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Abstract: Azacarbazoles have attracted significant interest due to their valuable properties, such
as anti-pathogenic and antitumor activity. In this study, a series of structurally related tricyclic
benzo[4,5]- and tertacyclic naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone derivatives with one or
two positively charged tethers were synthesized and evaluated for anti-proliferative activity. Lead
tetracyclic derivative 5b with two amino-bearing arms inhibited the metabolic activity of A549 lung
adenocarcinoma cells with a CC50 value of 3.6 µM, with remarkable selectivity (SI = 17.3) over VA13
immortalized fibroblasts. Cell-cycle assays revealed that 5b triggers G2/M arrest without signs of
apoptosis. A study of its interaction with various DNA G4s and duplexes followed by dual luciferase
and intercalator displacement assays suggests that intercalation, rather than the modulation of G4-
regulated oncogene expression, might contribute to the observed activity. Finally, a water-soluble salt
of 5b was shown to cause no acute toxic effects, changes in mice behavior, or any decrease in body
weight after a 72 h treatment at concentrations up to 20 mg/kg. Thus, 5b is a promising candidate for
studies in vivo; however, further investigations are needed to elucidate its molecular target(s).

Keywords: imidazopyrimidinone; anti-proliferative activity; azacarbazoles; cytostatic agent

1. Introduction

Cancer is a life-threatening disease that causes millions of deaths worldwide an-
nually [1]. Chemotherapy represents a significant treatment option for cancer, and it
stimulates the ongoing search for new therapeutic agents [2]. Carbazole and its benzo-
and aza-derivatives exhibit notable antitumor activity [3–8]. They demonstrate a variety
of mechanisms of action, including the inhibition of tubulin polymerization [9,10] and
DNA-binding enzymes [11–13] (Figure 1A–C). A carbazole derivative, BMVC, possesses
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an ability to stabilize telomeric G-quadruplex (G4) structures and thus inhibits telomerase
activity, which is responsible for cell immortalization [11,14] (Figure 1D). Carbazole-based
derivatives are also able to stabilize G4s in the cMyc promoter, resulting in the inhibition
of oncogene transcription [15]. Compounds with the γ-carboline scaffold intercalate into
duplex DNA and regulate the activity of topoisomerase II [12,13,16,17] (Figure 1E). The
cellular targets of other antitumor carbazole-based derivatives remain unknown and are
still to be investigated [18].
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Figure 1. Examples of derivatives of γ-carboline (A,E) and carbazole (B–D). An example of synthesis
of the adduct of 2′-deoxycytidine with 1,4-benzoquinone (F). Blue scaffolds are γ-carboline and
carbazole.

More than 30 years ago, an adduct of 2′-deoxycytidine with 1,4-benzoquinone was syn-
thesized during the investigation of the cancerogenic properties of benzene [19] (Figure 1F).
However, a biological evaluation of this heteroaromatic scaffold was not performed. Taking
into account the intriguing antitumor activity of γ-carbolines, we decided to evaluate
this property for a set of compounds with a benzo[4,5]imidazo[1,2-c]pyrimidinone scaf-
fold. Since DNA fragments are considered the main target of most γ-carbolines, we
designed compounds in a way that allows them to effectively interact with DNA structures.
In particular, the chosen planar aromatic system, supposed to stabilize duplex and G4
DNA structures via stacking interactions, was expanded to naphtho[2′,1′:4,5]imidazo[1,2-
c]pyrimidinone in order to enhance stabilization efficiency [20,21]. Moreover, basic side
chains were introduced into the compounds to provide electrostatic interaction with the
negatively charged DNA sugar-phosphate backbone [20,21]. In addition to the unmodi-
fied amino group, guanidino- and dimethylamino-containing substituents were proposed
due to their higher basicity. The choice of the aforementioned modifications is supported
by their successful application in the design of carbazole- and γ-carboline-based deriva-
tives with antitumor activity [5,12,16]. Thus, we synthesized a series of benzo[4,5]- and
naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinones with one or two positively charged tethers.
Their cytotoxicity and selectivity of action was evaluated on cell lines of cancerous and
non-cancerous etiology, and possible DNA-related mechanisms of action were investigated.

2. Materials and Methods

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and 37% aqueous CH2O were purchased
from Thermo Fisher Scientific (Madison, WI, USA). 1,4-Benzoquinone, 1,4-naphthoquinone,
methyl 2-bromoacetate, ethane-1,2-diamine, 1H-pyrazole-1-carboxamidine hydrochloride,
and sodium cyanoborohydride were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Solvents were purchased from commercial sources and used without further purification,
except for CH2Cl2, which was distilled over calcium hydride. Thin layer chromatography
(TLC) was performed on plates (Merck, Darmstadt, Germany) pre-coated with silica gel
(60 mm, F254) and visualized using UV light (254 and 365 nm). Column chromatography
(CC) was performed on silica gel (0.040–0.063 mm, Merck, Germany). Volatiles were
evaporated on a Heidolph Hei-VAP Precision ML/G3B rotary evaporator (Schwabach,
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Germany). 1H and 13C spectra were recorded on a Bruker Avance III 600 spectrometer
(Bruker, Rheinstetten, Germany) at 600 and 150 MHz, respectively, or on a Bruker Fourier
300 (Bruker, Rheinstetten, Germany) at 300 and 75 MHz, respectively, at 303 K. Chemical
shifts are reported in δ (ppm) units using residual 1H signals from deuterated solvents
as references. Multiplicity is reported using the following abbreviations: s (singlet), d
(doublet), t (triplet), m (multiplet), and br (broad). Coupling constants (J) are given in Hz.
HRMS analysis was performed using a Thermo LTQ Orbitrap XL ion trap instrument in
positive ion mode (ESI+, 150–2000 au). The preparative HPLC purification of compounds
6a,b and 7a,b was performed on an Interchim Puriflash 4250 preparative chromatograph
using a VDShpere 100 C18-E 250 × 20 mm, 5 µm column. CH3CN (with 0.1% TFA) and
aq. TFA (0.1%) were used as eluents. UV-vis detection was performed at 210 nm, 254 nm,
350 nm, and 400 nm. A linear gradient from 5 to 95% of CH3CN in 10 min, followed
by 4 min of 95% CH3CN at 20 mL/min flow rate, was used. Fractions containing the
target compound were collected, organic solvent was removed in vacuo, and water was
lyophilized. The HPLC purity analysis was performed using an Agilent 1260 Infinity II
instrument. LC parameters: flow 1 mL/min on a Macherey Nagel Nucleodur Gravity
column C18 EC (4.6 × 250 mm, 5 µm) and gradient elution method. Mobile phases: A—aq.
TFA (0.1%), B—CH3CN (with 0.1% TFA). Gradient program: 0–10 min from 5 to 95% B,
10–14 min 95% B. UV detection wavelengths: 225, 254, 350, and 400 nm. Methyl 4-amino-2-
oxo-1(2H)-pyrimidine acetate 1 was prepared according to the reported procedure [22].

2.1. Chemical Synthesis
2.1.1. Methyl 2-(7-Hydroxy-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-yl)acetate 2a

To a suspension of methyl 4-amino-2-oxo-1(2H)-pyrimidine, acetate 1 (390 mg, 2.12 mmol)
in 0.1 M sodium acetate buffer (50 mL, pH 4.5), 1,4-benzoquinone (960 mg, 8.90 mmol,
4.2 eq.) was added, and the resulting mixture was stirred at 37 ◦C for 24 h. The mixture was
evaporated in vacuo, co-evaporated with CH3CN (2 × 10 mL), and subjected to column
chromatography with dry loading on silica gel (0→3% CH3OH in CH2Cl2), yielding 2a as
a brownish amorphous solid (347 mg, 1.27 mmol, 60%).

1H NMR (300 MHz, DMSO-d6): δ 9.63 (br s, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.61 (d,
J = 7.8 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 6.97 (dd, J = 8.7 Hz, J = 2.4 Hz, 1H), 6.69 (d,
J = 7.8 Hz, 1H), 4.83 (s, 2H), 3.74 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 168.4, 154.2, 147.1,
137.0, 136.2, 130.0, 118.8, 115.5, 114.9, 100.3, 97.2, 52.3, 49.2. HRMS (ESI) m/z: calcd for
C13H12N3O4

+ [M+H]+: 274.0822; found 274.0820.

2.1.2. Methyl 2-(5-Hydroxy-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)
acetate 2b

To a suspension of methyl 4-amino-2-oxo-1(2H)-pyrimidine, acetate 1 (765 mg,
4.18 mmol) in a mixture of 0.1 M sodium acetate buffer (100 mL, pH 4.5) and C2H5OH
(50 mL), 1,4-naphthoquinone (2.64 g, 16.7 mmol, 4.0 eq.) was added, and the resulting mix-
ture was stirred at 50 ◦C for 7 days. The mixture was evaporated in vacuo, co-evaporated
with CH3CN (2 × 10 mL), and subjected to column chromatography with dry loading on
silica gel (0→3% CH3OH in CH2Cl2), yielding 2b as a brown amorphous solid (284 mg,
0.88 mmol, 21%).

1H NMR (600 MHz, DMSO-d6): δ 10.40 (s, 1H), 8.50 (d, J = 8.2 Hz, 1H), 8.29 (d,
J = 8.2 Hz, 1H), 7.89 (s, 1H), 7.69 (ddd, J = 1.2 Hz, J = 6.9 Hz, J = 8.2 Hz, 1H), 7.59 (d,
J = 7.8 Hz, 1H), 7.58 (ddd, J = 1.2 Hz, J = 6.9 Hz, J = 8.2 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 4.87
(s, 2H), 3.75 (s, 3H). 13C NMR (150 MHz, DMSO-d6): δ 168.5, 150.5, 147.4, 145.7, 135.4, 132.6,
127.0, 126.1, 125.6, 124.9, 123.6, 123.0, 121.9, 97.8, 95.9, 52.3, 49.4. HRMS (ESI) m/z: calcd for
C17H14N3O4

+ [M+H]+: 324.0979; found 324.0978.
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2.1.3. General Procedure for the Preparation of Ligands 3 with One Amino-Containing Tether

To a solution of 2 (0.1 mmol) in CH3OH (5 mL), ethane-1,2-diamine (67 µL, 1.0 mmol,
10 eq.) was added, and the reaction mixture was stirred at 50 ◦C for 48 h. The mixture was
evaporated to dryness, triturated with CH2Cl2 (5 mL), and filtered, affording 3.

N-(2-Aminoethyl)-2-(7-hydroxy-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-yl)a-
cetamide 3a

Starting from 2a, the title compound was obtained with a yield of 83% as a brownish
amorphous solid. 1H NMR (300 MHz, DMSO-d6): δ 8.21 (t, J = 5.6 Hz, 1H), 7.72 (d, J = 2.4 Hz,
1H), 7.54 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H), 6.94 (dd, J = 8.7 Hz, J = 2.4 Hz, 1H), 6.60
(d, J = 7.8 Hz, 1H), 4.59 (s, 2H), 3.14 (dt, J = 6.4 Hz, J = 5.6 Hz, 2H), 2.64 (t, J = 6.4 Hz, 2H).
13C NMR (75 MHz, DMSO-d6): δ 166.6, 153.8, 147.5, 147.4, 137.1, 137.1, 130.3, 118.9, 114.5,
100.3, 97.0, 50.3, 41.7, 40.8. HRMS (ESI) m/z: calcd for C14H16N5O3

+ [M+H]+: 302.1248;
found 302.1247.

N-(2-Aminoethyl)-2-(5-hydroxy-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-
10(11H)-yl)acetamide 3b

Starting from 2b, the title compound was obtained with a yield of 80% as a brownish
amorphous solid. 1H NMR (600 MHz, DMSO-d6): δ 8.49 (d, J = 8.0 Hz, 1H), 8.30–8.24 (m,
2H), 7.91 (s, 1H), 7.68 (dd, J = 8.0 Hz, J = 7.0 Hz, 1H), 7.57 (dd, J = 8.3 Hz, J = 7.0 Hz, 1H),
7.53 (d, J = 7.2 Hz, 1H), 6.78 (d, J = 7.2 Hz, 1H), 4.64 (s, 2H), 3.18–3.09 (m, 2H), 2.66–2.62
(m, 2H). 13C NMR (150 MHz, DMSO-d6): δ 166.6, 150.1, 147.6, 146.1, 135.9, 133.0, 126.8,
126.1, 125.7, 124.6, 123.5, 123.0, 121.9, 97.5, 96.1, 50.5, 41.9, 40.9. HRMS (ESI) m/z: calcd for
C18H18N5O3

+ [M+H]+: 352.1404; found 352.1404.

2.1.4. General Procedure for the Preparation of Intermediates 4

To a solution of 2 (0.7 mmol) in CH2Cl2 (20 mL), DBU (210 µL, 1.40 mmol, 2.0 eq.) was
added at room temperature, followed by the addition of methyl 2-bromoacetate (100 µL,
1.05 mmol, 1.5 eq.). The reaction mixture was kept at room temperature for 1 h, and then
DBU (210 µL, 1.40 mmol, 2.0 eq.) and methyl 2-bromoacetate (100 µL, 1.05 mmol, 1.5 eq.)
were added sequentially. The addition was repeated once. After 1 h, the organic layer
was washed with 5% aqueous citric acid solution (2 × 20 mL) and evaporated in vacuo.
The residue was purified using column chromatography on silica gel (0→1% CH3OH in
CH2Cl2), yielding 4.

Methyl 2-(7-(2-methoxy-2-oxoethoxy)-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-
yl)acetate 4a

Starting from 2a, the title compound was obtained with a yield of 43% as a brownish
amorphous solid. 1H NMR (300 MHz, CDCl3): δ 7.92 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 8.9 Hz,
1H), 7.22 (m, 2H), 6.77 (d, J = 7.8 Hz, 1H), 4.74 (s, 2H), 4.74 (s, 2H), 3.83 (s, 3H), 3.82 (s,
3H). 13C NMR (75 MHz, CDCl3): δ 169.0, 167.6, 155.5, 147.7, 147.1, 136.6, 136.5, 130.1, 119.2,
116.5, 100.0, 98.1, 66.0, 53.0, 52.3, 49.7. HRMS (ESI) m/z: calcd for C16H16N3O6

+ [M+H]+:
346.1034; found 346.1033.

Methyl 2-(5-(2-methoxy-2-oxoethoxy)-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-
10(11H)-yl)acetate 4b

Starting from 2b, the title compound was obtained with a yield of 48% as a brownish
amorphous solid. 1H NMR (600 MHz, DMSO-d6): δ 8.53 (d, J = 8.2 Hz, 1H), 8.36 (d,
J = 8.2 Hz, 1H), 7.79 (s, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.64 (d, 7.8 Hz,
1H), 6.88 (d, J = 7.8 Hz, 1H), 5.08 (s, 2H), 4.88 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H). 13C NMR
(150 MHz, DMSO-d6): δ 168.9, 168.5, 150.2, 147.4, 146.6, 135.8, 134.4, 127.5, 125.6, 125.5, 125.3,
123.7, 122.6, 122.0, 98.0, 94.3, 65.5, 52.4, 51.9, 49.5. HRMS (ESI) m/z: calcd for C20H18N3O6

+

[M+H]+: 396.1190; found 396.1188.
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2.1.5. General Procedure for the Preparation of Derivatives 5 with Two Amino-Containing
Tethers

To a solution of 4 (0.3 mmol) in CH3OH (20 mL), ethane-1,2-diamine (400 µL, 6.0 mmol)
was added, and the reaction mixture was stirred at 50 ◦C for 48 h. The mixture was
evaporated to dryness, triturated with CH2Cl2 (10 mL), and filtered, affording 5.

N-(2-Aminoethyl)-2-(7-(2-((2-aminoethyl)amino)-2-oxoethoxy)-1-oxobenzo[4,5]imida-
zo[1,2-c]pyrimidin-2(1H)-yl)acetamide 5a

Starting from 4a, the title compound was obtained with a yield of 91% as a beige
amorphous solid. HPLC rt 5.5 min. 1H NMR (300 MHz, DMSO-d6): δ 8.32 (t, J = 5.2 Hz,
1H), 8.20 (t, J = 5.6 Hz, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 7.8 Hz,
1H), 7.18 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 4.63 (s, 2H), 4.55 (s, 2H),
3.27–3.14 (m, 4H), 2.73–2.64 (m, 4H). 13C NMR (75 MHz, DMSO-d6): δ 167.7, 166.7, 154.1,
148.4, 147.3, 138.6, 137.8, 130.0, 119.0, 114.5, 99.9, 97.0, 67.7, 50.4, 48.4, 40.8, 40.7, 40.2. HRMS
(ESI) m/z: calcd for C18H24N7O4

+ [M+H]+: 402.1884; found 402.1882.
N-(2-Aminoethyl)-2-(5-(2-((2-aminoethyl)amino)-2-oxoethoxy)-11-oxonaphtho[2′,1′:4,5]

imidazo[1,2-c]pyrimidin-10(11H)-yl)acetamide 5b
Starting from 4b, the title compound was obtained with a yield of 90% as a beige

amorphous solid. HPLC rt 6.3 min. 1H NMR (600 MHz, DMSO-d6): δ 8.53 (d, J = 8.1 Hz,
1H), 8.48 (d, J = 8.3 Hz, 1H), 8.27 (t, J = 5.2 Hz, 1H), 8.22 (t, J = 5.4 Hz, 1H), 7.88 (s, 1H), 7.75
(dd, J = 8.1 Hz, J = 7.0 Hz, 1H), 7.65 (dd, J = 8.3 Hz, J = 7.0 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H),
6.82 (d, J = 7.7 Hz, 1H), 4.77 (s, 2H), 4.66 (s, 2H), 3.24–3.17 (m, 2H), 3.15–3.10 (m, 2H), 2.66 (t,
J = 6.3 Hz, 2H), 2.62 (t, J = 5.9 Hz, 2H). 13C NMR (150 MHz, DMSO-d6): δ 167.2, 166.5, 150.3,
147.5, 146.9, 136.5, 134.3, 127.3, 125.5, 125.5, 125.3, 123.6, 123.0, 121.9, 97.4, 94.7, 67.8, 50.6,
42.3, 41.7, 41.1, 41.0. HRMS (ESI) m/z: calcd for C22H26N7O4

+ [M+H]+: 452.2041; found
452.2040.

2.1.6. General Procedure for the Preparation of Di-Trifluoroacetate Salt of Derivatives 6
Bearing Two Dimethylamino-Containing Tethers

To a solution of 5 (0.05 mmol), HOAc (60 µL) and 37% aqueous CH2O (20 µL,
0.25 mmol) in MeOH (5 mL), NaCNBH3 (19.0 mg, 0.3 mmol) was added in small por-
tions with vigorous stirring at 0 ◦C. After stirring for 2 h at room temperature, MeOH was
evaporated. The residue was diluted with water (4 mL) and purified using preparative
HPLC, yielding 6.

Ditrifluoroacetate salt of N-(2-(dimethylamino)ethyl)-2-(7-(2-((2-(dimethylamino)ethyl)-
amino)-2-oxoethoxy)-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-yl)acetamide 6a

Starting from 5a, the title compound was obtained with a yield of 38% as a pale yellow
amorphous solid. HPLC rt 5.7 min. 1H NMR (600 MHz, DMSO-d6): δ 8.59 (t, J = 5.8 Hz,
1H), 8.48 (t, J = 5.8 Hz, 1H), 7.87 (d, J = 2.5 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 7.8 Hz,
1H), 7.21 (dd, J = 8.8 Hz, J = 2.5 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 4.70 (s, 2H), 4.60 (s, 2H),
3.51 (dt, J = 5.8 Hz, J = 6.0 Hz, 1H), 3.47 (dt, J = 5.8 Hz, J = 6.0 Hz, 1H), 3.14 (t, J = 6.0 Hz, 1H),
3.10 (t, J = 6.0 Hz, 1H), 2.75 (s, 6H), 2.74 (s, 6H). 13C NMR (150 MHz, DMSO-d6): δ 168.3,
167.3, 154.1, 148.4, 147.4, 138.7, 137.8, 130.0, 119.2, 114.6, 99.8, 97.2, 67.6, 55.8, 55.5, 42.4, 42.4,
34.2, 33.8. HRMS (ESI) m/z: calcd for C22H32N7O4

+ [M+2H]2+: 229.6292; found 229.6291.
Ditrifluoroacetate salt of N-(2-(dimethylamino)ethyl)-2-(5-(2-((2-(dimethylamino)ethyl)

amino)-2-oxoethoxy)-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)acetamide 6b
Starting from 5b, the title compound was obtained with a yield of 33% as a pale yellow

amorphous solid. HPLC rt 6.5 min. 1H NMR (600 MHz, DMSO-d6): δ 8.54 (d, J = 8.0 Hz,
1H), 8.47 (d, J = 8.4 Hz, 1H), 8.25 (t, J = 5.2 Hz, 1H), 8.15 (t, J = 5.4 Hz, 1H), 7.89 (s, 1H), 7.76
(dd, J = 8.0 Hz, J = 7.0 Hz, 1H), 7.66 (dd, J = 8.4 Hz, J = 7.0 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H),
6.83 (d, J = 7.7 Hz, 1H), 4.76 (s, 2H), 4.66 (s, 2H), 3.34–3.29 (m, 2H), 3.25–3.20 (m, 2H), 2.46
(t, J = 6.6 Hz, 2H), 2.38 (t, J = 6.5 Hz, 2H), 2.23 (s, 6H), 2.21 (s, 6H). 13C NMR (150 MHz,
DMSO-d6): δ 167.1, 166.4, 150.1, 147.5, 146.9, 136.5, 134.4, 127.3, 125.5, 125.5, 125.3, 123.6,
122.9, 121.9, 97.4, 94.8, 67.8, 57.8, 57.6, 50.5, 44.9, 44.7, 36.7, 36.1. HRMS (ESI) m/z: calcd for
C26H34N7O4

+ [M+H]+: 508.2667; found 508.2664.
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2.1.7. General Procedure for the Preparation of Trifluoroacetate Salt of Derivatives 7
Bearing Two Guanidino-Containing Tethers

To a solution of 5 (0.05 mmol) in DMSO (1.5 mL), DIPEA (35 µL, 0.2 mmol, 4 eq.),
followed by 1H-pyrazole-1-carboxamidine hydrochloride (22.0 mg, 0.15 mmol, 3 eq.), was
added. The reaction mixture was heated for 3 h at 60 ◦C, cooled to room temperature,
diluted with water (2.5 mL), and purified using preparative HPLC, yielding 7.

Ditrifluoroacetate salt of N-(2-guanidinoethyl)-2-(7-(2-((2-guanidinoethyl)amino)-2-
oxoethoxy)-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-yl)acetamide 7a

Starting from 5a, the title compound was obtained with a yield of 47% as a yellowish
amorphous solid. HPLC rt 5.8 min. 1H NMR (600 MHz, DMSO-d6): δ 9.31 (br s, 1H), 9.25
(br s, 1H), 8.77 (m, 1H), 8.46 (m, 1H), 7.94–7.72 (m, 4H), 7.88 (d, J = 2.4 Hz, 1H), 7.67 (d,
J = 8.8 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.18 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 6.66 (d, J = 7.6 Hz,
1H), 4.64 (s, 2H), 4.58 (s, 2H), 3.33–3.27 (m, 2H), 3.26–3.21 (m, 2H), 3.19–3.13 (m, 4H). 13C
NMR (150 MHz, DMSO-d6): δ 168.0, 167.0, 157.6, 157.6, 154.1, 148.4, 147.4, 138.7, 137.8,
130.0, 119.1, 114.5, 99.9, 97.1, 67.6, 50.3, 40.3, 40.1, 38.0, 37.4. HRMS (ESI) m/z: calcd for
C20H28N11O4

+ [M+H]+: 486.2320; found 486.2319.
Ditrifluoroacetate salt of N-(2-guanidinoethyl)-2-(5-(2-((2-guanidinoethyl)amino)-2-

oxoethoxy)-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)acetamide 7b
Starting from 5b, the title compound was obtained with a yield of 50% as a yellowish

amorphous solid. HPLC rt 6.5 min. 1H NMR (600 MHz, DMSO-d6): δ 9.43 (br s, 2H), 8.84
(br s, 1H), 8.58–8.47 (m, 3H), 8.05–7.76 (br s, 4H), 7.88 (s, 1H), 7.75 (dd, J = 8.0 Hz, J = 7.0 Hz,
1H), 7.65 (dd, J = 8.4 Hz, J = 7.0 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 4.79
(s, 2H), 4.69 (s, 2H), 3.39–3.36 (m, 2H), 3.28–3.23 (m, 2H), 3.20 (t, J = 5.8 Hz, 2H), 3.19–3.16
(m, 2H). 13C NMR (150 MHz, DMSO-d6): δ 167.7, 167.0, 157.7, 150.1, 147.5, 146.9, 136.4,
134.4, 127.3, 125.5, 125.5, 125.4, 123.6, 123.1, 121.9, 97.5, 94.8, 67.7, 50.5, 40.4, 40.1, 38.0, 37.4.
HRMS (ESI) m/z: calcd for C24H30N11O4

+ [M+H]+: 536.2477; found 536.2475.

2.1.8. Dihydrochloride Salt of N-(2-Aminoethyl)-2-(5-(2-((2-aminoethyl)amino)-2-
oxoethoxy)-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)acetamide
(5b·2HCl)

To a suspension of 5b (90 mg, 0.2 mmol) in CH3OH (5 mL), 7N aqueous HCl solution
(0.2 mL) was added, and the resulting mixture was stirred at room temperature overnight.
Then, Et2O (50 mL) was added dropwise with vigorous stirring, and the formed precipitate
was filtered, washed with Et2O (2× 25 mL), and dried in vacuo, yielding 5b·2HCl as a light
beige crystalline solid (94%). M.p. ~165 ◦C with decomposition. 1H NMR (600 MHz, D2O):
δ 8.13 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.59 (d, J = 7.6 Hz,
1H), 7.58 (t, J = 7.1 Hz, 1H), 7.01 (s, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.80 (s, 2H, overlaps with
DHO), 4.60 (s, 2H), 3.74 (t, J = 6.2 Hz, 2H), 3.70 (t, J = 5.9 Hz, 2H), 3.31 (t, J = 6.2 Hz, 2H),
3.30 (t, J = 5.9 Hz, 2H). 13C NMR (150 MHz, D2O): δ 171.3, 169.3, 150.3, 146.8, 145.8, 138.6,
128.7, 128.0, 126.5, 124.1, 123.2, 122.4, 122.4, 121.1, 96.0, 93.3, 67.0, 51.4, 39.1, 39.0, 37.1, 36.8.

2.2. Cell-Based Assays
2.2.1. Cell Lines

Cell lines MCF7′, VA13, A549, and HEK293T were maintained in DMEM/F-12 (Thermo
Fisher Scientific, Madison, WI, USA) culture medium containing 10% fetal bovine serum
(Thermo Fisher Scientific, Madison, WI, USA), 50 µg/mL penicillin, and 0.05 mg/mL
streptomycin at 37 ◦C (Thermo Fisher Scientific, Madison, WI, USA) in 5% CO2. Cells were
maintained at 37 ◦C in a MCO-18AC humidified incubator (Sanyo, Tokyo, Japan) supplied
with 5% CO2. The cell cultures were tested for the absence of mycoplasma and validated
by STR.

2.2.2. MTT Assay

The cytotoxicity of the substances was tested using the MTT (3-(4,5-dimethylthiazol-
2-yl)2,5-diphenyl tetrazolium bromide) Mosmann assay [23] with some modifications. A
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total of 2500 cells per well for the MCF7′, HEK293T, and A549 cell lines or 4000 cells per
well for the VA13 cell line were plated out in 135 µL of DMEM-F12 medium (Gibco, USA)
in a 96-well plate and incubated in a 5% CO2 incubator for 20 h without treatment. Then,
15.8 µL of the corresponding medium-DMSO solutions of the substances being tested was
added to the cells in triplicate for each dilution (eight concentrations with three-times
dilutions with final concentrations in cells ranging from 0.05 to 100 µM; the final DMSO
concentrations in the medium were 0.5% or less) and incubated for 72 h. Doxorubicin
was used as a control substance. Then, the MTT reagent (Paneco LLC, Moscow, Russia)
was added to the cells up to the final concentration of 0.5 g/L (10× stock solution in PBS
was used) and incubated for 1.5 h (MCF7′, HEK293T and A549 cells) or 3 h (VA13 cells)
at 37 ◦C in the 5% CO2 incubator. Then, the MTT solution was discarded, and 140 µL of
DMSO (PharmaMed LLC, Moscow, Russia) was added. The plates were agitated on a
shaker (120 rpm) to dissolve the formazan. Absorbance was measured using a Victor X5
microplate reader (PerkinElmer, Waltham, MA USA) at a wavelength of 555 nm. The results
were used to construct dose–response curves by non-linear regression approximation of
the normalized data and to estimate IC50Abs values (IC50Abs is the concentration resulting
in two-fold decrease in the number of cells compared to untreated cells) with GraphPad
Prism 5 (GraphPad Software Inc., La Jolla, CA, USA).

2.2.3. Apoptosis/Necrosis Assay

A total of 3× 105 cells per well of the A549 cell line were seeded in 2 mL of DMEM-F12
medium (Gibco, USA) in 6-well plates, and then incubated in the 5% CO2 incubator for
20 h without treatment. After that, the medium-DMSO solutions of the compounds under
test in amounts of 1–33 µL were added (the DMSO concentrations in the wells were 1.5%
or less) and the cells were incubated for 24 h. The cells were collected (a sedimentation
procedure was performed at 200–300 g) in 1.5 mL tubes, flushed with PBS, and resuspended
in 1X Annexin V binding buffer consisting of 0.01 M HEPES (pH 7.4), 0.14 M NaCl, and
2.5 mM CaCl2 solution. Then, 5 µL of Annexin V–FITC (A13201, ThermoFisher, Waltham,
MA, USA) was added per 100 µL of cell solution in a 1× binding buffer, and the cells were
incubated for 15 min at room temperature. Afterwards, the cells were sedimented, and
the solution was replaced with 1X Annexin V binding buffer containing propidium iodide
(2.5 µL of PI (1 mg/mL, ThermoFisher, USA) per 100 µL of buffer), incubated for 15 min at
room temperature. Then, the cells were analyzed with a LongCyte C3090 flow cytometer
(Challenbio, Beijing, China) after staining for 2 h.

Caspase 3/7 activation was analyzed with the Muse® Caspase-3/7 Kit (Cytek Bio-
sciences, Fremont, CA, USA). The cells were prepared in the same way as in the previous
assay, but they were resuspended in 500 µL of growth medium, followed by staining and
analysis of 100 µL of the suspension in accordance to the manufacturer’s protocol.

2.2.4. Cell Cycle Assay

A total of 1× 105 cells per well of the A549 cell line were seeded in 1 mL of DMEM-F12
medium (Gibco, USA) in a 12-well plate and incubated in the 5% CO2 incubator for 20 h
without treatment. Then, 2 µL of medium-DMSO solutions of the substances under test
(the final DMSO concentrations in the medium were 0.5% or less) was added to the cells
and incubated for 24 h. The cells were collected (a sedimentation procedure was performed
at 200–300 g) in 1.5 mL tubes, flushed with PBS, and stained with the staining solution
(500 µL, RPMI1640 medium (Gibco, USA), Hoechst-33342 (10 µg/mL, Invitrogen, Waltham,
MA, USA) with TritonX100 (0.1%) and HEPES-KOH (10 mM pH 7.3)) for 15 min at room
temperature. The cells were analyzed with a LongCyte C3090 (Challenbio, Beijing, China)
or Amnis FlowSight (Luminex, Austin, TX, USA) flow cytometer after staining for 0.5 h.
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2.3. Oligonucleotide-Based Assays
2.3.1. FRET-Melting Assay

Oligodeoxyribonucleotides (ODNs) labeled with 6-carboxyfluorescein (FAM) and
Black Hole Quencher 1 (BHQ1) at 5′- and 3′-termini, respectively, and unlabeled oligodeoxy-
nucleotide ds26 were purchased from Litekh (Moscow, Russia) (purity > 95%, HPLC).
The ODN sequences are presented in Table S1. Solutions of the ODNs (1 µM) were
prepared in 20 mM sodium phosphate buffer, pH 7.4, supplemented with 10 mM KCl
(buffer 1), in all cases except VEGF, for which a 5 mM sodium phosphate buffer, pH 7.4,
supplemented with 25 mM LiCl (buffer 2) was used. The compounds under test were
added to ODN solutions to final concentrations of 1–20 µM (1:1, 1:2, 1:5, 1:10, or 1:20
ODN:compound ratio). The mixtures were heated to 95 ◦C for 5 min and then cooled on
ice to facilitate the intra-molecular folding of ODN structures. FRET melting curves were
obtained using a QuantStudio 5 PCR system (Thermo Fisher Scientific, USA). Changes
in fluorescence at 520 nm were recorded every 0.3 ◦C during stepwise heating of the
samples at an average rate of 1.5 ◦C/min. Melting temperatures were determined from
the maxima of first derivatives of the melting curves. For selectivity analysis, labeled
G4-forming oligonucleotides were mixed with pre-annealed unlabeled ds26 (G4 and ds26
concentrations: 0.5 µM and 10 µM, respectively); then, the compound under test was added
to a final concentration of 10 µM, and the melting experiments were performed as described
above.

2.3.2. MST Assay

ODNs labeled with hexachlorofluorescein (HEX) at the 5′-terminus were purchased
from Litekh (Russia) (purity > 95%, HPLC). The ODN sequences are presented in Table S2.
The pre-annealed 100 nM solution of 5′-HEX-labeled cKit1 ODN in buffer 1, STAT ODN
in buffer 1, or VEGF ODN in buffer 2 was mixed 1:1 (v/v) with two-fold dilutions of
the compound under test in the corresponding buffer supplemented with 5% DMSO
and 0.5% Tween 20. The final concentrations of the compounds being tested ranged
from 0 to 240 µM. The mixtures were incubated at room temperature for 10 min prior to
measurements. Microscale thermophoresis (MST) curves were recorded using a Monolith
NT.115 instrument and standard capillaries (NanoTemper, Germany) at 22 ◦C in GREEN
mode. To calculate Kd values, the dependence of MST data on the concentration of the
compound under test was analyzed using MO. Affinity Analysis software (NanoTemper,
Germany).

2.4. Dual Luciferase Reporter (DLR) Assay

The HEK293 cells were cultured in a 25-cm2 flask until 70–80% confluency was
achieved. Once the required density was reached, the cells were transfected with the
pC-Kit1 plasmid (Addgene plasmid #118983) using the GenJect-40 reagent (Molecta). Af-
ter transfection for 4 h, the cells were plated into a 96-well plate at a seeding density of
4 × 104 cells/well. Immediately after seeding, various concentrations of 5b (5, 20, and
50 µM) were added to the cells. Luciferase activity was measured 24 h after the treatment
using the Dual-Glo® Luciferase Assay System (Promega, Madison, WI, USA). All assays
were performed in triplicate.

2.5. Fluorescent Intercalator Displacement (FID) Assay

An Ethidium bromide (EtBr) displacement assay was performed in a 40 µL volume in
384-well black, flat-bottom, polystyrene microtiter plates. Solutions of EtBr in Tris buffer (0.05
M Tris·Cl, pH 7.5, 0.1 M KCl) at a concentration of 6 µM, 0.016 g/L calf thymus DNA that
corresponds to 24 µM of nucleotide pairs and the compound with final concentrations of 4,
16, 62.5, and 250 µM dissolved in DMSO (final concentration up to 3%) were prepared. The
compound and blank solutions contained the same percentage of DMSO. Once the ethidium
bromide solution had been added, the plates were protected from light. The mixtures were
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incubated for 15 min, and EtBr fluorescence (545 nm for excitation and 595 nm for emission)
was measured using Victor X5 (PerkinElmer).

3. Results and Discussion
3.1. Synthesis of the Compounds

To construct tri- and tetracyclic heteroaromatic systems, we used a reported reac-
tion of 2′-deoxycytidine with 1,4-benzoquinone in sodium acetate buffer (pH 4.5) [19],
but started from N1-substituted cytosine 1 (Scheme 1). The treatment of 1 with 1,4-
benzoquinone afforded tricyclic derivative 2a. For the preparation of tetracyclic derivative
2b, 1,4-naphthoquinone was used with an addition of C2H5OH to improve its solubility,
and the reaction time was prolonged. Then, 2a–b were reacted with ethane-1,2-diamine in
CH3OH at 50 ◦C, affording derivatives 3a–b with an amino-containing tether. The alky-
lation of the hydroxyl group in the heteroaromatic moiety of 2a–b was carried out by the
addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), followed by methyl 2-bromoacetate
in CH2Cl2, affording intermediates 4a–b. The subsequent substitution of the methoxy
groups in esters 4a–b with ethane-1,2-diamine in CH3OH at 50 ◦C led to ligands 5a–b bear-
ing two amino-containing tethers. The derivatives 6a–b were prepared via the reductive
methylation of 5a–b [24]. To convert the amino groups of 5a–b into the guanidino ones of
7a–b, a standard guanidinylating agent, 1H-pyrazole-1-carboxamidine hydrochloride, was
used [25,26].

Biomolecules 2023, 13, x FOR PEER REVIEW 9 of 17 
 

DNA that corresponds to 24 µM of nucleotide pairs and the compound with final concen-
trations of 4, 16, 62.5, and 250 µM dissolved in DMSO (final concentration up to 3%) were 
prepared. The compound and blank solutions contained the same percentage of DMSO. 
Once the ethidium bromide solution had been added, the plates were protected from light. 
The mixtures were incubated for 15 min, and EtBr fluorescence (545 nm for excitation and 
595 nm for emission) was measured using Victor X5 (PerkinElmer). 

3. Results and Discussion 
3.1. Synthesis of the Compounds 

To construct tri- and tetracyclic heteroaromatic systems, we used a reported reaction 
of 2′-deoxycytidine with 1,4-benzoquinone in sodium acetate buffer (pH 4.5) [19], but 
started from N1-substituted cytosine 1 (Scheme 1). The treatment of 1 with 1,4-benzoqui-
none afforded tricyclic derivative 2a. For the preparation of tetracyclic derivative 2b, 1,4-
naphthoquinone was used with an addition of C2H5OH to improve its solubility, and the 
reaction time was prolonged. Then, 2a–b were reacted with ethane-1,2-diamine in CH3OH 
at 50 °C, affording derivatives 3a–b with an amino-containing tether. The alkylation of the 
hydroxyl group in the heteroaromatic moiety of 2a–b was carried out by the addition of 
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), followed by methyl 2-bromoacetate in CH2Cl2, 
affording intermediates 4a–b. The subsequent substitution of the methoxy groups in es-
ters 4a–b with ethane-1,2-diamine in CH3OH at 50 °C led to ligands 5a–b bearing two 
amino-containing tethers. The derivatives 6a–b were prepared via the reductive methyla-
tion of 5a–b [24]. To convert the amino groups of 5a–b into the guanidino ones of 7a–b, a 
standard guanidinylating agent, 1H-pyrazole-1-carboxamidine hydrochloride, was used 
[25,26]. 

 
Scheme 1. Synthesis of benzo- and naphtho-imidazopyrimidinone derivatives. Reagents and con-
ditions: (a) 1,4-benzoquinone, 0.1 M sodium acetate buffer (pH 4.5), 37 ◦C, 24 h for 2a (60%) or
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DMSO, 60 ◦C 3h for 7a (47%) and 7b (50%).
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3.2. Cytotoxicity Assays

The cytotoxicity of benzo- and naphtho-imidazopyrimidinyl derivatives and their
intermediates was evaluated via an MTT assay [21], using human breast cancer cell line
MCF7′ (fast-growth subclone), human lung epithelial carcinoma cell line A549, and non-
cancerous lung fibroblast cell line VA13 (Table 1). The cytotoxicity for immortalized human
embryonic kidney cell line HEK293T as control non-cancerous fast-growth cells was also
studied. Most of the compounds were non- or weakly cytotoxic both for cancerous and
control cell lines. The introduction of an additional benzene ring into the heteroaromatic
scaffold appears to determine the activity throughout the naphtho series b. However, only
5b with two amino-bearing tethers demonstrated significant cytotoxicity, with the selectiv-
ity index (SI) being 3.0 and 17.3 for the VA13/MCF7 and VA13/A549 pairs, respectively
(Table 1, Figure 2A). Its congeners carrying dimethylamino and guanidino moieties exhib-
ited weak activity. For some heterocyclic scaffolds, the lower activity of dimethylamino-
and guanidino-substituted compounds compared to derivatives with amino groups has
been reported [27–29]. Of note, 5b outperformed commonly used chemotherapy drugs,
such as cisplatin, doxorubicin, and 5F-uracil [30,31], in terms of selectivity.

Table 1. Anti-proliferative effects of benzo- and naphtho-imidazopyrimidinone derivatives against
HEK293T, MCF7′, A549, and VA13 cell lines, and selectivity indexes after 72 h incubation and
viability measurement using the Mosmann assay (MTT). VA13 and HEK293T are slow- and fast-
growth non-cancerous cell lines, respectively; MCF7′ and A549 cell lines are of breast and lung origin,
respectively.

Compound IC50abs, µM SI
HEK293T MCF7′ A549 VA13 VA13/MCF7 VA13/A549

2a >100 >100 >100 ~100 ND ND
3a >100 >100 >100 >100 ND ND
4a >100 >100 >100 >100 ND ND
5a ~100 >100 >100 >100 ND ND
6a >100 >100 >100 >100 ND ND
7a ~100 >100 >100 >100 ND ND
2b 6.1 ± 0.3 30 ± 1 34 ± 2 60 ± 6 2.0 1.7
3b 32 ± 1 95 ± 3 94 ± 5 73 ± 2 0.8 0.8
4b 44 ± 1.9 ~100 ~100 ~100 ND ND
5b 2.6 ± 0.2 20 ± 2 3.6 ± 0.5 62 ± 5 3.0 17.3
6b ~100 >100 >100 >100 ND ND
7b 41 ± 4 ~100 76 ± 6 ~100 ND ND

Dox 0.02 ± 0.01 2 0.04 ± 0.02 2 0.014 ± 0.005 2 0.11 ± 0.04 2 3.0 7.9
5F-Uracil ND 10.0 ± 0.2 3 4 ± 1 1 13.6 ± 0.6 1 1.4 3.4
Cisplatin 3.4 ± 1.7 4 5.75 ± 0.02 5 2.69 ± 0.05 1 2.04 ± 0.08 1 0.4 0.8

ND—not determined 1–5 Data about cytotoxicity of known drugs were retrieved from 1 [31], 2 [32], 3 [33], 4 [34],
and 5 [35].

The treatment with 5b did not cause complete cell death even at high concentrations
(Figure 2A), and apoptosis induction is not the main mechanism of action of the compound
(Table S3, Figures S1 and S2). We checked if 5b had cytostatic activity and found that
it caused G2 arrest in A549 cells (Table 2, Figure 2B). This effect was significant, though
less prominent than after the treatment of cells with the well-established cytostatic drug
paclitaxel with G2-arresting activity [36,37].
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Table 2. Cell cycle effects of 5b and G1 and G2 phase-arresting drugs 92504 and paclitaxel, respectively.

Sample G1, % S, % G2, %

5b 58 6 36
92504 (cause G1-stop) 91 3 6

Paclitaxel (cause
G2-stop) 10 8 82

Untreated cells 72 17 11

3.3. Verification of DNA Targets: FRET-Melting and Microscale Thermophoresis (MST) Assays

In an attempt to elucidate the mechanism of action underlying the anti-proliferative
properties, we investigated the ability of the most active tetracyclic derivatives to interact
with a panel of biologically relevant DNA secondary structures. The non-active tricyclic
analogs were used as negative controls. Compound 5b contains a planar condensed
aromatic core and positively charged tethers, allowing for interactions with the DNA
duplex leading to DNA damage. In addition, carbazole-based derivatives can stabilize
G4s that regulate oncogene transcription and inhibit telomere elongation [38]. Telomeric
and c-Myc G4s have previously been reported as the main targets of carbazole-based G4
ligands [3].

Here, we used a FRET-melting assay with FAM/BHQ-labeled ODNs to evaluate the
stabilizing effects of the synthesized compounds on the DNA duplex and G4s. The 23-
mer hairpin Hair was chosen as a model duplex [39]. In addition to telomeric 22AG [40]
and c-Myc [41] G4s, three G4s from the promoters of oncogenes cKit1 [42], STAT [43], and
VEGF [44], as well as three imperfect G4s (Ct1, BclT, and 22CTA) [45,46], were also included.
To verify a topological preference, if any, the G4 set encompassed various topologies:
antiparallel (22CTA and STAT), parallel (cMyc, cKit1, and VEGF), hybrid (22AG) and mixed
hybrid/antiparallel (Ct1 and BclT) G4s. Furthermore, three of them, namely, cKit1, STAT,
and VEGF, contained long loops that can be involved in the interactions with G4 stabilizers.
In order to determine the effective concentration range and roughly evaluate the binding
affinity of the compounds to G4 targets, the concentration dependence of the stabilizing
effects was analyzed in a series of titration assays (Tables S4 and S5).

The G4/hairpin-stabilizing effects of all compounds are summarized in Figure 3. Both
tricyclic and tetracyclic compounds increased the Tm of G4s, but the stabilization of the
hairpin was observed only in the naphtho series b. The compounds demonstrated no
apparent selectivity for particular types of G4 topologies. The smallest stabilizing effect
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was observed for c-Myc G4, which has the highest intrinsic thermal stability (the highest Tm
value in the absence of the ligand), in all cases except for the case of 6b. Weak to moderate
stabilizing effects were predominantly observed for telomeric (22AG) and imperfect (BclT,
22CTA, and Ct1) G4s, except for the highly efficient stabilizers 5b and 7b. Both tri- and
tetracyclic derivatives gave the highest increase in melting temperature for cKit1, STAT,
and VEGF G4s. Taking into account that the last three G4s have the longest loops, the
efficacy of G4 stabilization could depend on loop–ligand interactions.
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Figure 3. Heatmap of the influence of the compounds on the thermal stability of DNA targets. The
concentrations of the compounds and the targets were 1 and 20 µM, respectively. For all targets
except VEGF, buffer 1 (20 mM sodium phosphate, pH 7.4, 10 mM KCl) was used. For VEGF, buffer 2
(5 mM sodium phosphate, pH 7.4, 25 mM LiCl) was used.

Tricyclic derivative 3a with a positively charged amino-containing tether demonstrated
no stabilizing effect. Among the di-substituted tricyclic derivatives, guanidylated 7a
exhibited the highest stabilizing effect, while 6a with dimethylamino-bearing arms showed
the lowest one. A similar dependence of the effect on the type and number of tethered
groups (3b < 5b < 6b < 7b in most cases) was observed among the tetracyclic compounds.

The introduction of an additional benzene ring into the benzoimidazopyrimidinone
scaffold had a positive impact on the stabilization of the G4s and the hairpin, presumably
due to additional stacking contacts with outer G tetrads or canonical Watson–Crick base
pairs. Mono-substituted compounds were the weakest stabilizers in both series, suggesting
that the number of positively charged terminal groups influences stabilization efficacy,
presumably due to electrostatic interactions with the sugar-phosphate backbone. The
superiority of the guanidylated derivatives can be explained by the high pKa value of the
guanidino group [47]. The lower efficacy of N-dimethylated derivatives can result from
charge shielding and steric hindrance [27].

In summary, the tetracyclic molecules exhibited a more pronounced stabilization of
both G4s and duplex DNA, that is mostly consistent with their anti-proliferative activity.
In contrast, the tricyclic derivatives that were inactive in MTT assays demonstrated lower
G4-stabilizing effects and no impact on duplex thermal stability.

To assess G4 vs. duplex selectivity, we chose five G4 targets that were stabilized
most effectively in the previous assay, and performed FRET melting in the presence of
derivatives and a competitor—unlabeled hairpin ds26 at a 20-fold excess relative to G4
(Figure 4). The mono-substituted derivative 3a was excluded due to the lack of effect.
For all investigated compounds, except for the mono-substituted tetracyclic compound
3b, the melting point of VEGF decreased significantly in the presence of ds26. Regarding
tricyclic molecules, the stabilizing effect on 22AG, 22CTA, STAT, and cKit1 G4s remained
almost unchanged, with the derivatives demonstrating a preference for these G4 targets
over duplex DNA. The stabilizing effects of di-substituted tetracyclic compounds mainly
decreased in the presence of the competitor. Surprisingly, a high stabilizing effect was
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observed for STAT in the presence of ds26, which might be explained by the formation of a
triple G4/ds26/derivative complex. cKit1 G4 can be highlighted as a preferred target for
tetracyclic derivatives, but, upon entering the cells, they can target both telomeric G4 and
duplex DNA due to their high abundance.
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For the most promising compounds, the dissociation constants (Kd) of their complexes
with proto-oncogenic G4s STAT, VEGF, and cKit1 were determined using microscale ther-
mophoresis (MST) assays with 5′-HEX-labeled G4 ODNs. The results are presented in
Figure 5. The Kd values of 3b/cKit, 5b/cKit, 3b/STAT, and 6a/STAT were in the submicro-
molar range, and the rest of the complexes tested showed micromolar Kd. Despite causing
only a moderate increase in G4 Tm, 3b turned out to be the most efficient G4 binder.
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In order to assess the impact of 5b on cKit expression, a DLR assay with the pC-Kit1
plasmid (Addgene plasmid #118983) that contains two luciferase genes (Renilla/Firefly)
was performed. The expression of Renilla is controlled by the c-Kit promoter containing
the cKit1 G4-forming sequence, while the expression of Firefly is under control by a non-
G4-forming promoter sequence (the HSV TK promoter). After transfection of the plasmid
into HEK293T cells for 4 h, followed by a 24 h treatment with 5b, no significant changes
in Renilla/Firefly expression ratio compared with the control were observed (Figure S3),
suggesting that G4 in the cKit promoter region is not the main target of 5b.

According to the FRET-melting assay, there is evidence for interactions of 5b with
DNA structures. The FID assay demonstrated that 5b is a DNA intercalator, though an
order of magnitude weaker one than EtBr (Figure S4).

The problem with DNA-targeting compounds is adverse effects and common toxicity
in combination with a low selectivity of action. The aims of this study were to evaluate
the prospects for further study of this class of derivatives; and to determine whether it
is necessary to synthesize additional compounds of this class, study their detailed molec-
ular mechanism, and conduct comprehensive studies in animal models. To evaluate the
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prospects of 5b for further application in vivo, we prepared its water-soluble dihydrochlo-
ride salt 5b·2HCl (see Section 2.1. Chemical synthesis) and performed tolerance tests on
mice. Compound 5b·2HCl up to 20 mg/kg did not demonstrate acute toxic effects and
caused no changes in mice behavior or decrease in body weight after a 72 h treatment.
The results support the prospects of further search for the cellular targets and evaluation
in vivo. Hopefully, the unraveling of the molecular target of 5b will be accomplished in the
future.

4. Conclusions

Novel derivatives of benzo[4,5]- and naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinones
were synthesized and evaluated as anti-proliferative agents. Tetracyclic compound 5b with
two amino-containing tethers inhibited metabolic activity in the low-micromolar range,
with notable selectivity for cancerous and fast-growing cells; however, it did not cause
complete cell death. In attempt to explore its mechanism of action, the biological properties
of 5b were further studied. A cell cycle assay demonstrated that 5b causes G2 arrest without
inducing apoptosis. The interaction of the compounds with DNA targets was of particu-
lar interest, and FRET-melting and MST experiments revealed that both benzo[4,5]- and
naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinones can bind and stabilize G4s, but only the lat-
ter can interact with the DNA duplex. A dual luciferase reporter assay showed that 5b does
not regulate gene expression under control by the promoter harboring the cKit1 G4-forming
sequence. In contrast, an FID assay revealed the intercalating properties of 5b that could be
partly responsible for its anti-proliferative activity. Finally, a water-soluble dihydrochloride
salt of 5b up to 20 mg/kg was shown not to be toxic for mice after a 72 h treatment. Here,
we have demonstrated the first evidence that naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone
derivative is a DNA-targeting agent that causes cell cycle halting and possesses selectivity
for cancer cell lines. Thus, the lead compound looks promising for further investigation;
however, the discovery of its molecular targets is necessary.
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used as a control sample; Table S1: Sequences of the ODNs used in FRET-melting assays; Table S2:
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