AUROC: 0.982.
AUPRC: 0.751

CIRCLE-Seq
dataset and

SITE-Seq dataset.
[25]

Table 2. On-target models.

Name Model Year Evaluation Metric Detail Reference

Broad GPP LG 2014 Spearman: 0.87 One-hot encoding
over 1841 gRNAs. [29]

WU-CRISPR SVM 2015 AUROC 0.91.
Spearman 0.70

Doench and Chari
datasets. [51]

SSC LG 2015 AUROC : 0.729

Wang, Koike-Yusa,
Shalcm, Zhou,

Gilbert and
Konermann

datasets.

[46]

CRISPRScan LR 2015 Spearman: 0.68 1280 gRNAs in the
zebrafish genome. [44]

SgRNAScorer SVM 2015 Accuracy: 0.737.
AUPRC: 0.758

SpCas9 and
St1Cas9 datasets. [52]

Azimuth SVM, LG 2016 AUROC: 0.80
One-hot encoding
over Avana and

GeCKO libraries.
[53]

ge-CRISPR SVM 2016 AUROC: 0.54–0.93

sgRNAdesigner,
CRISPRScan and

sgRNAscorer
datasets.

[54]

CRISPRater LR 2017 Spearman 0.67 Wang, Koike-Yusa
and Xu datasets. [45]

SgRNAScorer 2.0 SVM 2017 Accuracy: 0.737.
AUPRC: 0.758

SpCas9 and St1Cas
libraries. [71]

CRISPRpred SVM 2017 AUROC: 0.85.
AUPRC: 0.56

K-mer encoding
over Broad GPP. [72]
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Table 2. Cont.

Name Model Year Evaluation Metric Detail Reference

DeepCRISPR CNN 2018
AUROC: 0.981.
AUPR: 0.497.

Spearman: 0.406

One-hot encoding
over 15,000 gRNAs
from four different

cell lines.

[67]

DeepCpf1 CNN 2018 Spearman: 0.87.
AUROC: 0.89

One-hot encoding
over different

datasets oncluding
Kleinstiver, Chari

and Kim.

[73]

TUSCAN RF 2018 Spearman: 0.8.
AUC of 0.63

Chari, Doench,
Horlbeck and

Moreno-Mateos
databases.

[74]

DeepHF RNN 2019 Spearman: 0.867
One-hot encoding

over ten public
datasets.

[34]

CRISPRpred(SEQ) SVM 2020 Spearman: 0.829.
AUROC: 0.893

Haeussler and
DeepHF datasets. [75]

GNL-Scorer FNN 2020 Spearman: 0.502
One-hot encoding

over ten public
datasets.

[76]

C-RNN CRISPR CNN-RNN 2020 Spearman: 0.877.
AUROC: 0.976

One-hot encoding
over Chuai dataset. [58]

On-target
CRISPRon CNN 2021 Spearman 0.91 One-hot encoding

over 12 K dataset. [63]

CNN-XG CNN-Tree 2022 Spearman 0.7352
AUROC: 0.992

Ten public
datasets. [77]

In 2013, Hsu et al. [22] published the first web-based off-target predictor, CRISPRtool,
also known as MIT CRISPR Design. Through a series of experiments in human cells,
they built an enormous database of the activity of distinct gRNAs and unveiled diverse
features that will help to reduce off-target cuts. All these approaches were implemented in
a conventional algorithm that supports their tool. Thus, in 2014, the CRISPRtool helped
to design the gRNAs targeting two tumor suppressor genes and one oncogene, mutating
them directly for mouse lung cancer; their transient transfection reached a maximum of
44% of indels [78]. Almost the same results were obtained in the work performed by
Xue et al. under the same conditions, but for liver cancer in mice [79]. Evidently, MIT
CRISPR Design was focused on predicting off-target sites and designing gRNAs for Cas9
proteins. Conversely, in April 2014, Montague et al. [80] developed CHOPCHOP, a web
tool that directly competes with MIT CRISPR Design, adding support for TALENs and
CRISPR/Cas9 genome engineering. CHOPCHOP can accept diverse inputs and utilizes
a strict algorithm for alignments, named Bowtie [81], to predict off-target sites within the
genome accurately. All potential options are then presented in an interactive graphical
interface. The currently available version of CHOPCHOP (https://chopchop.cbu.uib.no;
accessed on 30 April 2023) supports gRNAs designed for other CRISPR nucleases, such as
Cpf1 or Cas13.

The previous tools were developed by using gRNA datasets for mammals. Thus,
in the middle of 2014, Lei et al. [82] launched CRISPR-P to design specific gRNAs for
gene targeting in more than 20 plant species. The computational model supporting this
tool is based on BLASTN, which compares the gRNA sequence with all possible off-
target sites in the genome. To perform the predictions, users must select the plant of
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interest, upload the FASTA sequence of the targeting gene, and select diverse parameters
of their convenience; outcomes are presented in lists or graphical representations. The
web-based tool (http://crispr.hzau.edu.cn/CRISPR; accessed on 30 April 2023) is available
and receiving constant updates.

Approaching September 2014, Doench et al. [29] launched the Broad GPP Designer,
currently relaunched and updated as CRISPick. This on-target prediction engine first used
a learning algorithm, in this case, a logistic regression algorithm to create a robust model.
As long as logistic regression is intended to produce a binary output, this model predicts
whether or not a gRNA effectively inactivates a gene. The authors used their own dataset
of 1841 gRNAs to train the model; this dataset included information about the sequence of
each gRNA, as well as whether or not the gRNA was effective in inactivating a gene. Finally,
in practice, users can input a target DNA sequence and select a PAM sequence, and the tool
will output a list of optimized gRNAs that target that sequence. Research about genome
editing in the parasite Leishmania donovani was performed using CRISPR/Cas9 [83]. Here,
the authors compared their hand-crafted gRNA with a set of gRNAs suggested by the Broad
GPP Designer for the gene of interest, resulting in a low score for the hand-crafted gRNA
according to the web tool output. Furthermore, the concerned tool helped to create a robust,
highly efficient protocol to mediate genome editing in Caenorhabditis elegans regardless of
possible low-efficiency gRNAs, permitting the use of a wider variety of gRNAs [84].

The off-target prediction was purely based on computational programs until the
end of 2014 when Tsai et al. [85] presented GUIDE-seq, a laboratory technique that
enables genome-wide profiling of off-target cleavage by Cas9 nucleases. Together with
the technique, the authors discovered that the MIT CRISPR Design tool did not identify
the vast majority of off-target sites found by GUIDE-seq due to very limited parameters
implemented in the algorithm.

In June 2015, Xu et al. [46] launched the linear regression-based Spacer Scoring for
CRISPR (SSC) tool. They showed distinct problems with the gRNA sequence features
unveiled to that date and the lack of a model that predicts gRNAs for CRISPRi/genome-
wide functional screens. Thus, the SSC tool agglutinates two computational models, based
on linear regression, for predicting gRNA efficiency in CRISPR-based screens. These models
were designed to correspond to CRISPR knockout and CRISPRi/a studies, respectively,
and were validated through multiple tests on independent designs, various cell types, and
different growth selections. These tests used the AUROC benchmark, for which the MIT
CRISPR Design tool was outperformed by the SSC tool. Hence, Radzisheuskaya et al. [86]
utilized this tool to confirm that employing the correct gRNAs explicitly designed for
functional genome screens will improve efficiency. In other words, in the case of CRISPRi,
if the gene transcription start site (TTS) is targeted and the highest-scored gRNA is used,
the efficiency will increase, showing better phenotype-based screens.

Plant gRNA prospects and their characteristics partially differ from gRNAs designed
for mammals or bacterial cells. For instance, nucleotide preferences in the recognition se-
quence are not seen for plants, unlike for mammals [87]. Besides linear or logistic regression-
based machine learning methods in the last tools, WU-CRISPR and SgRNAScorer [51,52]
implemented the Support Vector Machine (SVM) framework for gRNA design in Novem-
ber 2015 and July 2015, respectively. The SgRNAScorer model leveraged SVM to capture
complex associations between gRNAs exhibiting high and low activity. The authors used
their own experimental data to train their model. On the other hand, for WU-CRISPR
model training, the authors used the MIT Design dataset [22], fusing the SVM with novel
features. WU-CRISPR faced the SSC [46], SgRNAScorer [52], and GPP CRISPR designer
tool [29], demonstrating that the WU-CRISPR model has a better performance through
the respective benchmark. Part of its success is due to considering the presence of con-
tiguous repetitive sequences, or the impact of secondary structures (such as hairpins, etc.)
formed in the guide sequence occasioned by self-folding free energy [87]. Mutagenesis
experiments in rice and cotton employed the SgRNAScorer for gRNA design. In cotton
experiments [88], the SgRNAScorer designed 82 distinct gRNAs to target a GFP gene in a

http://crispr.hzau.edu.cn/CRISPR


Biomolecules 2023, 13, 1698 12 of 21

transgenic cotton genome, selecting only three significantly different gRNAs in the scoring
value. They found that the mutagenesis efficiency varied inconsistently, suggesting that
these gRNA prospects lack robust biological and computational basis. Interestingly, after
these results they decided to use WU-CRISPR, obtaining only 13 gRNAs for their gene,
validating experimentally computational benchmarks. Analogously, in rice experiments,
Baysal et al. [89] used the SgRNAScorer to design two gRNAs for a gene of interest. Unfor-
tunately and inconsistently, in these experiments, the gRNA with the highest score showed
no mutagenesis activity, whereas the lowest-scored gRNA positively did. WU-CRISPR is
available at (https://crisprdb.org/wu-crispr-website; accessed on 30 April 2023), where
we can select designed gRNAs for mouse or human genes.

Figure 5. Timeline from 2013 to 2017. This first stage was marked by the implementation of conven-
tional algorithms, and the emergence of machine learning-based algorithms in the tools. Many of
these relied heavily on datasets published by others for the training stage. As the field progressed,
these tools began to acknowledge their limitations and released upgraded versions targetting the
identified problems, resulting in significant improvements.

A linear regression-based model was introduced by Moreno-Mateos et al. [44] in
August 2015 with CRISPRscan. The model was created on the basis of results obtained
from analyzing the stability and mutagenic activity of 1280 gRNAs targeting 128 genes. The
authors discovered that guanine enrichment and adenine depletion are major determinants
of gRNA stability and activity, but impressively, they found that at least in their exper-
imentally validated gRNAs, treating the folding free energy does not contribute to any
improvement to the model. However, Thyme et al. [90] explain that hairpin formation can
reduce gRNA efficiency, and many web-based tools before 2016 ignored this critical factor.
CRISPRscan was not the exception, but it presented a lower hairpin formation fraction com-
pared with their contenders. In 2016, research about genome modification in hematopoietic
stem/progenitor cells (HSPCs) was significantly improved by Gunry et al. [91]. They tar-
geted the CD45 gene in human HL-60 cells with three distinct gRNAs designed with
CRISPRscan. Here, high mutagenesis percentages were obtained, touching almost 75% of
indels, which classifies CRISPRscan as a high-fidelity gRNA design tool, at least in mammal
cells. The CRISPRscan web page is available and implements all the approaches mentioned
here (http://www.crisprscan.org; accessed on 30 April 2023).

At the start of 2016, Doench et al. [53] launched the Azimuth project, an essential
update of the Broad GPP Designer. In the Azimuth web page, or as a Python code, the
authors provide two score-based parameters for accurately discriminating potential on-

https://crisprdb.org/wu-crispr-website
http://www.crisprscan.org


Biomolecules 2023, 13, 1698 13 of 21

target and off-target sites: Rule Set 2, and the CFD score. Rule Set 2 was developed
by doubling the size of the gRNA activity data set and incorporating gradient-boosted
regression trees (GBRTs), an ML algorithm that combines the predictions of multiple
decision trees to make more accurate predictions. Even more, Rule Set 2 has such a
performance that extends to accurately predicting on CRISPRi/a screens. On the other
hand, the CFD score was validated using GUIDE-seq data [85] showing the best Pearson
correlation coefficient between experimental and predicted activity. The Azimuth scores
integrate biochemical and thermodynamic sequence features regarding the secondary
structure formation, a characteristic missing in the Broad GPP. To date, the Azimuth web
page is no longer available. For further incorporation in tools or pipelines, only Python
code is available in the supplementary information attached to the published article.

As explained throughout this section, the off-target predictor, MIT Design, by
Hsu et al. [22] suffered from many weaknesses, invoking the necessity of potent tools
to predict off-target sites, each one surpassing the others. In June 2016, Haeussler et al. [66]
launched the off-target predictor CRISPOR, principally designed to assist with guide
selection in 120 genomes, including plants and many other organisms. The algorithm is
powered by the BWA (Burrows–Wheeler Alignment) sequence search algorithm [92] to per-
form the corresponding alignments to locate possible off-target sites. CRISPOR’s predicted
gRNAs avoid using extremely GC-rich sequences, and the tool treats >4 mismatches much
better than the MIT Design. These patterns found by analyzing eight large datasets of
off-target sites deliver an improved fidelity on CRISPOR prediction. Finally, the CRISPOR
web page (http://crispor.gi.ucsc.edu/; accessed on 30 April 2023) offers pre-calculated
gRNAs for all human exons on the UCSC Genome Browser tracks, CG content warnings,
PCR primers, etc. In laboratory experiments, mutagenesis and gene knock-out research
in the hexaploid Camelina sativa [93] employed the CRISPOR tool to design desired and
exclude undesired gRNAs for targeting the microsomal oleate desaturase (FAD2) gene,
whose knock-out leads to an accumulation of oleic acid in this plant. They selected two
gRNAs, from which the second one harbors sequence features described by CRISPOR to
improve the mutagenesis efficiency.

Looking back on the SgRNAScorer, Chari et al. [52] structured this tool to analyze
gRNA sets of high and low activity for two orthologs of the Cas9 protein. For each ortholog,
a separate SVM model was created. In February 2017, the same team founded the sgRNA
Scorer 2.0 [71], which inversely creates just one SVM model for both Cas9 orthologs by
merging all high- and low-activity gRNAs in one set.

With this, they aimed to design a model that predicts efficient gRNAs for distinct Cas9
orthologs, and even for Cpf1 proteins, a non-Cas9 system. The web page is still available
(https://frederick.cancer.gov/resources/repositories/sgrnascorer; accessed on 30 April
2023), and users can select the CRISPR system in usage, PAM sequence, and upload gene
FASTA sequences for analysis. Despite this tool being trained with a dataset of gRNAs
targeting human cell genes, Shen et al. [94] used this tool to design 81 gRNAs targeting
virulent Klebsiella phage genes. As expected, due to the cellular context, sgRNA Scorer 2.0
did not discriminate correctly between high- and low-activity gRNAs.

In 2016, the research carried out for CRISPOR’s feature incorporation caused incon-
sistencies with the research by Abadi et al. [48]. The latter group launched in 2017 a new
predictor known as CRISTA (CRISPR Target Assessment), based on a regression model
using the Random Forest algorithm. Their primary purpose was not to design a model for
exclusively predicting gRNA on-target efficiency or potential off-target sites but to assess
the cleavage efficacy of a particular genomic target by a specific gRNA. CRISTA included a
treatment for DNA/RNA “bulges” in their algorithm, which can be understood as gaps
in the gRNA/target hybridization. CRISPOR noticed these bulges, but their analysis sug-
gested no need for treating these gaps, disfavoring this tool for missing this important
feature. CRISTA finally proved experimentally that bulges are important determinants in
gRNA design, and considered the necessity of dealing with the formation of secondary
structures inherent to RNA sequences by their learning model. Furthermore, the DNA
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enthalpy, geometry, and the target location (chromosome number and distance from telom-
ere and centromere) are some additional features inserted in the algorithm. In contrast to
many other predicting tools, the CRISTA training dataset does not discard uncleaved sites
(i.e., targeted sequences with no gRNA activity), helping to avoid the design of identical
zero-activity gRNAs. Finally, the CRISTA web page (crista.tau.ac.il) and downloadable
Python code are available.

In January 2018, Listgarten and colleagues developed the Elevation tool [49], an off-target
predictor algorithm that aims to complement the Azimuth model, changing the architecture
for a two-layer stacked regression model and a gradient-boosted regression tree (GBRT),
where the first layer is intended to learn to predict unique mismatches in the gRNA-target
duplexes. The second layer learns to predict various mismatches, yielding a score for potential
off-target sites. Finally, they provide a minimalist web page (https://crispr.ml/; accessed on
30 April 2023) that users can select if they need to search off- and on-target sites.

The CRISPR/Cas9 genome editing system left the scientific community with gigantic
expectations. The promise of flawless gene knock-out, knock-in, or functional screens
must be accomplished. In June 2018, Chuai et al. [67] finally included the use of deep
neural network (DNN) approaches for predicting and designing gRNAs into their novel
tool, DeepCRISPR. In parallel with CRISTA, DeepCRISPR seeks to predict both functional
on-target gRNAs and avoid those with a propensity to increase off-target cuts. To achieve
this purpose, the authors designed an architecture with three fundamental networks; the
main one can be understood as the pre-training network (known as “parent network” by
the authors), which will recognize various features of gRNAs using as input ∼0.68 billion
gRNA sequences targeting coding and non-coding human genes. This first network is based
on a DCDNN (deep convolutionary denoising neural network) architecture to tolerate
huge quantities of noise in the input. The next two CNNs receive as input the pre-training
network output. These latter networks are trained using well-known, experimentally
validated gRNAs with on-target and off-target activity, extracting all the distinctive features
characterizing these sequences for further integration in the predictive capacity of the
tool. In 2020, accordingly to the pre-training DeepCRISPR dataset based on human exons
and intron genes, the tool helped to predict the off-target activity of gRNAs designed by
Mintz et al. [95] that initially targets the PARP1 gene, for its inhibition in triple-negative
breast cancer (TNBC) cells, highlighting the importance of CRISPR/Cas9 systems and
high-performance gRNAs in preclinical studies. Unfortunately, the web page the authors
provided is no longer available.

Three months after the DeepCRISPR launch, Lin et al. [39] developed a tool that
exclusively predicts off-target sites with a DNN (Deep Neural Network) framework. They
named their tool CNN_std, in which they adapted the biological ribonucleotide sequence of
the gRNA for the computational environment in a matrix with a size of 4× 23, representing
the four nucleotides and the 20 nt recognition sequence plus the 3 nt PAM sequence. This
matrix has the correct format to be an input for the CNN. Furthermore, Lin et al. utilized
the CRISPOR dataset [66] and GUIDE-seq data [85] for training, validating, testing, and
comparing CNN_std against previous off-target prediction tools such as the CFD score or
the MIT CRISPR design tool, outperforming all these and other machine learning-based
tools and obtaining an AUROC of 0.972. The authors do not provide a web page integrating
this tool, but a Python code is provided to use the tool (https://github.com/MichaelLinn/
off_target_prediction; accessed on 30 April 2023).
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Figure 6. Timeline from 2018 to 2022. With the launch of DeepCRISPR, deep neural networks initiated
their treasure, improving each year with the introduction of CNNs RNNs, embedding methods,
hybrid models, or the addition of more layers.

Undoubtedly, the CRISPR/Cas9 systems had an enormous refinement with the in-
troduction of CNN. Unluckily, DeepCRISPR and CNN_std implemented algorithms and
architectures that neglected most of the biological features underlying the gRNA feasible
design, thus missing characteristics proved to be crucial for this objective. Furthermore,
sgRNA Scorer, the first and second version [52,71], used an algorithm trained with datasets
obtained from diverse Cas9 orthologs, then being capable of predicting under a more com-
prehensive array of RGNs (RNA-guided nucleases). In September 2019, Wang et al. [34]
compared the predicting performance of an RNN and a conventional CNN. They found
that RNN outperforms CNN and other machine learning algorithms. The dataset used
for training, validation, and testing is based on their own experiments in human cells,
emphasizing the use of three Cas9 orthologs: WT-SpCas9 (wild-type Streptococcus pyogenes
Cas9), eSpCas9 (enhanced), and SpCas9-HF1 (High Fidelity). Furthermore, to remedy
the previous nonexistence of biological feature treatment in DNN models, this RNN was
trained with features such as sequence secondary structure formation and their stem-
loops, GC content, or the contiguous repetitive sequences that were first implemented
in WU-CRIRPR [51]. Lastly, Wang and his team launched DeepHF, a tool addressing all
the concerns mentioned earlier. DeepHF was used in experiments premeditated to knock
out an apoptosis-inducing gene in mice, Htra2, whose translated protein is found in high
concentrations in neomycin-treated cochleae, one of the causes of deafness. The team
designed three gRNAs targeting the Htra2 gene, obtaining 87.27 % of indels in the Htra2
gene for the highest-scored gRNA [96]. The authors provide a Python code for integration
in new tools (https://github.com/izhangcd/DeepHF; accessed on 30 April 2023), and a
module-based web page (http://www.DeepHF.com/; accessed on 30 April 2023) that lets
the users design and view the characteristics of gRNAs with an input sequence.

Notwithstanding the boom of deep learning-based pipelines in gRNA design tools,
Muhammad et al. [75] were uncomfortable using DNNs for gRNA design. Despite
the visible characteristics and performance obtained with these models (CNN or RNN),
it is tough to interpret their methods and results. Even more, it has been proven that
conventional, simpler algorithms can perform the same work done by DNNs [97]. With
this, in June 2020, Muhammad et al. launched the on-target CRISPRpred(SEQ) tool, whose
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SVM-based architecture was trained with the same training dataset for DeepCRISPR while
mixing biological gRNA sequence features. In most of the benchmarks, CRISPRpred(SEQ)
outperformed DeepCRISPR. On the other hand, CRISPRpred(SEQ) challenged DeepHF
using the dataset generated by the latter; unluckily, the machine learning-based tool did
not surpass DeepHF due to needing more specific tuning against DeepHF. The authors do
not provide an interactive web page. Instead, Python code is provided in which we can
train the model with the user’s new data (https://github.com/Rafid013/CRISPRpredSEQ;
accessed on 30 April 2023).

Another approach to achieve the desired interpretability in DNN is presented by
Xiao et al. [62]. Firstly, they provide a categorization of the existing DNN, founded
on the methods the models use to treat inputs: methods in the spatial domain, whose
input is transformed into a two-dimensional image, which is ready to work with CNN
for sequence feature extraction [39,67]; methods in the temporal domain, for which the
input is treated as a word, and works perfectly with RNN [34]. Then, in December 2021,
Xiao et al. proposed an ensemble learning model that uses both the spatial and temporal
domains to extract the necessary sequence features, in addition to an “attention mechanism”
to give interpretability. The on-target model, which is named AttCRISPR, was further
enhanced with hand-crafted biological features, outperforming even the DeepHF tool
with its training dataset. A Python code is provided for further implementation (https:
//github.com/South-Walker/AttCRISPR; accessed on 30 April 2023).

Lately, almost all gRNA design tools have turned their vision to implement only
DNN or hybrid models. These models are increasingly perfecting the predictive activity,
becoming more and more computationally flawless. In 2022, Zhang et al. [25] launched the
off-target CRISPR-IP tool, which includes four layers, each of which performs distinct pro-
cedures focused on characterizing novel sequence features; between these layers are CNN,
Bi-directional Long-Short Term Memory (BiLSTM, an RNN derivative), an attention layer,
and finally a dense layer. The model uses as a training dataset experimental information
based on sequencing (SITE-seq and CIRCLE-seq). Finally, epigenetic information and bulge
treatment were adapted to the model, resulting in high predicting performance. Regarding
the most recent on-target prediction tool, Li et al. [77] proposed a machine learning and
deep learning hybrid model. They drew inspiration from a fully computational approach
published by Ren et al. [98] that seeks to provide an accurate and high-performance im-
age classification based on XGBoost (extreme gradient-boosted tree, being the machine
learning part) and CNN (the deep learning and feature extraction part). The computational
approach thus was fused with the biological vision in the hybrid model named CNN-XG,
using as input a gRNA sequence, treating it with the CNN layer for feature extraction, and
finally sending the latter as an input for the XGBoost classification structure. Neither the
CRISPR-IP tool nor the CNN-XG tool provide web-based tools, but Python code is available
(https://github.com/BioinfoVirgo/CRISPR-IP, https://github.com/MoonLBH/CNN-XG;
accessed on 30 April 2023), in which users can train these models with personalized data.

6. Conclusions and Future Directions

In recent years, computational approaches have played a pivotal role in the de-
sign of highly accurate gRNAs for CRISPR/Cas9 systems. The increasing utilization
of CRISPR/Cas9 for gene editing has sparked the development of novel computational
tools to mitigate off-target effects and improve the precision of gene modifications. From
the early stages of non-learning algorithms to the more recent advancements in complex
multi-layer or hybrid machine learning and deep learning architectures, a diverse range
of computational and biological factors have been explored to enhance the efficiency and
effectiveness of gRNA design.

DNNs have demonstrated remarkable performance in gRNA prediction; however,
their limited interpretability challenges the understanding of the underlying biological
mechanisms. As a result, researchers have turned their attention back to machine learning
models, seeking a balance between performance and interpretability. Notably, in 2020, the
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introduction of CRISPRpred(SEQ) showcased the resurgence of machine learning models
in gRNA design, offering users a powerful and intuitive tool for gRNA prediction [75].
This renewed focus on machine learning models has prompted the integration of machine
learning structures into the architecture of DNNs, resulting in hybrid frameworks that har-
ness the strengths of both approaches. CNN-XG, a notable example of such a hybrid model,
has demonstrated promising results, surpassing previous architectures while retaining the
desirable features of learning-based algorithms [77]. Consequently, the assembly of hybrid
models including approaches from DNN and machine learning must be investigated with
a significant potential for advancing gRNA design.

The challenges for future research in the design of gRNA are indeed enormous. Look-
ing ahead, future research in gRNA design presents both challenges and opportunities.
One important area of focus is the optimization and fine-tuning of hyperparameters in
the architecture design to enhance the interpretability of the models. The ability to ex-
tract meaningful insights and understand the decision-making process of the models is of
paramount importance for researchers and biologists working with CRISPR/Cas9 systems.
Furthermore, the integration of biological features observed in laboratory experiments
and in silico simulations is essential for bridging the gap between computational predic-
tions and biological reality. Incorporating known biological constraints and epigenetic
considerations into the models will enable more accurate and context-specific gRNA design.

To advance gRNA design and improve prediction accuracy, the availability of compre-
hensive and diverse CRISPR/Cas9 activity datasets is critical. Acquiring data from various
human and plant cell lines, as well as unicellular organisms, will provide a broader under-
standing of the biological factors influencing gRNA activity and efficacy. The accumulation
of such data will facilitate the identification of additional biological functional features,
enabling the development of more robust and adaptable computational models.
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