
Citation: Peng, T.; Gu, Y.; Ruan, S.-J.;

Wu, Q.J.; Cai, J. Novel Solution for

Using Neural Networks for Kidney

Boundary Extraction in 2D

Ultrasound Data. Biomolecules 2023,

13, 1548. https://doi.org/10.3390/

biom13101548

Academic Editors: Thomas

R. Caulfield and Gaetano Barbato

Received: 16 July 2023

Revised: 30 September 2023

Accepted: 16 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Novel Solution for Using Neural Networks for Kidney
Boundary Extraction in 2D Ultrasound Data
Tao Peng 1,2,3,*,†, Yidong Gu 4,†, Shanq-Jang Ruan 5 , Qingrong Jackie Wu 6 and Jing Cai 2,*

1 School of Future Science and Engineering, Soochow University, Suzhou 215006, China
2 Department of Health Technology and Informatics, The Hong Kong Polytechnic University,

Hong Kong, China
3 Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
4 Department of Medical Ultrasound, Suzhou Municipal Hospital, Suzhou 215000, China;

guyidong@njmu.edu.cn
5 Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology,

Taipei City 10607, Taiwan; sjruan@mail.ntust.edu.tw
6 Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA;

jackie.wu@duke.edu
* Correspondence: sdpengtao401@gmail.com (T.P.); jing.cai@polyu.edu.hk (J.C.)
† These authors contributed equally to this work.

Abstract: Background and Objective: Kidney ultrasound (US) imaging is a significant imaging modality
for evaluating kidney health and is essential for diagnosis, treatment, surgical intervention planning,
and follow-up assessments. Kidney US image segmentation consists of extracting useful objects or
regions from the total image, which helps determine tissue organization and improve diagnosis. Thus,
obtaining accurate kidney segmentation data is an important first step for precisely diagnosing kidney
diseases. However, manual delineation of the kidney in US images is complex and tedious in clinical
practice. To overcome these challenges, we developed a novel automatic method for US kidney
segmentation. Methods: Our method comprises two cascaded steps for US kidney segmentation. The
first step utilizes a coarse segmentation procedure based on a deep fusion learning network to roughly
segment each input US kidney image. The second step utilizes a refinement procedure to fine-tune
the result of the first step by combining an automatic searching polygon tracking method with a
machine learning network. In the machine learning network, a suitable and explainable mathematical
formula for kidney contours is denoted by basic parameters. Results: Our method is assessed using
1380 trans-abdominal US kidney images obtained from 115 patients. Based on comprehensive
comparisons of different noise levels, our method achieves accurate and robust results for kidney
segmentation. We use ablation experiments to assess the significance of each component of the
method. Compared with state-of-the-art methods, the evaluation metrics of our method are signifi-
cantly higher. The Dice similarity coefficient (DSC) of our method is 94.6 ± 3.4%, which is higher
than those of recent deep learning and hybrid algorithms (89.4 ± 7.1% and 93.7 ± 3.8%, respectively).
Conclusions: We develop a coarse-to-refined architecture for the accurate segmentation of US kidney
images. It is important to precisely extract kidney contour features because segmentation errors can
cause under-dosing of the target or over-dosing of neighboring normal tissues during US-guided
brachytherapy. Hence, our method can be used to increase the rigor of kidney US segmentation.

Keywords: ultrasound kidney segmentation; deep fusion learning network; automatic searching
polygon tracking; mathematical mapping model

1. Introduction

Kidney segmentation algorithms are routinely used to extract regions of interest (ROIs)
from entire medical images and help radiologists make clinical decisions [1]. Given its
advantages of being painless, noninvasive, and cost-efficient, ultrasound (US) imaging is
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a good option for evaluating kidney health [2]. However, manually labeling US kidney
images is tedious and complex. To reduce the workload of radiologists and increase the
efficiency of annotation, there is a demand for an automatic US kidney segmentation
algorithm for clinical applications [3]. It is challenging to develop such an algorithm
because (1) the kidney boundary may not always be complete and prominent due to
interference from neighboring tissues (e.g., intestinal gas) [4]; (2) the kidney boundary may
have low contrast; (3) the intensity of the kidney structure may follow different distributions;
and (4) kidney shape varies across patients. The challenges of kidney segmentation in
trans-abdominal US images are illustrated in Figure 1.

Biomolecules 2023, 13, x FOR PEER REVIEW 2 of 16 
 

its advantages of being painless, noninvasive, and cost-efficient, ultrasound (US) imaging 
is a good option for evaluating kidney health [2]. However, manually labeling US kidney 
images is tedious and complex. To reduce the workload of radiologists and increase the 
efficiency of annotation, there is a demand for an automatic US kidney segmentation al-
gorithm for clinical applications [3]. It is challenging to develop such an algorithm because 
(1) the kidney boundary may not always be complete and prominent due to interference 
from neighboring tissues (e.g., intestinal gas) [4]; (2) the kidney boundary may have low 
contrast; (3) the intensity of the kidney structure may follow different distributions; and 
(4) kidney shape varies across patients. The challenges of kidney segmentation in trans-
abdominal US images are illustrated in Figure 1. 

 
Figure 1. Example trans-abdominal US kidney images. Portions of the kidney boundary, pointed to 
by arrows, do not have high contrast with the surrounding tissue. The first column shows an axial 
image, and the second and third columns show sagittal images. The second row displays the corre-
sponding ground truth of the original data in the first row. The red circles represent the contour 
manually delineated by the professional radiologists. 

Two main kinds of medical image segmentation algorithms are currently used: re-
gion-based [5,6] and contour-based [7,8]. Torres et al. [9] proposed a fast phase-based 
method for US kidney segmentation and achieved a DSC of around 0.81. Nevertheless, 
when a phase-based feature detection algorithm was utilized to extract the initial contour 
around the external dark-to-bright transition, the refinement step, which used a B-spline 
active surface framework, was prone to becoming stuck at a local minimum. Chen et al. 
[10] designed a deep convolutional neural architecture for segmenting US kidney slices. 
However, the outcome of the model was strongly influenced by the image quality, vague-
ness of the outline, and heterogeneous construction. This increased the potential of the 
method to wrongly detect and segment several slices. Yin et al. [11] combined a boundary 
detection network with a transfer learning architecture for US kidney segmentation. Their 
method may have been restrained by the capability of the transfer learning architecture to 
capture kidney features. In other words, the capability of their proposed method relied on 
the performance of the pre-trained visual geometry group (VGG) model. Unlike region 
segmentation algorithms, contour segmentation algorithms have the merit of easily de-
tecting the appearance of an anatomical structure. 

Figure 1. Example trans-abdominal US kidney images. Portions of the kidney boundary, pointed
to by arrows, do not have high contrast with the surrounding tissue. The first column shows an
axial image, and the second and third columns show sagittal images. The second row displays the
corresponding ground truth of the original data in the first row. The red circles represent the contour
manually delineated by the professional radiologists.

Two main kinds of medical image segmentation algorithms are currently used: region-
based [5,6] and contour-based [7,8]. Torres et al. [9] proposed a fast phase-based method
for US kidney segmentation and achieved a DSC of around 0.81. Nevertheless, when a
phase-based feature detection algorithm was utilized to extract the initial contour around
the external dark-to-bright transition, the refinement step, which used a B-spline active
surface framework, was prone to becoming stuck at a local minimum. Chen et al. [10] de-
signed a deep convolutional neural architecture for segmenting US kidney slices. However,
the outcome of the model was strongly influenced by the image quality, vagueness of the
outline, and heterogeneous construction. This increased the potential of the method to
wrongly detect and segment several slices. Yin et al. [11] combined a boundary detection
network with a transfer learning architecture for US kidney segmentation. Their method
may have been restrained by the capability of the transfer learning architecture to capture
kidney features. In other words, the capability of their proposed method relied on the
performance of the pre-trained visual geometry group (VGG) model. Unlike region seg-
mentation algorithms, contour segmentation algorithms have the merit of easily detecting
the appearance of an anatomical structure.
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Using the shape representation [12] or the curve approximation method [13,14],
contour-based segmentation algorithms can be used to delineate the contours of organs.
Zheng et al. [15] integrated image intensity information and texture information into a
dynamic graph-cutting method to segment US kidney slices. Their method achieved good
segmentation performance with reasonable initialization (i.e., intensity and texture informa-
tion). Marsousi et al. [16] proposed a new shape model to segment US kidney images using
shape and anatomical knowledge as prior initialization. In Ref. [17], a phase-based distance
regularized evolution model was proposed for segmenting the ROI of the kidney, with the
partial phase and feature used as priors to improve segmentation accuracy. However, their
method required too many parameters to be initialized by humans. Using a parametric
super-ellipse as a global shape initialization, Huang et al. [12] designed a contour-based
model for US kidney segmentation tasks with the aim of solving two problems: finding the
segmented boundary of a fixed prior shape and determining the deformation parameters
of the super-ellipse for the obtained segmented boundary. However, in practical scenarios,
it was difficult for radiologists to manually determine an initialized shape-based ellipse’s
central point that had the same location as the actual kidney contour’s central point.

We developed an automatic coarse-to-refinement segmentation network for kidney
segmentation in US images. In the coarse segmentation stage, we used a deep fusion
learning network (DFLN). In the DFLN, we integrated a deep parallel architecture consist-
ing of an attention gate (AG) module [18] and a squeeze and excitation (SE) module [19]
into the U-Net architecture [20]. Furthermore, we used an automatic searching polygon
tracking (ASPT) method coupled with an adaptive learning-rate backpropagation neural
network (ABNN) [21] to express a mathematical map function of a smooth kidney contour
and optimize the coarse segmentation outcome. Compared with existing segmentation
strategies, our new method has the following advantages:

• Our fully automatic coarse-to-refinement segmentation method is more suitable for
practical applications than manual and semi-automatic methods that require excessive
human intervention.

• Our previous study proposed a closed polygonal segment method [22] for the first
time to address the drawbacks of the K-segments polygonal segment algorithm [23],
which could not handle closed data well. Furthermore, we devised an enhanced
polygonal segment algorithm [24,25] to minimize interference with the principal curve
(PC) by abnormal data points. The above methods are standard PC-based methods. In
this study, we devised an ASPT method to replace the standard PC-based methods for
automatically determining vertices and clusters without prior knowledge.

• In our method, an explainable mathematical mapping function of the kidney bound-
ary is represented by the parameters of the ABNN. During ABNN training, model
deviation is reduced to yield a precise outcome.

Work related to the current study was accepted at the 2021 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM) conference [14]. There are some differences
between the conference paper and the current study:

• We include more comprehensive literature in the current study.
• Compared with the conference work, which described a semi-automatic segmentation

algorithm [14], we propose here a fully-automatic segmentation algorithm whose
performance will not be affected by the selection of initial prior points.

• Unlike conventional PC-based algorithms [14,23], our ASPT algorithm has the ad-
vantage of being a mean shift clustering (MSC)-based method. This allows it to
automatically determine the number of vertices and clusters without any human
intervention. To the best of our knowledge, the current study is the first to propose a
PC-based ASPT algorithm.

• Given the gradient vanishing issue arising from the backpropagation neural network
used in our previous study [14], we used a rectified linear unit (ReLU) function [26] to
replace the sigmoid function in the current study [27].
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• In the conference work, we compared our method with hybrid methods such as
deep belief network-closed polygon tracking (DBN-CPT) [22] and with deep learning
methods such as mask region-based convolutional neural network algorithms [28]
and Unet++ [29]. In the current study, we compared more recent methods such as
A-LugSeg [7] and deep learning methods such as Transformer [30]. The A-LugSeg [7]
method is a fully automated method previously developed by our group for lung
segmentation.

2. Methods
2.1. Problem Formulation

As the vertices and clusters of traditional PC methods are manually predetermined [31],
the aim of our method was to obtain an accurate kidney contour without manual inter-
vention. First, given the ability of deep learning techniques to automatically learn from
image features (i.e., ROI location, contour, and intensity), we used deep learning-based
models for coarse segmentation. Then, the contour vertex set of coarse segmentation,
Piv = {p1, p2,. . ., piv}, was used as the input for polygon tracking-based methods. From this,
the vertex sequence D = {d1, d2,. . ., div}∈Rd = {(ti, (vx, vy)), i = 1, 2, . . ., iv, 0 ≤ t1 < ti < tiv ≤ 1}
can be obtained, where ti is the sequence number of vertices and pi(vx, vy) represents the
coordinates of the corresponding vertices, where vx and vy are the corresponding x- and
y-axis coordinates, respectively, of vertex vi. However, the contour obtained by the polygon
tracking-based method consisted of several segments. Next, vertex sequence D was used as
the input for the neural network. The model error can be minimized during neural network
training. Finally, we devised a mathematical formula (explained through the basic parame-
ters of the neural network) to express a smooth kidney contour, as shown in Equation (1).
For clarity, please see Table A1 in the Appendix A, which lists the abbreviations for all the
notation used.

f (t) =
(

vx(t), vy(t
))

=
(

g(vx(t)), g(vy(t))
)

(1)

(
g(vx(t)), g(vy(t))

)
= (e

s
∑

i=1

1
1+e−(tw1i−mi)

w2 i,1−u1
, e

s
∑

i=1

1
1+e−(tw1i−mi)

w2 i,2−u2
) (2)

In Equations (1) and (2), g(•) is the value of the output units, s represents the number
of hidden neurons, and m and u are hidden and output thresholds, respectively. w1 and w2
are the hidden and output weights, respectively.

There were several challenging issues to consider. First, deep learning networks
receive large amounts of interest for automatic segmentation tasks. However, because of
the poor contrast between kidneys and the surrounding tissue, selecting an optimal deep
learning model for segmenting US kidney slices is not easy. Second, the main steps of
current PC-based methods [7,32] are projection, vertex optimization, and vertex addition,
in which the number of vertices is determined by human intervention. In our study, it
was also challenging to identify the best method to automatically determine the vertices to
describe the segmentation contour. Third, contours obtained using the PC method have
several line segments. Identifying the best mathematical map function to express a smooth
kidney contour is therefore difficult.

2.2. Overview of the Proposed Method

Our coarse-to-refinement-based method had two main components: (1) a coarse
segmentation step and (2) a refinement step. The flowchart of our approach is shown in
Figure 2. Stage 1 represents the deep fusion learning-based coarse segmentation stage,
and Stage 2 is the refinement stage. In addition, the input and output of each stage of
our developed system are displayed in Table 1, and all the notations are defined in the
Appendix A.
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Table 1. Input/output of each stage of our developed system.

Model Input Output

DFLN Original data Coarse segmentation outcome (contour vertices set Piv)

ASPT Coarse segmentation outcome (contour
vertices set Piv)

Vertices sequence D (sequence number of vertices t and
their corresponding coordinates p)

ABNN Vertices sequence D Refined result

DFLN: deep fusion learning network; ASPT: automatic searching polygon tracking; ABNN: adaptive learning-rate
backpropagation neural network.

2.3. Coarse Segmentation Step

Our work used a DFLN for coarse kidney segmentation, where the DFLN model
comprises an SE module [19], an AG module [33], and a U-Net architecture [20]. As the
SE and AG modules have a good ability to highlight salient features, we used both to
generate different fusion variants. Figure 3 shows the structure of four fusion variants (two
serial and two parallel). The combination of the AG and SE modules occurs at each skip
connection of the U-Net structure.

With the U-Net structure as the backbone, we used one serial architecture of AG
followed by SE (Serial 1) and another serial architecture of SE followed by AG (Serial 2).
Furthermore, using different inputs for the SE module, we used different parallel architec-
tures. The biggest difference between the two parallel architectures lies in the input for
the SE: one uses features from decoding paths (Parallel 1) and the other uses features from
encoding paths (Parallel 2).

The U-Net structure contains encoder and decoder blocks. The SE module contains a
squeeze module (global max-pooling layer) and an excitation module (two 1 × 1 convo-
lutions followed by a ReLU [26] and sigmoid function [34]). In addition, the AG module
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contains a concatenation between the output of the corresponding down-sampled and
up-sampled layers, each followed by the ReLU, a 1 × 1 convolution, a sigmoid function,
and a multiplication operation.
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2.4. Acquire Vertex Sequence

In this section, the ASPT method is applied to obtain the vertex sequence. In contrast
to standard PC-based methods [31], our proposed method leveraged the ability of the MSC-
based method to automatically determine the numbers of vertices and clusters without any
prior knowledge [35], resulting in the automatic generation of the PC. Figure 4 shows the
difference between related PC-based and our ASPT methods.
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Figure 4. Difference between the standard PC-based method and our ASPT method. The main steps
of the PC-based methods are projection, vertex optimization, and vertex addition. Unlike PC-based
methods, our ASPT method only uses the newly added normalization and the adaptive MSC method
while including a modified vertex optimization step.

2.4.1. Normalization

To unify the dataset, the contour vertex set of the coarse segmentation result, Piv,
is normalized to the range of {(−1, −1)~(1, 1)} based on the min-max normalization
method [36].
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2.4.2. Adaptive MSC Method

The basic goal of the MSC-based method is to find cluster points based on different
cluster sets that meet different probability density distributions. When the initial points
converge at the cluster point with the maximum local probability density, these initial
points are designated as belonging to the same cluster [37].

The traditional MSC method was proposed by Cheng et al. [37] for searching data
clusters. However, many subsequent studies have demonstrated that MSC with adaptive
bandwidth generates more accurate outcomes than an algorithm with fixed kernel band-
width, particularly in high-dimensional feature space [38]. We used the adaptive MSC
method [38], which combines the automatic selection of a kernel bandwidth scheme with
MSC to automatically determine the numbers of vertices and clusters.

2.4.3. Vertex Optimization Step

1. Standard PC-based vertex optimization step

The purpose of this step was to minimize the penalty distance function Giv(vi)
so that the locations of all the vertices are optimized [31]. Let π(vi) = r2(1 + cos γi),
µ+(vi) = ||vi − vi+1||2, and µ−(vi) = ||vi − vi−1||2 in which r is defined as the data ra-
dius, represent the largest distance between point p and centroid p of Pi

′
v, as shown in

Equation (3).

r = maxp∈Piv

∥∥∥∥p− 1
iv∑ p′∈Piv p′

∥∥∥∥ (3)

Combining the π(vi), µ+(vi), and µ−(vi) functions, Kegl et al. [31] computed the cur-
vature penalty CP(vi) on vertex vi, defined by Equation (4), where a denotes the number
of vertices.

Let τ(vi) = ∑
x∈V

∆(x, vi), σ+(vi) = ∑
x∈S

∆(x, si), and σ−(vi) = ∑
x∈S

∆(x, si−1), where

V and S are the vertex and segment sets, respectively, and the average squared distance
function ∆iv(vi) of vi is defined in Equation (4).

∆iv(vi) =


τ(vi) + σ+(vi) if i = 1
σ−(vi) + τ(vi) + σ+(vi) if 1 < i < iv + 1
σ−(vi) + τ(vi) if i = a + 1

(4)

Penalized distance function Giv(vi) is defined in Equation (5), where the penalty metric

λ is a positive number and λ = λ′· b
iv1/3 ·

√
∆iv( fis,iv)

r ; λ′ is the adjustment parameter with
a constant value of 0.13 [23], and iv and is are the numbers of vertices and segments,
respectively.

Giv(vi) =
1
n
× ∆iv(vi) + λ× 1

is + 1
CP(vi) (5)

2. Our modified vertex optimization step

In standard PC-based methods [31], the curvature penalty CP(vi) is calculated using a
triangular-based function, as shown in Equation (3). To increase the efficiency of standard
PC-based methods, we re-designed the penalized distance function of the vertex optimiza-
tion step using the curvature penalty function MP(vi), with addition and averaging, to
replace CP(vi). The newly designed penalized distance function G′iv(vi) is expressed as
Equation (6), where MP(vi) is defined as a penalty imposed on the total curvature of the
principal curve defined by Equation (7).

G′iv(vi) =
1
iv
× ∆iv(vi) + λ× 1

k + 1
×MP(vi) (6)

MP(vi) =
1
is
× (

is

∑
i=1

∆(p, vi)) (7)
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2.5. Explainable Mathematical Map Function of the Kidney Contour

After executing the ASPT method, we obtained the vertex sequence D, consisting
of the number of vertex sequences t and the relevant vertices’ coordinates vi(xi, yi). The
kidney contour, comprising several segments, was simultaneously obtained. To smooth the
contour, we used a three-layered ABNN for training. t was used as the input for the ABNN,
and vi(xi, yi) was applied to reduce the mean square error [39]. The sigmoid function
h1 = 1/(1 + e−x) was applied in the forward-propagation procedure of the ABNN from the
input to the hidden layers. Concurrently, the ReLU function h2 = max{0, x} was used from
the hidden to the output layers. After training, we identified a mathematical map formula
(expressed by the basic parameters of the ABNN) so that the smooth kidney boundary
indicated by the output of the neural network (i.e., the updated vertices) matched the
ground truth (GT), as shown in Equations (1) and (2).

2.6. Materials

We evaluated our segmentation network on a kidney dataset obtained from the Suzhou
Municipal Hospital (SMH), Suzhou, Jiangsu, China. The kidney dataset, named the SMH
dataset, consists of trans-abdominal US scanning-based images from 115 patients without
kidney disease. The SMH data were obtained using a Mindray DC-8 US system with a
1.3–5.7 MHz low-resolution linear transducer. The probe detection depth and frequency
were set to 200 mm and 4 MHz, respectively, and the amplifier gain was within the
range [3, 33 dB]. We used both axial and sagittal view kidney images from each patient
for evaluation. Three professional physicians manually delineated all the images. The
consensus GT was then decided based on the majority of the three physicians’ labels. Two
common metrics, DSC [40] and the Jaccard similarity coefficient (Ω) [25], were used for
evaluating the performance of our model.

We split the SMH data of 115 patients (1380 slices) into three groups, namely
80 patients (960 slices) for training, 12 patients (144 slices) for validation, and the re-
maining 23 patients (276 slices) for testing. We resampled all of the slices from the original
resolution, 1200 × 900 pixels, to 600 × 450 pixels. To avoid overfitting, we increased the
size of the training dataset using rotation within [−20◦, 20◦] until it reached a total of
2000 slices. When the DFLN was being trained, we used the Dice loss function to calculate
loss and the Adam optimizer [17] to adjust the learning rate. In addition, the stochastic
gradient descent method was applied to optimize the ABNN. The initial learning rate,
momentum value, and maximum training epochs were 0.4, 0.9, and 1000, respectively.

3. Results
3.1. Comparison with Different Variants

Table 2 represents the testing outcomes of four variant models based on the DSC value.
Figure 5 represents the visual qualitative results of the four variant models based on two
randomly selected cases. Parallel architectures (Parallel 1 and 2) showed better performance
than serial architectures (Serial 1 and 2), with DSC and Ω values of 0.89 and 0.899 and
0.805 and 0.813, respectively, for the two parallel architectures. However, compared with
Parallel 1, the DSC and Ω values of Parallel 2 increased by 1.01% and 0.99%, respectively.
Hence, we used Parallel 2 as the coarse segmentation step of our proposed method.
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Table 2. Differences among different models. Serials 1 and 2 use serial architecture of AG followed by
SE and SE followed by AG, respectively. Parallel 1 and 2 denote parallel architecture, using features
from the decoding and encoding paths, respectively, as the input for the SE. The details of the four
models are shown in Figure 3.

DSC ± SD (%) Ω ± SD (%)

Serial 1 87.1 ± 9.2 78.6 ± 12.1
Serial 2 87.9 ± 8.9 79.7 ± 11.1
Parallel 1 89.0 ± 8.1 80.5 ± 8.8
Parallel 2 89.9 ± 6.9 81.3 ± 8.7
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Figure 5. Visual results of four variant models. Two randomly selected cases are presented under
different views. The blue and red lines show the experimental outcome and GT, respectively. The
first two rows show the axial view, and the last two rows show the sagittal view. The first and third
rows show the overlap between the segmentation result and the GT. The second and fourth rows
show the corresponding zoomed-in display.

3.2. Ablation Experiments

Ablation experiments were conducted to assess the influence of different components
of our method. The ablation results are shown in Table 3. Figure 6 reports the visual
comparisons using two representative cases. Compared with Model 1, the DSC and
Ω of other models (with the refinement step) increased by 1.55–5.22% and 8.11–14.8%,
respectively. In addition, for Models 2–6, the DSC values were higher than 91% and
the standard deviations were lower than 6.5%. This demonstrates that the proposed
refinement step can fine-tune the coarse segmentation outcomes. All in all, our model shows
optimal capability.
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Table 3. Ablation results. Except for Model 1, all the methods are coarse-to-refinement structures.
DSC, dice similarity coefficient; SD, standard deviation; Ω, Jaccard similarity coefficient; P2: Parallel
2; MSC: mean-shift clustering; AMSC: adaptive mean shift clustering; VOS: vertex optimization step;
MVOS: modified vertex optimization step; BNN: backpropagation neural network; ABNN: adaptive
learning-rate backpropagation neural network.

Architecture DSC ± SD (%) Ω ± SD (%)

Model 1 P2 89.9 ± 6.9 81.3 ± 8.7
Model 2 P2+MSC+VOS+BNN 91.3 ± 4.9 87.9 ± 6.4
Model 3 P2+AMSC+VOS+BNN 92.1 ± 4.5 89.2 ± 5.6
Model 4 P2+MSC+MVOS+BNN 92.4 ± 4.6 89.9 ± 6.1
Model 5 P2+AMSC+MVOS+BNN 93.8 ± 3.8 90.8 ± 5.3
Model 6 P2+AMSC+MVOS+ABNN 94.6 ± 3.4 93.4 ± 4.1
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3.3. Robustness Evaluation of Our Proposed Method Using a Testing Set Corrupted by
Gaussian Noise

We used testing images corrupted by various degrees of Gaussian noise to evaluate
the performance of our proposed method. Different degrees of Gaussian noise can have
dissimilar influences on the capability of a method [25]. In our experiment, the standard
deviation (σ) was assigned a set value (i.e., 0, 10, 25, or 50). As shown in Table 4, compared
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with the case in which σ = 0, when σ rose from 10 to 25, to 50, the DSC value increased
from 0.96% to 1.93% and to 3.61%, respectively, and the Ω decreased from 1.85% to 2.52%
and to 3.77%, respectively. However, the mean DSC values for all cases with different
levels of noise were greater than 91%. The qualitative results of a randomly picked case are
displayed in Figure 7.

Table 4. Quantitative outcomes of our method under various degrees of Gaussian noise. σ = 0
denotes no noise added to the raw image.

DSC ± SD (%) Ω ± SD (%)

Raw set (σ = 0) 94.6 ± 3.4 93.4 ± 4.1
σ = 10 93.7 ± 3.9 91.7 ± 4.6
σ = 25 92.8 ± 4.2 91.1 ± 4.9
σ = 50 91.3 ± 4.7 90 ± 5.4

Figure 7. Robustness of our method under various degrees of Gaussian noise. Row 1, raw or
noisy data; row 2, histograms of the raw or noisy images; row 3, the overlap between the GT and
segmentation results; and row 4, corresponding zoomed-in results. The red line represents the GT,
and the blue line represents the segmentation result.

3.4. Comparison with Existing Fully Automated Techniques

We compared our methods with two existing techniques: hybrid [7] and deep-learning-
based [28,29]. We used the SMH kidney US data for internal validation and additional
trans-abdominal US kidney data for external validation. The newly added kidney data
were provided by the Beijing Tsinghua Changgung Hospital (BTCH), Beijing, China. The
kidney dataset, named the BTCH dataset, was obtained from 45 brachytherapy patients
(total of 450 slices) using a HI VISION Avius L US and a 1–5 MHz convex array probe. The
mechanical index was set to 0.8, with a probe detection depth of 15 mm and amplifier gain
between 2 and 30 dB. For better assessment, we used the commonly used DSC and Ω as
the evaluation metrics.

3.4.1. Internal Evaluation of SMH Data

As shown in Table 5, all the hybrid techniques performed better than the deep learning
techniques; the values of DSC and Ω were as high as 8.3% and 16.6%, respectively, showing
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that the refinement module can optimize the coarse segmentation outcomes. All in all, our
method shows better performance (i.e., precision and robustness) than existing methods.

Table 5. Comparison with existing fully automatic techniques on SMH data (DSC and Ω in
mean ± standard deviation [SD]).

Reference Method Technique/Model DSC ± SD (%) Ω ± SD (%)

[28] Mask-RCNN Deep learning (fully automatic) 87.3 ± 7.2 80.1 ± 9.2
[30] Transformer Deep learning (fully automatic) 89.4 ± 7.1 80.9 ± 8.7
[7] A-LugSeg Hybrid (fully automatic) 93.7 ± 3.8 91.6 ± 4.9
Current Our method Hybrid (fully automatic) 94.6 ± 3.4 93.4 ± 4.1

3.4.2. External Evaluation of BTCH Data

The BTCH dataset contains 450 slices from 45 brachytherapy patients, with all the
slices resized to 600 × 450 pixels. These slices were used to evaluate the performance of all
the models. Table 6 shows the performance of all the state-of-the-art methods on the BTCH
data for external evaluation. Compared with the deep learning models, the mean values of
DSC and Ω of the hybrid models increased to as high as 7.87% and 16.1%, respectively. As
external evaluation is more challenging, the performances of all the methods were slightly
lower in the external evaluation (Table 6) than in the internal evaluation (Table 5). The
DSC and Ω of our method attained maximum values of 93.2 ± 3.7% and 92.1 ± 4.6%,
respectively.

Table 6. Comparison with existing fully automated techniques on BTCH data (DSC and Ω in
mean ± standard deviation [SD]).

Reference Method Technique/Model DSC ± SD (%) Ω ± SD (%)

[28] Mask-RCNN Deep learning (fully automatic) 86.4 ± 7.5 79.3 ± 9.5
[30] Transformer Deep learning (fully automatic) 88.1 ± 7.3 79.8 ± 8.9
[7] A-LugSeg Hybrid (fully automatic) 92.5 ± 4.2 90.6 ± 5.4
Current Our method Hybrid (fully automatic) 93.2 ± 3.7 92.1 ± 4.6

4. Discussion

This paper presents a novel mechanism to segment kidneys in US images. The
proposed method has three attributes: (1) an automatic deep fusion learning network;
(2) an automatic searching polygon tracking method; and (3) an interpretable mathematical
formula for the kidney boundary. To assess the capability of our method for kidneys with
inconsistent appearances, kidney images of 115 patients were used for a detailed qualitative
and quantitative evaluation. Our work demonstrated that (1) our model exhibited good
outcomes for different patients and evaluation metrics (DSC and Ω); and (2) our model
outperformed other existing models. We discuss more details of the overall work below.

We collected trans-abdominal US scanning-based data from 115 patients, with left and
right kidney images for each patient. The left and right kidneys could not be acquired in
the same image because (1) there is a long distance between them, (2) they are separated by
the spine, and (3) the probe scan range is limited.

As shown in Table 2, different serial and parallel architectures resulted in different
levels of performance for the coarse segmentation strategy. There are three aspects of the
outcomes presented in Table 2 to be discussed. First, overall, the parallel architecture
showed better capability than the serial architecture. Both the AG [18] and SE [19] modules
are known to have a good ability to boost relevant features and remove irrelevant features.
However, using serial AG and SE modules may cause the deletion of a large amount of
information, some of which may be useful. Second, of the serial architectures evaluated,
SE-AG (Figure 3b) showed better performance than AG-SE (Figure 3a). The main reason
for this is that the AG module has a more complex structure than the SE module (as
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shown in Section 2.3), which makes it difficult to train the AG module and avoid the
loss of meaningful information. Third, as illustrated in Table 2, the Parallel 2 model
performed better than the Parallel 1 model. The main difference between these two parallel
architectures is in the input for the SE module, with one using features from the decoding
path (Parallel 1) and the other using features from the encoding path (Parallel 2). Parallel
2 may perform better because using encoding features as the input for the SE module
carries the merit of the SE module to emphasize meaningful features and suppress less
useful features.

As shown in Figure 6, we used an ablation comparison to demonstrate the capability
of our method. The regions indicated by arrows are missing or ambiguous due to different
factors. The white and green arrows indicate the blurry boundary of the kidney caused
by intestinal gas and the spleen, respectively. The orange arrow indicates the ambiguous
boundary of the kidney due to the kidney’s thickness and internal structure (i.e., renal
pelvis, calyces, blood vessels, and adipose tissue). However, the model with a refinement
step still obtained highly accurate results.

As US images are grayscale, most of the pixels are black and have a gray value of
zero. To better distinguish the effect of other pixel points (gray value > 0), we only selected
the number of pixels within the range [0, 10,000] in the image to show the distribution
of pixel points with different gray values (Table 4 and Figure 7). When we added more
Gaussian noise (σ increases), the number of pixels with gray values greater than 0 increased.
This illustrates that the degree of damage to the original images increased. However, the
DSC values were greater than 90% even for images with a severe level of noise (σ = 50).
This indicates that the blurry boundaries were efficiently detected (Table 3 and Figure 7).
Figure 8 shows zoomed-in images corresponding to those in Figure 7.
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Although our method yielded promising results, several aspects require improvement.
First, we want to further evaluate our method on multiple modalities (i.e., computed
tomography and magnetic resonance slices) and multi-site data. Second, to achieve the
goal of real-time clinical applications, model compression of our coarse-to-refinement
method may be necessary to reduce the memory burden during the execution process.
Third, we wish to evaluate our method on different organs or multi-organs such as the
prostate, bladder, and fetal head. Finally, chronic nephritis, renal vascular disease, kidney
transplantation, hydronephrosis, kidney tumors, and other diseases require highly accurate
measurements of kidney volume. This plays a crucial role in the selection of treatment
methods and postoperative evaluation. In the future, we will discuss the performance of
our method in these directions.
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Appendix A

Table A1. An illustration of abbreviations of all the used notation.

Description Symbols

General

Principal curve f
Contour vertices set of coarse segmentation Piv
Each vertex/point of Piv pi
Vertex subset/segment subset on f Vi = {v1, v2, . . ., viv}/Si = {s1, s2, . . ., sis}
Vertex/segment on f v/s
Total number of vertices/segments on f iv/is

DFLN - -

ASPT

Sequence number of vertices t
Vertices sequence D
Penalized/new penalized distance function Giv (vi)/Giv

′ (vi)
Penalty factor/adjustment parameter λ/λ′

Curvature penalty/new penalty at the vertex CP(vi)/MP(vi)
Average squared distance function ∆iv(vi)
Data radius r
Angle at intersection vertex of two segments on f γi

ABNN

Number of input neurons n
Number of hidden neurons s
Number of output neurons k
Weight from input to hidden layers w1
Weight from hidden to output layers w2
Threshold on hidden layer m
Threshold on output layer u
Output of output units g(•)
Activation function h
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