
Citation: Rawls, A.; Diviak, B.K.;

Smith, C.I.; Severson, G.W.; Acosta,

S.A.; Wilson-Rawls, J.

Pharmacotherapeutic Approaches to

Treatment of Muscular Dystrophies.

Biomolecules 2023, 13, 1536. https://

doi.org/10.3390/biom13101536

Academic Editors: Francesca Sciandra

and Kinga I. Gawlik

Received: 16 August 2023

Revised: 10 October 2023

Accepted: 11 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Pharmacotherapeutic Approaches to Treatment of
Muscular Dystrophies
Alan Rawls 1,*, Bridget K. Diviak 1,2, Cameron I. Smith 1,2 , Grant W. Severson 1,2, Sofia A. Acosta 1,2

and Jeanne Wilson-Rawls 1,*

1 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; bdiviak@asu.edu (B.K.D.);
cismith@asu.edu (C.I.S.); gwsevers@asu.edu (G.W.S.); saacost6@asu.edu (S.A.A.)

2 Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
* Correspondence: alan.rawls@asu.edu (A.R.); jeanne.wilson-rawls@asu.edu (J.W.-R.)

Abstract: Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders
that are subdivided based on the region of the body impacted by muscle weakness as well as the
functional activity of the underlying genetic mutations. A common feature of the pathophysiology of
muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with
fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies
with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care
for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however,
long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus,
it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis
to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic
background, and emerging therapeutic strategies for muscular dystrophies.

Keywords: muscular dystrophy; dystrophin; dysferlin; DUX4; dystroglycan; inflammation; fibrosis;
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1. Introduction

Muscular dystrophies (MDs) are genetic degenerative neuromuscular diseases char-
acterized by progressive muscle weakness that results in significant morbidity. To date,
mutations in 57 genes have been identified that cause nine specific classes of muscular
dystrophy [1]. Dystrophies are classified based on the specific gene involved and clinical
features such as muscles affected, rate of disease progression, histopathology, and age
of diagnosis. Inflammation is a common factor in the pathogenesis and progression of
many types of MD. Chronic inflammation exacerbates muscle damage, induces fibrotic
deposition and fatty replacement of myofibers, and impedes the regenerative process of
skeletal muscle.

There are no curative treatments for any dystrophies currently, but new AAV and
base editing approaches to provide the missing proteins or fix the genetic lesion provide
hope. Though there is tremendous curative potential, these genetic approaches will not
treat all dystrophies or even all versions of a single dystrophy. For example, there are more
than 7000 known mutations in dystrophin that result in Duchenne muscular dystrophy
(DMD) [2]. Therefore, understanding the mechanisms underlying inflammation and other
pathogenic processes will aid in identifying therapeutic approaches that can ameliorate
the progression of these diseases. Preclinical and clinical treatments that specifically target
inflammation and fibrosis are the subject of this review.

2. Duchenne and Becker Muscular Dystrophy

Duchenne muscular dystrophy (DMD), the most common and severe form of MD, is
caused by mutations in the dystrophin (DMD) gene (Figure 1). This gene is located on the X
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chromosome [3], and DMD affects 1 in 3600 males born [4]. Clinically, DMD is characterized
by muscle weakness and wasting during early childhood, with symptoms appearing by
age 3. Initially, these patients have difficulty or pain with movement, frequent falls, a
waddling gait, and delayed growth [5]. There is a loss of ambulation in childhood to early
teens and death in early adulthood [6,7]. DMD patients also suffer significant cardiac
complications; approximately 90% will progress to dilated cardiomyopathy marked by
inflammatory cell infiltration, fibrosis, and myocardial cell death, leading to early mor-
tality [8,9]. In contrast, Becker MD (BMD), the second most common form of muscular
dystrophy, also caused by mutations in DMD, is found in 1.5–3.6/100,000 males globally.
BMD is a milder disease, and patients typically are identified at 11–25 years of age; however,
they may have much later ages of onset. BMD patients develop progressive weakness in
the muscles of the hips, thighs, pelvis, and shoulders and generally have a nearly normal
lifespan unless they experience cardiac failure [10].
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DMD is the largest gene in the human genome; it has 79 exons, and the full-length
transcripts include unique tissue-specific first exons [11,12]. The dystrophin protein is
427 kDa in size, it consists of four domains; at the N-terminus, there is an actin-binding
domain, which is followed by a central rod domain consisting of 24 spectrin-like repeats.
Within the rod domain are four hinge regions at the N- and C- termini of the rod. The
fourth hinge region is followed by the cysteine-rich domain that contains a dystroglycan
binding site. At the C-terminus of dystrophin, there are α-syntrophin and dystrobrevin
binding sites [13,14]. Dystrophin is part of a large multiprotein complex that acts to sta-
bilize the myofiber membrane during muscle contraction to prevent contraction-induced
damage [13,14]. The dystrophin–glycoprotein complex (DGC) includes the cytoplasmic pro-
teins dystrobrevin and syntrophins, sarcolemmal transmembrane proteins β-dystroglycan,
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sarcoglycans, sarcospan, and an extracellular protein α-dystroglycan [14]. Dystrophin
binds directly to dystroglycan, dystrobrevin, and α-syntrophin at its C-terminus, while the
N-terminal region binds actin intracellularly. These connections link the contractile appara-
tus through actin to the membrane and extracellular matrix [13,15,16], allowing the DGC
to mediate mechanical force signal transduction and cell adhesion-based signaling [17].

Loss of membrane integrity and stability in skeletal and cardiac muscle due to a lack
of dystrophin underlies DMD pathology (Figure 1) [13,14,18]. There are thousands of
mutations that are known to cause DMD/BMD. In DMD, 60–70% of the mutations are large
deletions that span one or more exons, whereas approximately 26% are point mutations
that result in frameshifts or premature termination [14]. The milder disease course and later
onset of BMD are the result of mutations that maintain the reading frame while deleting
exons in the midportion of the rod domain, resulting in a shorter but functional dystrophin
protein [10,18].

Inflammation is necessary for the normal skeletal muscle repair process, but muscle
damage in DMD/BMD results in a chronic inflammatory environment. In skeletal and
cardiac muscle, functional muscle loss, including diaphragmatic weakness and respiratory
insufficiency, is linked to fibrosis that is caused by chronic inflammation [8,9,19]. As muscle
wasting progressively increases over time, skeletal muscle is replaced by extracellular
matrix (ECM), resulting in fibrosis that further hinders the ability of dystrophic muscle to
generate the necessary force. A key factor controlling fibrosis is transforming growth factor
β (TGF-β), which is stored in the ECM. It promotes the synthesis and remodeling of ECM
proteins during muscle regeneration. In dystrophic muscle, TGF-β is activated chronically
and induces the deposition of fibrotic proteins such as collagen to replace degenerated
muscle. Reducing fibrosis has been explored as a treatment avenue for DMD. Potential tar-
gets include TGF-β and connective tissue growth factor (CTGF) [20]. Immunosuppression
with glucocorticoids, such as deflazacort or prednisone, is the current guideline treatment
for DMD symptoms. Glucocorticoids are effective in reducing symptoms and slowing
disease progression but are associated with many adverse side effects, including uneven
and excessive weight gain, loss of bone density, reduced stature, behavioral changes, and
even muscular atrophy, which all negatively impact the quality of life for patients [21–23].
New strategies that inhibit inflammation and fibrosis and improve muscle function are
essential. Below, we discuss some potential therapeutics, grouped by strategy, that have
shown promise but are not FDA approved currently (summarized in Table 1).

2.1. Inhibition of Inflammation and Fibrosis

Edasalonexent (CAT-1004, is a small molecule NF-κB inhibitor that combines structural
elements of salicylic acid and docosahexenoic acid [24]. A phase 3 placebo-controlled
clinical trial of this drug in DMD boys (aged 4–8 years) found it to be safe and tolerated,
but functional data from the North Star Ambulatory Assessment (NSAA) criteria showed
a nonsignificant trend of improvement in younger patients (<6 years) (NCT03703882) [1].
Edasalonexent may prolong ambulation and delay respiratory and cardiac problems when
prescribed for very young patients [24]. Unfortunately, Catabasis Pharmaceuticals stopped
development of the drug.

Vamorolone, or VBP15, is a 21-aminosteroid or lazaroid, which is a glucocorticoid
steroid that has a delta 9,11 modification of the backbone (Table 1) [25]. Vamorolone
stabilizes membranes by reducing lipid peroxidation and inhibiting NF-kB-mediated in-
flammation. Importantly, vamorolone limits adverse steroid side effects because it binds
the glucocorticoid receptor without activating gene expression via the glucocorticoid re-
sponse element (GRE) [26–29]. Clinical trials have proven it to be safe, and it has reduced
adverse effects (NCT02760264, NCT02760277, NCT03439670) [30]. A non-randomized trial
demonstrated maintenance of muscle strength and function for 30 months (NCT03038399).
These patients also had normal growth or acceleration of growth for those that previously
had been treated with glucocorticoids [22,23,31]. The successes of vamorolone in DMD
patients have prompted an ongoing phase 2 pilot trial of the drug in BMD patients as well
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(NCT05166109). ReveraGen Biopharma is currently preparing to get approval for this drug
in the U.S., EU, and U.K.

Table 1. Treatment strategies for Duchenne muscular dystrophy.

Target Treatment Strategies Outcomes 1C/PC Refs

Inflammation Edasalonexent Salicylic acid and DHA,
NF-κB inhibitors

Phase 3—no significant improvement in
motor function

C [24]

Vamorolone Corticosteroid analog,
NF-κB inhibitor

Phase 2—similar to standard of care with
fewer adverse events

C [22,23,31]

Inflammation
and fibrosis

Pamrevlumab CTGF antibody Phase 3—did not meet primary endpoint C

PEGSerp-1 uPA/uPAR inhibitor mdx/Utrn−/− mice, ↑ fiber diameter
↓ fibrosis

PC [32]

Calcium
homeostasis

BI 749327 TRPC6 antagonist mdx/Utrn−/− DKO mice, ↑ lifespan
↓ fibrosis

C/PC [33]

Pyr10 TRPC3 antagonist mdx mice, ↓ cardiomyocyte fibrosis PC [34]
S48168

(ARM210)
Stabilize RyR mdx mice, ↑ strength ↓ inflammation C/PC [35,36]

CDN1163 SERCA activator mdx mouse, ↓muscle loss ↑ strength
↓ fibrosis

PC [37]

Alisporivir Inhibits cyclophilin D mdx mouse, ↓macrophage ↓ fibrosis
↑muscle regeneration

PC [38–40]

Oxidative
stress

Idebenone CoQ10 analog, antioxidant Phase 3—did not meet primary endpoint C [41,42]

Flavocoxid Plant flavonoids,
inhibit COX

enzymes

Phase 1/2—antioxidant properties alone,
temporary anti-inflammatory effect

with steroids

C [43]

Urolithin A Metabolite that activates
mitophagy

Double-blind trial, ↑mitochondrial
efficiency ↓ inflammation

C/PC [44–46]

1C—clinical; PC—preclinical.

Pamrevlumab is a monoclonal antibody specific for CTGF, which regulates pro-fibrotic
pathways and is upregulated in DMD patients along with TGF-β [20]. FibroGen assessed
pamrevlumab (FG-3019) in two clinical trials in DMD patients, examining its effect on
limb muscles and respiratory function. Their phase 3 trial on upper limb performance in
non-ambulatory DMD patients found that while pamrevlumab was safe and tolerated, it
did not meet its primary endpoint (NCT04371666), whereas the phase 2 trial on respiratory
function is ongoing (NCT02606136).

In response to muscle injury, the urokinase-type plasminogen activator and its receptor
(uPA/uPAR) form a complex that leads to ECM breakdown, the release of TGF-β, and
subsequent macrophage invasion, all necessary processes in the course of normal muscle
repair. Normally, active TGF-β is limited by the feedback of plasminogen activator inhibitor
1 (PAI-1) on uPA [47–49]. In the context of dystrophic muscle, this system is dysregulated,
resulting in highly elevated levels of TGF-β that contribute to fibrosis and macrophage
infiltration [50,51]. It was proposed that the chronic inflammation of DMD is linked
to persistent uPA/uPAR activity and disruption of the negative feedback loop between
TGF-β and PAI-1 [32]. Serp-1 is a protein derived from myxoma virus that mimics the
activity of PAI-1, inhibiting uPA and reducing TGF-β. In preclinical studies, a pegylated
Serp-1, PEGSerp-1, was administered to Mdx/Utrn−/− (DKO) mice, whose phenotype
recapitulates the time course and pathology of human DMD [32]. In DKO diaphragms,
PEGSerp-1 treatment resulted in increased fiber diameters, decreased fibrotic area, and
decreased proinflammatory macrophage invasion [32]. This demonstrated that inhibiting
the uPA/uPAR/TGF-β pathway will potentially reduce fibrosis and inflammation. Serp-1
represents a new biological approach for advances in therapeutics to address inflammation
and fibrosis.
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Since TGF-β has a multifactorial role in signaling during regeneration, therapeutic
strategies focused on limiting fibrosis often target this protein. One such strategy is a
monoclonal antibody that targets latent transforming growth factor beta binding protein
4 (LTBP4), a matrix-embedded protein that sequesters TGF-β in the ECM and modulates
its availability. LTBP4 also binds other members of the TGF-β superfamily, including
myostatin, which may aid its efficacy [52]. The antibody is directed against the hinge
region of LTBP4; when bound, it maintains the protein in a closed conformation, securing
TGF-β and reducing the amount that is freely acting in muscle. Treatment of mdx mice for
6 months resulted in increased fiber size and less fibrosis, and there was a synergistic effect
when combined with corticosteroids [52]. This preclinical study is encouraging for DMD
patients, most of whom are treated with corticosteroids.

2.2. Calcium Homeostasis

Disruption of Ca2+ homeostasis in muscular dystrophy has been identified as a key
contributor to skeletal myofiber and myocardial cell death [53–55]. Elevated cytosolic
Ca2+ activates calcium-sensitive proteases, calpain and phospholipase A2, in myofibers,
resulting in proteolysis and membrane damage. Though initially attributed to Ca2+ influx
through microtears of the sarcolemma, it is clear that increased Ca2+ in the cytosol is caused
by activation of channels in the membrane of the sarcoplasmic reticulum (SR), such as the
ryanodine receptors (RyR1 and RyR2) and the sarcolemma, such as the transient receptor
potential canonical channels (TRPC), voltage-gated Na+ channels (Nav1.4 and Nav1.5),
and ionotropic purinoreceptors (P2 × 7). Further, in DMD, the reduced activity of the
SERCA1 and SERCA2 channels that mediate Ca2+ uptake in the SR and the mitochondrial
Ca2+ uniporter (MCU) also contributes to the loss of calcium homeostasis [56,57]. When
cytosolic Ca2+ levels were normalized in DMD mouse models, it resulted in reduced
fibrosis and muscle pathology while increasing muscle strength [55,58,59]. This predicts
that Ca2+ channels represent viable therapeutic targets for DMD to prevent triggering
chronic inflammation and fibrosis.

It has been hypothesized that the DGC serves as a scaffold for the assembly of the
channels and facilitates the activation of mechanosensitive channels. Ion channels that
promote Ca2+ influx through the sarcolemma cluster with the DGC by direct interactions
with α-syntrophins [60]. In the absence of dystrophin, the integrity of many channels is
disrupted, including TRPCs, store-operated Ca2+ entry (SOCE) channels, and voltage-gated
Na+ channels, leading to an excessive influx of Ca2+ from the environment. Dystrophic
muscle in mice, rats, and DMD patients overexpress TRPC1, TRPC3, and TRPC6, further
increasing the Ca2+ influx into the muscle [34,61]. The activity of TRPC3 and TRPC6 is
increased by phosphorylation by Ca2+ calmodulin-dependent kinase (CaMKII) and ERK1/2
and reduced N-linked glycosylation [33,62,63]. The importance of TRPC6 in DMD fibrosis
and muscle weakening was demonstrated by treating Mdx/Utrn−/− mice, a severe model
of DMD, orally with the TRPC6 antagonist BI 749327 [64]. Reduced TRPC6 activity in
the double knock-out mice resulted in an extended lifespan, increased muscle and heart
function, and reduced fibrosis in the gastrocnemius, diaphragm, and ventricle, as compared
to untreated controls. Similar anti-fibrotic outcomes have been observed in mice for cardiac
and renal disease [35]. Clinical trials to evaluate the efficacy of BI 749327 in treating kidney
disease are ongoing (NCT04176536), raising the possibility that trials with DMD patients
could be on the horizon. Similarly, the reduction in TRPC3 activity by treatment with
the TRPC3-specific inhibitor Pyr10 reduces fibrosis in cardiac muscle [61]. These data
demonstrate the therapeutic potential of TRPC antagonists for reducing inflammation and
fibrosis in DMD patients.

Ryanodine receptors (RyR1-3) are a family of homotetrameric proteins located in
the SR that release intracellular Ca2+ stores into the cytoplasm in response to membrane
depolarization. It has been proposed that Ca2+ leakage into the cytosol through RyRs is
due to the depletion of the co-factor calstabin-1 [36]. An investigation of potential small
molecules able to stabilize calstabin-1 identified S48168(ARM210), which is able to improve
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muscle strength and reduce pathology in mdx mice [36,65]. A phase I trial (NCT04141670)
examining the therapeutic potential of S48168(ARM210) to modify RyR1 leakiness in RyR1-
related myopathy is currently underway. Based on the mdx study, it may act similarly in
DMD patients.

The level of cytosolic Ca2+ is affected by channels that pump Ca2+ back into organelles,
including the SR and mitochondria. Perhaps the most important among these is the SR Ca2+

ATPase family (SERCA1 and 2), which can remove >70% of the Ca2+ from the muscle cytosol
during muscle fiber relaxation [37]. In mouse MD models, SERCA activity is decreased
due to the upregulation of an inhibitor, sarcolipin. Consistent with this, overexpression of a
SERCA1 transgene or the knockdown of sarcolipin rescued the dystrophic tissue pathology
in skeletal muscle and reduced myocardial fibrosis in mdx and Dmd/Utrn−/− mice [57–59].
Treatment of mdx mice with the SERCA activator CDN1163 for 7 weeks reduced muscular
degeneration as measured by treadmill and grip strength and fibrosis in the diaphragm [66].
Though CDN1163 remains in the preclinical stage, it represents a viable therapeutic option
for future clinical trials.

The abnormally high intracellular Ca2+ concentrations and oxidative stress in the mus-
cle of DMD patients lead to calcium overload of the mitochondria [67] and the opening of
the mitochondrial permeability transition pore (MPTP). The open MPTP releases Ca2+ and
ROS into the cytosol and increases oxidative stress and inflammation [68]. MPTP activation
permeabilizes the inner mitochondrial membrane and induces mitochondrial swelling
and membrane rupture, causing a loss of the proton gradient and necrotic cell death [68].
MPTP-dependent cell death contributes to the inflammation and pathophysiology of DMD
and other MDs. Excess Ca2+ in the mitochondria is released when the MPTP opens, further
disrupting calcium homeostasis.

Alisporivir, also known as Debio-025, is a non-immunosuppressive analog of cy-
closporin A (CsA) that inhibits the opening of the MPTP. This occurs by targeting cy-
clophilin D, one of the two proteins that make up MPTP [68,69]. Alisporivir was found
to be effective in muscular dystrophy in mdx and δ-sarcoglycan−/− mice [38,70]. This
drug is more effective than prednisone in decreasing muscle fibrosis and infiltration of
macrophages and improving muscle regeneration in mdx mice [39]. However, this drug
suppressed mitochondrial biogenesis and altered the dynamics of other organelles in mdx
and wildtype mice [40,71]. Alisporivir is currently being investigated as a therapeutic
for the treatment of hepatitis C [72], but the mouse data indicate the potential for future
therapeutic use in multiple types of MD.

2.3. Inhibition of Oxidative Stress

Oxidative stress causes dystrophic pathology by damaging tissue and interfering
with repair mechanisms. High levels of reactive oxygen species (ROS) in tissues and
cells damage proteins and DNA, induce lipid peroxidation reactions, and activate NF-κB,
perpetuating the inflammatory state [41]. ROS levels are elevated in dystrophic muscle due
to constant neutrophil invasion, increased activity of NADPH oxidase, and dissociation
of nitric oxide synthase from the broken dystroglycan complex. Mitochondria also serve
as a tightly regulated source of ROS but are dysfunctional in DMD due to the elevated
Ca2+ levels due to the damaged sarcolemma. There is a strong interest in compounds with
antioxidant properties as potential therapeutics for DMD.

Idebenone is a benzoquinone analog to coenzyme Q10 (CoQ10), which has a similar
redox potential as CoQ10, meaning it can scavenge ROS in cells and tissues (Table 1). It
also increases ATP production, which is necessary for mitochondrial function, reduces free
radicals, and inhibits lipid peroxidation, thus protecting membranes and mitochondria from
oxidative damage. In a randomized controlled trial in DMD boys, idebenone demonstrated
a trend of improved cardiovascular and respiratory function, but it was not significant [42].
A follow-up study found that this drug significantly improved respiratory function in
those DMD patients who were not also taking glucocorticoid steroids [43]. Santhera
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Pharmaceuticals conducted another phase 3 trial on DMD patients concurrently taking
glucocorticoids (NCT02814019) that was terminated due to lack of efficacy.

Another potential antioxidant/anti-inflammatory therapeutic is flavocoxid, a blend
of two plant flavonoids, baicalin and catechin (Table 1). It has antioxidant and anti-
inflammatory functions. It inhibits cyclooxygenase (COX) and lipoxygenase (LOX) enzymes
that convert arachidonic acid to prostaglandins. These, in turn, promote inflammation
by activating NF-κB and TNF-α. Prostaglandin levels are elevated in the muscle of DMD
patients. Flavonoids are known to inhibit the proinflammatory activity of the NF-κB,
TNF-α, and MAPK pathways as well [44]. A phase 1/2 proof-of-concept study in boys
with DMD (aged 4–12 years) found it provided a temporary anti-inflammatory effect when
given with steroids. Inflammation markers, IL-1β and TNF-α, were reduced at 6 months
but returned to baseline at 12 months. Reduced markers of oxidation, specifically peroxide
and glutathione peroxidase, were found in the flavocoxid-only group, corroborating the
antioxidant effect. Unfortunately, while flavocoxid improved mobility in both younger and
older boys, it was recalled by the FDA due to reversible, non-lethal liver issues [44].

Normally, damaged mitochondria are targeted for mitophagy; however, in DMD
cardiac and skeletal muscle, this process is impaired, resulting in the accumulation of dam-
aged mitochondria that release high amounts of ROS, mtDNA, and cardiolipin, increasing
oxidative stress and inflammation. These molecules activate several inflammatory path-
ways through IL-1β, the NF-kB signaling pathway, and the inflammasome [67]. Urolithin
A, a metabolite that activates mitophagy, has been shown to increase muscle respiration
and performance and decrease plasma markers of inflammation in two clinical trials in
middle-aged adults (NCT03283462; NCT03464500) [45,46]. Similarly, mdx mice treated with
urolithin A had fewer damaged mitochondria, reduced fibrosis in the heart and diaphragm,
and enhanced regeneration of mdx MuSCs. The urolithin A-treated mice also showed
functional improvements in grip strength and running endurance [73]. These data indicate
that urolithin A could improve the function of and reduce inflammation in DMD muscle.

MSS51 is a mitochondria-associated protein specific to skeletal muscle whose expres-
sion is decreased when myostatin is inhibited, suggesting a role in myostatin signaling.
Mss51−/− mice were resistant to diet-induced weight gain and showed increased glycolysis,
β-oxidation, and oxidative phosphorylation, indicating MSS51 has a role in the regulation
of skeletal muscle mitochondrial respiration and glucose and fatty acid metabolism [74].
When Mss51 was knocked out in mdx mice, they demonstrated larger myofibers, less fibro-
sis, and greater mitochondrial respiration. These mice showed improvement in running
endurance but not in grip strength [74]. These data open the possibility of an investigation
into the axis between myostatin, oxidation, and metabolism as an avenue for treatment.

3. Emery–Dreifuss Muscular Dystrophy (EDMD)

Emery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disorder charac-
terized by a combination of skeletal muscle weakness, joint contractures, and cardiac
abnormalities [75]. EDMD is rare; it has a prevalence estimated at 3 to 4 cases per million.
Falling under the spectrum of laminopathies, EDMD is caused by mutations in at least
10 genes encoding nuclear envelope proteins. We will focus on the most common types
caused by mutations in emerin (EMD) and lamin A (LMNA) [75–77]. EMD has an X-linked
recessive inheritance [77], it encodes emerin, a nuclear membrane protein found at the
interface of the nucleus with the cytoplasm. LMNA is inherited in an autosomal dominant
fashion, and it codes for lamin A and C, which are type V intermediate filaments. The
lamins polymerize under the inner nuclear membrane to form the nuclear lamina [78,79].

EDMD patients have diverse clinical presentations, making it challenging to diagnose
and manage [75,77,80]. Patients with EDMD have three main sets of symptoms, which
consist of early contractures, progressive muscle weakness and atrophy, and cardiac ab-
normalities. Joint contractures are a hallmark symptom of EDMD, causing multi-joint
stiffness, reduced mobility, and functional impairment, most often involving the neck,
elbows, and heel. Spinal rigidity may also affect posture, flexibility, and swallowing [75,77].
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Progressive muscle weakness and wasting primarily affect the scapulo-humero-peroneal
muscles in children, which impairs mobility and strength [75]. In patients with EMD
mutations, muscle weakness will appear in childhood and progress during adolescence.
Cardiac complications will appear after muscle weakness and can include sinus bradycar-
dia, atrioventricular blocks, and paroxysmal atrial fibrillation or flutter, potentially leading
to syncope or sudden death [75]. Patients with LMNA mutations have a more severe disease
with an unpredictable course. These patients have a high risk of ventricular arrhythmias
and thromboembolic complications, particularly strokes [75,80].

In the nucleus, emerin binds to lamin A, actin, and nuclear myosin, and as a complex,
it regulates chromatin dynamics, acts as a mechanosensor for the nucleus, and participates
in the regulation of gene expression [81–84]. EDMD pathophysiology involves disruptions
in the nuclear envelope, resulting in loss of nuclear membrane integrity, heterochromatin
decondensation, nucleoplasm leakage, chromatin detachment from the nuclear lamina,
pseudoinclusions, and nuclear fragmentation (Figure 1) [75]. These defects contribute to
cellular dysfunction, especially in tissues like cardiac and skeletal muscles that undergo
mechanical stress [77]. Histologically, the heart demonstrates myocardial fibrosis and
fibrolipomatosis, and skeletal muscle has dystrophic changes, including variation in fiber
size, increased number of myofibers with centrally localized nuclei, increased endomysial
connective tissue, and the presence of necrotic fibers [77]. Similar to DMD, fibrosis in EDMD
results from chronic inflammation and mechanical stress on the heart, which promotes
fibrotic tissue remodeling [85]. In EDMD-related cardiomyopathy, fibrotic remodeling
and adipose deposition in the normal myocardium contribute to the heart defects noted
above [85]. Fibrosis significantly impacts EDMD-related cardiomyopathy, so treatment
strategies focused on its reduction may reduce cardiac complications.

EDMD Treatment

EDMD is a challenging and genetically complex disorder, necessitating ongoing re-
search to advance our understanding of the disease and develop effective therapeutic
strategies [77,85]. Timely cardiac interventions, regular monitoring, and supportive care
are also essential in improving the prognosis and quality of life for individuals with
EDMD [75]. Currently, the therapeutic approaches for EDMD patients are limited to the alle-
viation of symptoms, slowing disease progression, and improving the overall quality of life
(Table 2) [75]. Much like DMD and BMD patients, glucocorticoids are prescribed to limit
inflammation [76]. Due to side effects associated with long-term use of glucocorticoids,
anti-inflammatory and anti-fibrotic agents are being examined in mouse models for EDMD.

Table 2. Treatment strategies for EDMD and FSHD.

Treatment Strategies Outcomes 1C/PC Refs

Emery–Dreifuss Muscular Dystrophy
Theophylline HDAC3 inhibitor Rescued myotube formation in EMD−/− mice PC [86]

PD098059, Inhibit MEK1 activation of MAPK ↓ ventricular dilation ↑ cardiac function in
LmnaH222P/H222P mice

PC [87]

Selumetinib Inhibit MEK1 activation of MAPK ↓ ventricular dilation ↑cardiac function in
LmnaH222P/H222P mice

PC [88]

ARRY-371797 p38MAPK inhibitor Phase II trial LMNA cardiomyopathy C [88]
Temsirolimus mTORC1 inhibitor ↑ autophagy ↓ ventricular dilation no effect

cardiac fibrosis
PC [88]

Paclitaxel Stabilize conductance in cardiomyocytes ↑ Cx43 in intercalated discs
LmnaH222P/H222P mice

PC [89]

Facioscapulohumeral Muscular Dystrophy
Albuteral β2-adrenergic agonist, inhibits DUX4 expression Clinical trials -modest results C [90,91]

Losmapimod MAPK inhibitor, blocks DUX4 transcription Double-blind phase IIb trial ↑
anti-inflammatory ↓ fatty replacement

C [92]

1C—clinical; PC—preclinical.
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Mice deficient in emerin Emd−/−, display impaired muscle regeneration, inflammation,
and fibrotic deposition. Satellite cells (MuSCs) isolated from these mice have defects
that cause the failure to regenerate. Emerin binds to and activates histone deacetylase 3
(HDAC3) [86]. MuSCs from emerin-deficient mice treated with theophylline, an HDAC3-
specific activator, rescued myotube formation [86]. Similarly, the nuclear membrane defects
alter gene expression, and the ERK/MAPK pathway, known to participate in activating
inflammation, is upregulated in LMNA cardiomyopathies. PD098059 is a small molecular
inhibitor of MEK1 activation of MAPK. When given to LmnaH222P/H222P mice that lack lamin
A/C due to a missense mutation [87], it delayed left ventricular dilatation and improved
cardiac function. Similar results were found for the MEK inhibitor selumetinib, which
is approved for the treatment of children with neurofibromatosis (NCT01362803) [88].
p38MAPK activation is elevated in LMNA cardiomyopathy, and a phase 2 trial of ARRY-
371797, a small molecule p38MAPK inhibitor, as a therapeutic for LMNA cardiomyopathy
has been completed (NCT02057341) [88], but no data are available.

A conditional knockout of a muscle-specific nuclear envelope protein, Net39 (Net39
cKO), resulted in a phenotype that recapitulated EDMD; importantly, myoblasts from these
mice were hypersensitive to mechanical stretch and had stretch-induced DNA damage [93].
The Lmna DK32 mouse model has a very severe form of EDMD, but the symptoms are
highly similar to those of the Net39 cKO mice. When these mice were treated with AAV-
Net39, it ameliorated the EDMD symptoms but was unable to completely rescue the
phenotype. These data indicate that stabilization of the nuclear envelope may be a viable
approach to therapeutics.

mTOR is a serine/threonine kinase, and it has a role in regulating the production of
proteins, lipids, and nucleotides, as well as downregulating autophagy and increasing cel-
lular proliferation and survival [94]. Several rapamycin derivatives, such as temsirolimus,
are inhibitors of mTORC1 that are FDA approved for cancer treatment. LmnaH222P/H222P

mice were treated for 14 weeks with temsirolimus, and they demonstrated reactivated
autophagy and reduced left ventricular dilatation. Unfortunately, this drug had no effect
on cardiac fibrosis [88]. These data indicate that rapamycin and its derivatives may be
effective treatments for LMNA cardiomyopathy.

Gap junctions are important for electrical conduction in the heart and are found on the
intercalated disks. Connexin43 (Cx43), the gap junction protein, has altered expression in
LmnaH222P/H222P mice due to an altered microtubule cytoskeleton [89]. Paclitaxel is a taxane
chemotherapeutic that binds to tubulin and inhibits microtubule disassembly, thereby
inhibiting cell division. When LmnaH222P/H222P mice were treated with paclitaxel, Cx43
was once again found in the intercalated discs [89]. Paclitaxel potentially can stabilize
conduction, reducing the severity of LMNA cardiac defects.

Continued research efforts and collaborative approaches are crucial to advancing our
understanding of EDMD and developing effective, innovative therapies that target fibrosis
and improve EDMD prognosis [85,93]. Recent advancements in omics technologies have
improved prognostic predictions regarding potential therapeutic targets [95].

4. Facioscapulohumeral Muscular Dystrophy (FSHD)

Facioscapulohumeral muscular dystrophy (FSHD) is the third most prevalent type
of MD, following myotonic dystrophy type 1 and DMD, estimated to affect 1 in 15,000 to
1 in 20,000 people [96]. FSHD is inherited in an autosomal dominant manner; however,
approximately 30% are de novo cases. Additionally, there is a high frequency of somatic
mosaicism [97]. FSHD typically presents with weakness in one or more of these facial
muscles, the stabilizers of the scapula, or the dorsiflexors of the foot. Muscle weakness
is slowly progressive and, with time, can involve the axial and respiratory muscles and
those of the lower limbs [98]. The severity of the disease course is variable; as many
as 20% of affected individuals will require a wheelchair. Symptoms typically appear in
the second or third decade of life but can appear in children [99]. Life expectancy is not
shortened [98,100].
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Histopathological studies of human FSHD biopsies have shown that there are re-
generating myofibers of varying sizes; inflammation and fibrosis that is both endomysial
and perivascular were prominent, and there was significant fat replacement of the muscle
fibers [101]. A two-year prospective study of FSHD patients found that inflammation was
mild in the early stages, but its presence was related to an increased rate of muscle degrada-
tion and fat infiltration [102]. When examining RNAseq and microarray data from FSHD
biopsies, it was noted that inflammatory genes have increased levels of expression [103].
FSHD myoblasts have increased sensitivity to oxidative stress and are prone to apoptosis
because double homeobox protein 4 (DUX4) affects mitochondrial function. As the disease
progresses, regeneration becomes increasingly impaired, further expanding the level of
adipose tissue in the muscle [103].

DUX4 is the gene affected in FSHD patients [104,105]. DUX4 is expressed in pre-
implantation embryos, and Dux binding sites are found in the control regions of genes
involved in early genome activation [103,104]. DUX4 is important in early embryos for
embryonic genome activation (EGA). DUX4 triggers this process and subsequently becomes
inactive [106–110]. Postnatally, DUX4 is expressed at low levels in the testis and the thymus.
Ectopic expression in skeletal muscle postnatally results in FSHD [111–113]. The human
DUX4 gene is located on chromosome 4 in a region known as D4Z4, which consists of 11 to
more than 100 repeated 3300 DNA base pair segments. Each of the repeated segments in the
D4Z4 region contains a copy of the DUX4 gene; the copy closest to the end of chromosome
4 is called DUX4, while the other copies are referred to as “DUX4-like” or DUX4L [114,115].
Typically, people have 11–100 D4Z4 repeats present in heterochromatin, resulting in a lack
of transcription [101]. There are two forms of FSHD; the most common form, FSHD1, in
approximately 95% of patients, occurs in people that have less than 10 D4Z4 repeats. This
repeat contracture results in hypomethylation, causing DUX4 to be aberrantly expressed
in skeletal muscle (Figure 1) [116–118]. FSHD2 is rare, and D4Z4 derepression is caused
by defects in D4Z4 chromatin repressors, most often SMCHD1 [117,119,120]. The focus of
research into treatment for FSHD currently is focused on improving disease outcomes.

Small Molecule Therapies

Studies in both animals and humans suggest that β2-adrenergic agonists can stimulate
muscle growth and prevent atrophy following various types of injuries (Table 2) [121]. Two
non-targeted trials of β2-adrenergic agonists in FSHD patients demonstrated limited benefi-
cial effects on muscle mass and strength in the short term [90,91]. More recently, a targeted
screen of a chemical library enriched for compounds with epigenetic activity implicated β2
adrenergic agonists, such as albuterol, and the bromodomain and extra-terminal domain
(BET) protein family member BRD4, as inhibitors of DUX4 expression [122]. The BRD4
inhibitor blocks the binding of acetylated histones and transcription factors and activation
of RNA polymerase II. Conversely, β2 adrenergic receptor agonists suppress DUX4 expres-
sion by activating adenylate cyclase to increase cAMP levels [122]. MAPK is activated by β2
adrenergic signaling, and this screen identified p38α and p38β MAPK isoforms as potent
inhibitors of DUX4 [113]. Consistently, the MAPK inhibitor losmapimod, when used in a
mouse xenograft model, reduced DUX4-driven gene expression [123]. Losmapimod was
tested in a randomized, double-blind phase 2b clinical trial (NCT04003974) with FSHD1
patients [92]. While there was no decrease in the expression of DUX4-driven genes, treat-
ment did reduce the fatty replacement in muscle [92]. The positive effects of losmapimod
may be attributed to its anti-inflammatory properties rather than its ability to reduce DUX4
levels [113].

To induce transcription of target genes, DUX4 recruits the histone acetyltransferases
p300 and CREB to target loci, leading to H3K27 acetylation [124]. Therefore, blocking the
transcription of certain genes may be a possible avenue for new FSHD therapeutics, and
some data indicate that small molecule inhibitors are promising options. Treatment with a
novel p300-specific spirocyclic HAT inhibitor, iP300w, effectively prevented the induction of
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DUX4 target genes, inhibited the harmful effects of DUX4, and reversed the accumulation
of acetylated histone H3 in C2C12 cells and iDUX4pA mouse model of FSHD [125].

5. Limb-Girdle Muscular Dystrophy

Limb-girdle muscular dystrophy (LGMD) is the largest group of muscular dystro-
phies. They were originally defined by the progressive wasting of skeletal muscles of
the pelvic and pectoral girdles. These dystrophies show significant variation in the
onset of the disease, degree of wasting and inclusion of cardiomyopathy, cardiac ar-
rhythmias, and respiratory failure [126]. There are 24 genetic subtypes based on disease
phenotype and mutations: (i) sarcoglycan complex (LGMD2C-F); (ii) glycosylation/α-
dystroglycan complex (LGMD2I, LGMD2K, LGMD2M, LGMD2N, LGMD2O, LGMD2P,
LGMD2S, LGMD2T, LGMD2U, LGMD2Z); (iii) sarcomeric proteins (LGMD1A, LGMD1D,
LGMD1E, LGMD2A, LGMD2G, LGMD2J, LGMD2Q, and LGMD2R); (iv) signal transduc-
tion (LGMD1C, LGMD2P, LGMD2W); and (v) membrane trafficking and repair (LGMD1C,
LGMD1F, LGMD2B, LGMD2L). These disorders are relatively rare compared to DMD,
with individual estimated prevalences of 0.01–0.60 cases per 100,000 persons [127]. The
rarity of these disorders limits the ability to carry out clinical trials to examine the effec-
tiveness of therapeutic strategies discovered in mice [128]. Below, we describe LGMD
subtypes due to mutations in sarcoglycans, dystroglycan, and dysferlin and the current
status of anti-inflammatory/anti-fibrotic strategies for these LGMD subtypes (summarized
in Table 3).

5.1. Sarcoglycanopathy

Sarcoglycan consists of four subunits, α, β, γ, and δ, that form an integral membrane
protein complex that is a subunit of the DGC in skeletal muscle. This protein complex is
essential for the structural stability of the sarcolemma in both skeletal and cardiac muscle
(Figure 2). Genetic mutations of any sarcoglycan subunit are inherited in an autosomal
dominant fashion and result in sarcoglycanopathy, which has a similar phenotype to DMD.
In sarcoglycanopathy, or LGMD2, the average age at onset of muscle weakness is 6–8 years,
with loss of ambulation at 12–16 years old. Similar to DMD, cardiomyopathy and respira-
tory complications following the loss of ambulation are commonly observed [126,129,130].
At the tissue level, muscle weakness is associated with chronic inflammation and the
replacement of muscle fibers with fat depositions and fibrosis [131].

Because of the phenotypic similarity to DMD, anti-inflammatory corticosteroids are
prescribed, but their therapeutic benefits in the management of sarcoglycanopathies have
been difficult to evaluate due to the rarity of these patients. However, there are case
reports of LGMD2D (α-sarcoglycan) and LGMD2E (β-sarcoglycan) patients that describe
the benefits of deflazacort and prednisone treatment in these patients [132,133].

A more direct approach to regulating fibrosis is to target the fibroblasts and fibroadi-
pogenic progenitor cells (FAPs) at the site of injury. Since these cells are the primary source
of fibrotic scarring associated with muscular dystrophy, disrupting the FAPs represents a
cogent approach to reducing fibrosis. Nintedanib, a tyrosine kinase inhibitor, disrupts sig-
naling through the receptors for platelet-derived growth factors (PDGF), fibroblast growth
factor (FGF), and vascular endothelial growth factor (VEGF) and disrupts the fibrotic activ-
ity of muscle fibroblasts isolated from mdx mice [134,135]. Treatment of a murine model
of α-sarcoglycan-deficient mouse (Sgca−/−) with nintedanib resulted in increased muscle
function based on distance on a treadmill and grip strength as compared to untreated
controls. An examination of the quadriceps, gastrocnemius, and triceps revealed reduced
inflammation and fibrosis and expression of cytokines associated with these processes
(e.g., Tgfb1, Tnf, and Nfkb1) [136].
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Table 3. Treatment strategies for limb-girdle muscular dystrophies.

Treatment Strategies Outcomes 1C/PC Refs

Sarcoglycanopathies
Nintedanib Tyrosine kinase inhibitor ↑muscle function in Sgca−/− mice PC [136,137]

Metformin Metabolic regulator acting
through AMPK

↓ fibrosis in diaphragm and heart of
Sgcd−/− mice PC [138]

A438079 P2X7 antagonist Sgca−/− mice ↓ fibrosis,
↓ inflammatory cell infiltration

PC [139]

Dystroglycanopathies
Tamoxifen and

raloxifene Inhibits the Akt/mTor pathway ↓ fibrosis, ↓ inflammation, ↓muscle
damage, ↑muscle fiber size PC [140]

BBP-418
(Ribitol) Sugar substrate glycotransferase ↓ muscle breakdown and ↑ functional

measures in LGMD2I patients PC [141]

Dysferlinopathies

Vamorolone Corticosteroid analog,
NF-κB inhibitor

↓ lipid mobility, ↑muscle repair,
↓ fatty deposits in Dysf−/− mice PC [30,142]

Galectin-1
(Gal-1) ↑ laminin and α7β1 integrin binding ↓ inflammation and fat deposition, ↑

membrane repair in Dysf−/− mice PC [143]

Acid
sphingomyelinase

Ceramide production to promote
sarcolemma repair

AAV vector delivery in Dysf−/− mice
↑membrane repair, ↓ fatty deposition,
↑myofiber size and muscle strength

PC [144]

1C—clinical; PC—preclinical.
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An alternative therapeutic approach for sarcoglycanopathy patients is treatment with
metformin. This antidiabetic drug acts as a metabolic regulator and promotes autophagy
through the AMP-activated protein kinase (AMPK) [137]. In mice deficient in δ-sarcoglycan
(Scgd−/−) that recapitulate the aggressive pathology of LGMD2F, 4 weeks of treatment
was sufficient to reduce fibrosis in the diaphragm as compared to untreated Scgd−/−

mice. Further, there was reduced myocardial fibrosis and cardiomyocyte hypertrophy,
indicating it has cardioprotective properties [145]. Metformin has also been shown to
improve sarcolemma integrity in mdx mice as measured by the amplitude of miniature
endplate potentials [146]. Phase III clinical trials with metformin and the nitric oxide
precursor 1-citrulline in DMD patients resulted in positive but not statistically significant
changes in motor function in the treated cohort [138].

A third approach to reducing fibrosis and inflammation in sarcoglycanopathies focuses
on the P2X7 ionotropic receptor that triggers the inflammasome in response to binding
ATP in the extracellular space [147]. The extracellular surface of the sarcoglycan complex
possesses ATPase activity; thus, when sarcoglycan-deficient muscle fibers lose their sar-
colemmal integrity, they will have higher levels of extracellular ATP to trigger P2 × 7 [148].
Recent studies in Sgca−/− mice have shown that the P2X7 antagonist, A438079, reduces
fibrosis and the infiltration of innate inflammatory cells into the gastrocnemius, quadriceps,
and anterior tibialis muscles [149]. The immunomodulatory effect of the P2X7 antago-
nist makes it ideal for limiting muscle fiber damage from proinflammatory macrophages
and neutrophils.

5.2. Dystroglycanopathies

Dystroglycanopathies are autosomal recessive dystrophic disorders with variability
in the age of onset and degree of muscle wasting. α- and β-dystroglycan form an integral
membrane protein complex that links the basement membrane to the cytoplasmic dys-
trophin protein. α-dystroglycan binds to ECM and synaptic proteins and is dependent
on heavy glycosylation [150] (Figure 2). Dystroglycanopathies are primarily linked muta-
tions in glycosyltransferases that target α-dystroglycan, including fukutin-related protein
(FKRP/LGMD2I) [139], fukutin (FKTN/LGMD2M), -like-acetylglucosaminyl transferase
(LARGE), protein-O-mannosyltransferase 1 (POMT1/LGMD2K), protein-O-mannosyl trans-
ferase 2 (POMT2/LGMD2N), protein-O-mannose-1,2-N-acetylglucosaminyltransferase 1
(POMGNT1/LGMD2O), dolichyl-phosphate mannosyltransferase polypeptide 3 (DPM3),
and isoprenoid synthase domain containing (ISPD/LGMD2U) [151–156]. A rare subset of
dystroglycanopathies includes mutations in the dystroglycan gene (DAG1). These muta-
tions cluster in the N-terminal domain of α-dystroglycan or in the domains that stabilize
the α/β-dystroglycan interface [157]. Though these milder forms of muscular dystrophy
are classified as LGMD based on their progressive muscle wasting in the extremities, more
severe congenital muscular dystrophies are associated with mutations in glycosyltrans-
ferases targeting α-dystroglycan that result in a non-progressive muscle weakness that is
observed at birth (discussed in Section 6). Most notable among these are Walker–Warburg
(WWS) and muscle eye brain syndromes (MEB), which present with an earlier onset of
muscle weakness and include complex eye and brain disorders [158,159]. Our focus will be
on the milder LGMD forms.

The most common form of dystroglycanopathy, LGMD2I, is caused by mutations
in FKRP; it occurs at a frequency of 1 in 250,000 in the U.S. The use of corticosteroids to
reduce fibrosis and muscle loss has shown promise with LGMD2I. Mice that recapitulate
the LGMD2I phenotype through mutation of FKRP [156] have reduced pathology and
muscle degeneration when treated with prednisolone, though it did not improve muscle
strength. However, in combination with the bisphosphonate, alendronate, which is nor-
mally administered to limit osteoporosis, the level of muscle damage was lessened, and
muscle function was improved [155]. Under both conditions, the level of glycosylated
α-dystroglycan increased, suggesting a mechanism other than immunosuppression for
injury reduction.
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Other immunosuppressive agents possessing anti-fibrotic activity have been tested for
their therapeutic potential in dystroglycanopathies. Among these, the estrogen receptor
modulators tamoxifen and raloxifene have been used for long-term (>1 year) treatment of
FKRP-deficient mice [158]. Marked improvement in muscle strength, as judged by grip
power, running distance, and duration, were observed, as well as improved cardiac and
respiratory function. The use of rapamycin also has been explored as a treatment for
LGMDM2, dystroglycanopathies caused by mutations in FKTN. Rapamycin is an inhibitor
of the Akt/mTOR signaling pathway that inhibits muscle regeneration and repair and
promotes fibrosis [159,160]. In mice with a conditional muscle-specific knockout of the Fktn
gene, a 4-week course of rapamycin was sufficient to reduce fibrosis, inflammation, and
muscle damage while increasing muscle fiber size [161]. The collagen matrix associated
with fibrosis is derived from fibroblasts, suggesting that muscle is not the sole target
for rapamycin.

An alternate pharmacotherapeutic approach that has seen considerable success in
improving dystroglycanopathy is treatment with BBP-418 (Ribitol). This sugar is a substrate
in the enzymatic cascade, leading to α-dystroglycan glycosylation. By increasing the cellular
substrate concentration, it is proposed that less efficient mutated glycotransferases will
be able to modify α-dystroglycan [140]. Ongoing open-label phase 2 trials (NCT05775848,
NCT04800874) in ambulatory and non-ambulatory LGMD2I patients have shown signs of
effectiveness. After 12 months, the trial revealed a sustained reduction in creatine kinase in
these patients, suggesting a reduction in muscle breakdown. They also demonstrated an
improvement in functional measures, including a 10 m walk test [162].

5.3. Dysferlinopathy

Dysferlin belongs to the mammalian family of Fer-1-like proteins [141,163]. The
dystrophy-related Fer-1-like (DYSF) gene has 56 exons, and it has 2 main and 15 known
alternative transcripts [164]. Dysferlin is a transmembrane protein, 230 kDa in size, with
seven conserved CA2 domains. These domains are approximately 130 amino acids in
length and bind to lipids and Ca2+, regulating Ca2+-mediated signaling events. There are
two other domains, FerA and DysF, whose function is unclear [141,165,166]. Dysferlin is
found in the sarcolemma, the membranes of cytoplasmic vesicles, and T tubules in muscle
fibers [164]. In T tubule membranes, it has a role in the biogenesis and maintenance of the
T tubule system [167,168]. Dysferlin is also expressed in membranes in the brain, heart,
liver, lungs, and, notably, monocytes and macrophages [169,170].

There are more than 260 polymorphic mutations in DYSF reported to result in three
types of muscular dystrophies: limb-girdle autosomal recessive muscular dystrophy type
2B (LGMDR or LGMD2B), Miyoshi myopathy (MM), and distal myopathy with anterior
tibial onset (DMAT) (Figure 2) [166]. In Miyoshi myopathy, a distal muscular dystrophy,
the calf and plantar muscles are the first to be affected. As the disease progresses, it will
involve the hamstrings along with the gluteal muscles [164,171]. The average age of onset
is 14–40 in both men and women. In contrast, LGMD2B is a proximal muscular dystrophy,
which causes atrophy and weakness of the proximal thigh and pelvic girdle muscles. Some
patients have simultaneous weakness of proximal and distal leg muscles, and the shoulder
girdle is less often affected [164]. The average age of diagnosis is 25 years of age. DMAT
is a rapidly progressing form of dysferlinopathy with initial weakness of the anterior
tibial muscles rapidly followed by proximal muscle weakness of both limbs and loss of
ambulation within 10 years [172]. Some patients demonstrate cardiac and respiratory
deficiencies, but this is rare, and the etiology is unclear as patients with significant limb
muscle involvement do not have diaphragm weakness [166,172,173].

The main function of dysferlin is the repair of damage to cell membranes. In normal
muscle, the initial response to sarcolemmal damage is an influx of Ca2+ (Figure 2). At
the same time, there are increased levels of Mitsugumin 53 (MG53), a member of the
tripartite motif-containing protein family (TRIM72), at the site of damage [174,175]. Since
dysferlin is anchored in both the sarcolemma and membranes of cytoplasmic vesicles,
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it interacts with MG53 and several other proteins, such as Annexin A2 and AHNAK,
to co-ordinate the docking and fusion of the vesicles with the sarcolemma (reviewed
in [175]). On biopsy, the different dysferlinopathies share a marked inflammatory re-
sponse, incomplete muscle regeneration, altered Ca2+ signaling, and increased adipogenic
replacement [167,168,176–178].

Deficient myofiber sarcolemma resealing activates a chronic inflammatory response
that results in muscle degeneration in dysferlinopathy. Consistently, dysferlin-deficient
mice (AJ) can be rescued by overexpression of dysferlin transgene as judged by histopathol-
ogy, macrophage infiltration, and muscle function [179]. This was recapitulated by overex-
pression of a natural shortened “minidysferlin” mutation found in LGMD2B patients [180],
suggesting a possible approach for gene therapy. However, the minidysferlin was not able
to prevent myofiber degeneration after eccentric activity [181].

Macrophages isolated from AJ mice have increased phagocytic activity and release
excessive amounts of intracellular vesicles that result in elevated secretion of cytokines
and other factors that trigger inflammation [182]. Further, dysferlin-deficient muscles
in mice and humans demonstrate high levels of C5b-9 complement deposition in their
membranes [178]. Proteins of the inflammasome pathway, as well as proinflammatory
cytokines and chemokines, are upregulated and activated in the absence of dysferlin in
mice and LGMD2B patients [182,183]. Further, two independent dysferlin mutations in
mice (A/J and BLAJ) and human patients demonstrated high levels of fatty replacement of
myofibers [168]. This has led researchers to posit that the loss of sarcolemma repair leads
to a combination of factors that ultimately result in chronic inflammation and incomplete
muscle regeneration.

Membrane instability leads to inflammation in dysferlinopathies similar to DMD;
thus, it was logical to consider treating LGMD2B and MM patients with glucocorticoids.
But, in a randomized controlled trial, treatment of these patients with the guideline anti-
inflammatories for DMD patients [19], deflazacort or prednisone, was not effective and
worsened muscle loss and weakness [184]. Interestingly, Dysf−/− mice that also lacked the
complement protein C3 demonstrated amelioration of symptoms, whereas mdx/C3−/− mice
did not [185]. This predicts inflammation is regulated by a distinctly different mechanism
in dysferlinopathies as compared to DMD. Currently, there are no FDA-approved drugs to
improve myofiber repair or address inflammation and other disease etiologies in LGMD2B
and MM patients.

Vamorolone, or VBP15, is a first-in-class steroidal anti-inflammatory. This drug was
found to inhibit NF-kB-mediated inflammation while limiting adverse steroid side ef-
fects [26–29]. Vamorolone increased membrane repair in LGMD2B patient-derived my-
oblasts. Further, when delivered orally to B6AJ mice, it decreased lipid mobility, increased
muscle repair, and reduced fatty replacement of myofibers, all of which were made more
severe by prednisone treatment [186]. Currently, vamorolone is in clinical trials as an anti-
inflammatory for DMD/BMD, and preliminary findings reported fewer adverse events
and some improved motor function [30,187]. While the data are intriguing, there are no
trials in LGMD2B or MM patients currently.

Another treatment approach uses synthetic membrane stabilizers to protect the sar-
colemma from mechanical stress. One example is poloxamer 188 (P188), which is FDA
approved to reduce blood viscosity before transfusions and is a component of toothpaste,
cosmetics, and other pharmaceuticals [142]. P188, also referred to as PLURONIC F68, FLO-
COR, and RheothRx, is known to repair damaged cell membranes [142,188,189]. In mdx
mice, P188 delivered subcutaneously improved the myocardium and limb muscles [190].
Similar findings were reported in dystrophic dogs, where it prevented cardiac dilata-
tion [191]. Its proven safety and efficacy in membrane repair would indicate that P188 is an
excellent choice as a therapeutic for dysferlinopathies. Unfortunately, the only clinical trial
that was designed to examine P188 as an LGMD2B treatment was discontinued due to lack
of funding.
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Galectin-1 (Gal-1) is a soluble, 14kDa, non-glycosylated β-galactosidase binding pro-
tein that contains a carbohydrate recognition domain (CRD) [192]. During muscle re-
generation, Gal-1 interacts with laminin and α7β1 integrin to modulate myoblast fusion.
It also plays a role in the transdifferentiation of fibroblasts into muscle [193,194]. Gal-
1-deficient mice have reduced myoblast fusion and impaired regeneration [195]. When
recombinant murine Gal-1 was administered to mdx mice, they demonstrated improved
muscle strength and activity. Unfortunately, there was no significant improvement in
muscle pathology [196]. More recently, when recombinant human Gal-1 (rHsGal-1) was
administered to BlaJ dysferlin-deficient mice, they demonstrated reduced inflammation
and fat deposition and increased membrane repair. Similarly, myotubes derived from
patient cells demonstrated increased membrane repair when treated in vitro [143].

When cell membranes are damaged, lysosomes are tethered to the membrane by
dysferlin as a step in their repair. Acid sphingomyelinase (ASM) is a lysosomal enzyme
that cleaves membrane sphingomyelin, generating ceramide that is secreted from these
lysosomes. The presence of ceramide in the outer leaflet of the membrane induces the
rapid endocytosis of the damaged region [197]. Dysferlinopathic muscle cannot tether
lysosomes to sites of damage in the membrane, causing a delay or loss of ASM secretion,
which, in turn, activates the inflammatory response. Bittel et al. [198] delivered the human
ASM protein in an AAV vector targeted to the liver in the B6A/J mice and found that this
improved membrane repair, decreased fatty deposition, and increased myofiber size and
muscle strength. The delivery of this protein to the liver rather than expressing dysferlin
itself is an interesting approach, as there are significant barriers to delivering full-length
dysferlin via AAV to skeletal muscle [144]. While the liver turnover of cells will require
multiple AAV injections over time, it does represent a potential treatment for LGMD2B and
MM patients.

6. Congenital Muscular Dystrophy

Congenital muscular dystrophies (CMDs) are a heterogeneous group of autosomal
recessive disorders distinguished by severe hypotonia and extreme muscle wasting at, or
soon after, birth [199]. The muscle pathology is non-progressive, and symptoms can include
microcephaly, eye disorders, cerebral malformations, learning disorders, and respiratory
insufficiencies [199]. The most prevalent CMDs are caused by a disruption of the interaction
between the extracellular matrix and the sarcolemma that is essential for cell membrane
stability and cell viability. These dystrophies include LAMA2-related muscular dystrophy
(MDC1A), caused by mutations in the α chain of laminin-211 (0.81 in 100,000 individuals
worldwide), Ullrich congenital muscular dystrophy (UCMD) (0.13 per 100,000 individuals)
and Bethlem myopathy (0.77/100,000 individuals), which are associated with mutations in
the α chain of collagen VI (ColVI) (Figure 3) [200,201]. Other CMDs, such as WWS, MEB
syndrome, and Fukuyama congenital muscular dystrophy, are the result of deficiencies in
the glycosyltransferases that target α-dystroglycan and are essential for laminin binding
(see Section 5.2).

6.1. LAMA2-Related Muscular Dystrophy

MDC1A patients display hypotonia and muscle wasting at birth and with progressive
spinal deformities and contractures of the major limb joints in early childhood [202,203].
These patients can suffer from neuropathies under the age of 1 and can experience cerebral
atrophy and seizures in older individuals [204–206]. In severe cases, the loss of muscle
strength complicates swallowing and breathing, and death due to respiratory insufficiency
can occur in the first decade, though their usual life expectancy is the thirties [207,208].



Biomolecules 2023, 13, 1536 17 of 31

Biomolecules 2023, 13, x FOR PEER REVIEW 17 of 33 
 

multiple AAV injections over time, it does represent a potential treatment for LGMD2B 
and MM patients. 

6. Congenital Muscular Dystrophy 
Congenital muscular dystrophies (CMDs) are a heterogeneous group of autosomal 

recessive disorders distinguished by severe hypotonia and extreme muscle wasting at, or 
soon after, birth [199]. The muscle pathology is non-progressive, and symptoms can in-
clude microcephaly, eye disorders, cerebral malformations, learning disorders, and res-
piratory insufficiencies [199]. The most prevalent CMDs are caused by a disruption of the 
interaction between the extracellular matrix and the sarcolemma that is essential for cell 
membrane stability and cell viability. These dystrophies include LAMA2-related muscu-
lar dystrophy (MDC1A), caused by mutations in the α chain of laminin-211 (0.81 in 100,000 
individuals worldwide), Ullrich congenital muscular dystrophy (UCMD) (0.13 per 
100,000 individuals) and Bethlem myopathy (0.77/100,000 individuals), which are associ-
ated with mutations in the α chain of collagen VI (ColVI) (Figure 3) [200,201]. Other 
CMDs, such as WWS, MEB syndrome, and Fukuyama congenital muscular dystrophy, 
are the result of deficiencies in the glycosyltransferases that target α-dystroglycan and are 
essential for laminin binding (see Section 5.2). 

 
Figure 3. Schematic of the etiology of congenital muscular dystrophy associated with Laminin-221 
and collagen VI mutations. 

6.1. LAMA2-Related Muscular Dystrophy 
MDC1A patients display hypotonia and muscle wasting at birth and with progres-

sive spinal deformities and contractures of the major limb joints in early childhood 
[202,203]. These patients can suffer from neuropathies under the age of 1 and can 

Figure 3. Schematic of the etiology of congenital muscular dystrophy associated with Laminin-221
and collagen VI mutations.

Inflammation and fibrosis play prominent roles in the early onset of muscle weakness
in MDC1A [209]. Individuals experience a burst of inflammation in their skeletal muscle
as early as a couple of months after birth. This leads to the expansion of the interstitial
ECM between myofibers, resulting in fibrosis. Unlike DMD, where fibrosis builds over
time with repeated rounds of muscle breakdown and repair, fibrosis in MDC1A appears
early and is maintained [209]. Several mouse models for a Lama2 deficiency have been
described that include phenotypically moderate spontaneous mutations (e.g., dy/dy and
dy2J/dy2J) and phenotypically severe targeted null mutations (dyW/dyW and dy3K/dy3K) in the
Lama2 loci [210]. The targeted mutations recapitulate the MDC1A disease course, including
muscle wasting, reduced muscle regeneration, inflammation, fibrosis, and a shortened life
span [211–213].

Laminin-211 is an ECM protein comprised of one α2 chain, one β1 chain, and one γ1
chain that acts as a ligand for α-dystroglycan, integrin α7β1, agrin, and fibulins [214–216].
Deficiencies of the α2 subunit (LAMA2) disrupt interactions with both receptors. Integrin
α7β1 binding to laminin-211 activates the PI3K/Akt and Ras/Raf/MEK/ERK cell survival
pathways that signal through focal adhesion kinase (FAK). Disruption of this interaction
promotes atrophy and apoptosis [217].

Fibrosis in MDC1A muscle has been linked to the TGF-β and renin-angiotensin signal-
ing pathways. As described in Section 2, TGF-β is a primary regulator of fibrotic deposition
via its roles in promoting the expression of ECM proteins and the conversion of satellite cells
to a fibroblastic lineage [20,218]. Further, increased TGF-β activity was observed during
muscle development in Lama2-deficient mice (dyW/dyW) [211]. Angiotensin II (Ang II) has
dual roles in muscle. By binding to the angiotensin I receptor (AT1R), it promotes muscle
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wasting through activation of the ubiquitin-proteasome pathway and fibrosis through
the upregulation of TGF-β and its targets, Smad2/3 [219–222]. Both Ang II and AT1R
expression are upregulated in the muscle of DMD, BMD, and MDC1A patients [211,223].

Therapeutic strategies designed to reduce fibrosis in MDC1A patients have largely
focused on reducing TGF-β levels (Table 4). One approach that has shown promise is the
AT1R blocker losartan. Though initially approved by the FDA to control hypertension, it
effectively reduced fibrosis in the dyW/dyW and dy2J/dy2J by disruption of Ang II signaling
through AT1R, which inhibits the conversion of TGF-β to its active form [224–227]. Losartan
treatment also decreased ERK phosphorylation and fibrosis in dyW/dyW mice [224]. As the
Ras-Raf-MEK-ERK signaling pathway promotes inflammation when overactivated, this
suggests an alternative approach for losartan to prevent fibrotic build-up [228]. Though
there is considerable preclinical interest in losartan as an anti-fibrotic agent, there are no
ongoing trials for its use in MDC1A.

Table 4. Treatment strategies for laminin-211 and collagen VI related dystrophies.

Treatment Strategies Outcomes 1C/PC Refs

Lama2-Related Muscular Dystrophy

Losartan AT1R inhibitor ↓ fibrosis ↓ TGF-β activity in dyW/dyW and
dy2J/dy2J mice

PC [225,226,228]

Vemurafenib mTORC/p70S6K inhibitor ↓ fibrosis ↓ TGF-β activity in dy3K/dy3K mice PC [229]
Holofuginone Stat3 inhibitor ↓ fibrosis ↓ TGF-β activity in dy2J/dy2J mice PC [230]

Omigapil Inhibitor of apoptosis through
GAPDH-Siah

↓ fibrosis ↑ grip strength ↑respiration rate in
dy2J/dy2J mice pharmacokinetics clinical
trials completed

PC/C [231,232]

MG-132 Proteosome inhibitor ↑muscle strength, ↑mobility, ↑ lifespan,
↓ fibrosis in dy3K/dy3K mice PC [233]

Bortezomib Proteosome inhibitor ↑ weight, ↑lifespan, ↓ fibrosis in dy3K/dy3K mice PC [234]

3-MA Autophagy inhibition ↑muscle repair, ↓ autophagy markers
↓ apoptosis, ↓ fibrosis in dy3K/dy3K mice PC [235]

NAC Antioxidant ↑muscle protection in dy2J/dy2J mice PC [236]
Vitamin E Antioxidant ↑muscle protection in dy2J/dy2J mice PC [237]

Collage VI-Related Dystrophies

Cyclosporin A Inhibit MPTP in mitochondrial
membranes

↓ apoptosis, ↑ autophagy in Col6a1−/− mice ↑
muscle regeneration, no change in loss of motor
function, and respiratory insufficiency

PC/C [238–241]

1C—clinical; PC—preclinical.

The FDA-approved serine/threonine kinase inhibitor vemurafenib effectively ame-
liorates fibrosis in dy3K/dy3K mice [229]. Treatment resulted in a reduction in TGF-β and
mTORC1/p70S6K signaling. Much like losartan, vemurafenib was able to block the pro-
fibrotic pathway but was unable to promote muscle repair. This raises concerns about its
use as a solo therapy. A third anti-TGF-β therapeutic, holofuginone, has been shown to
reduce fibrosis in dy2J/dy2J mice [230]. Treated mice also experience increased muscle fiber
diameter and improved motor coordination, predicting a role in muscle repair.

In addition to blocking the TGF-β signaling pathway that directly induces fibrosis
and inflammation, other research groups have explored the therapeutic benefits of block-
ing secondary events associated with muscle pathology in MDC1A patients and mouse
models. Perhaps the most promise has been reported with omigapil, an inhibitor of the
pro-apoptotic protein, Bax, and the GAPDH-Siah apoptosis cascade [231,232]. A 17.5-week
treatment of dy2J/dy2J mice led to reduced muscle fibrosis, increased grip strength, and im-
proved respiratory rates [242]. Clinical trials with MDC1A and COL6 congenital muscular
dystrophy (COL6-RD) patients have been completed by Santhera Therapeutics to establish
the pharmacokinetics of omigapilin in children and adolescents (NCT01805024). Further
trials have not been announced by the company.
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The pathology in Lama2-deficient mice appears to be exacerbated by the upregulation
of lysosome-associated degradation pathways in the muscle [233,243]. Consistent with this,
inhibition of the ubiquitin-proteasome system by treatment of dy3K/dy3K mice with MG-132
or bortezomib increased muscle strength and mobility and reduced muscle fibrosis while
extending the mouse’s lifespan [233,234]. In wildtype mice, Lama2 acts as an inhibitor
of autophagy through the inhibition of the class III PI3K Vps34. Thus, Lama2-deficient
mice, dy3K/dy3K, express higher levels of autophagy markers Foxo3 and Beclin1 (BECN1),
suggesting a higher rate of autophagy [233]. Systemic injection of dy3K/dy3K mice with
3-methyladenine (3-MA) that inhibits Vps34 [235] ameliorates muscle pathology [243].
Though these approaches identify potential targets for the development of novel therapeutic
approaches for MDC1A, the available drugs act systemically and are likely to have negative
side effects in patients [225].

Oxidative stress represents a third target for the treatment of secondary events in
Lama2-deficient skeletal muscle. A study of dy2J/dy2J mice and MDC1A patients has ob-
served significantly elevated levels of reactive oxygen species (ROS) that can contribute to
muscle damage [244]. Delivery of N-acetylcysteine (NAC), an antioxidant that scavenges
ROS in dy2J/dy2J mice, served to protect against muscle injury that leads to improved muscle
strength while reducing inflammation and fibrosis [236]. Similar results were observed
for a second antioxidant, vitamin E. Unlike NAC, vitamin E appears to work through the
repair of the sarcolemma damage [237]. The outcome of reducing muscle damage and the
associated inflammation and fibrosis is the same [236]. This represents a fertile avenue for
clinical trials with MDC1A.

It has become apparent that the pathology of skeletal muscle in MDC1A is dependent
on multiple regulatory pathways that contribute to myofiber breakdown and repair, as
well as inflammation and fibrosis. This makes MDC1A refractory to therapeutic agents
that target a single pathway. Greater success has been seen in mouse models with a
combinatorial treatment. Perhaps the best example is combining promyogenic growth
factors, such as IGF1, with anti-fibrotic losartan [227]. Similarly, promoting cell stability in
the muscle of dyW/dyW mice by the introduction of a mini-agrin transgene has an additive
effect when combined with the apoptosis inhibitor omigapil [245]. However, the existing
MDC1A therapeutic targets do not address the motor nerve pathology associated with the
disease. Additional research is required to develop a strategy to address the neuropathies.

6.2. Collagen VI-Related Dystrophies

ColVI is a beaded fibril consisting of three chains encoded by COL6A1, COL6A2, and
COL6A3. The ColVI collagen fibers form a mesh-like network associated with the ECM of
basement membranes, where it can modify the nature of the structure based on binding to
glycoproteins, proteoglycans, and glycosaminoglycans [246]. They serve important roles
in protecting cells from compressive forces while facilitating the interaction between cells
and ECM proteins. Further, ColVI participates in the regulation of autophagy through
direct interaction with integral membrane proteins on adjacent cells (β1 integrin, TEM8,
and VEGFR2) [247–249].

Mutations in COL6A1, COL6A2, and COL6A3 lead to a spectrum of congenital mus-
cular dystrophies that range from UCMD at the severe end of the spectrum to Bethlem
myopathy at the mild end [246]. UCMD patients experience congenital hypotonia and con-
tractures in joints of the extremities. Motor milestones are often delayed, and ambulation
is limited. Similar to MDC1A, UCMD patients suffer from respiratory insufficiencies that
commonly lead to death in the teenage years [246].

The histopathology associated with muscle weakness in ColVI-related dystrophies
includes muscle fibers of various sizes and a significant increase in interstitial fibrosis [250].
As with MDC1A, fibrosis accumulation is immediate and does not build with time, as
seen with DMD. Using Col61A-deficient mice as a model, fibrosis was found to be related
to overactivation of mesenchymal stem cells that have been converted to the fibroblast
lineage [250].
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Studies in Col6a1-deficient mice revealed that COL6A1 is required for the progression
of autophagy in muscle. Markers of autophagy, including beclin-1, BCL-2/adenovirus
E1B-interacting protein-3 (Bnip3), and the microtubule-associated protein 1A/1B-light
chain 3 II (LC3-II), are all reduced in these mice [251]. Further, the sarcoplasmic reticulum
and mitochondria have alterations in their ultrastructure that are consistent with reduced
autophagy [238]. A consequence of this is the opening of MPTP and Ca2+ dysregulation
(see Section 2.3), leading to increased apoptosis. This mitochondrial phenotype also was
observed in myoblasts isolated from UCMD patients [252].

Treatment with cyclosporin A (CsA), an inhibitor of MPTP, rescued the ultrastructure
defects and reduced apoptosis (Table 4) [238]. Small open trials treating UCMD patients
with CsA for short-term (1 month) or long-term (>1 year) periods promoted autophagy
and reduced apoptosis [239,240]. Although individuals in the long-term treatment group
experienced improved muscle regeneration, motor function loss and respiratory insuffi-
ciency were not changed [241]. These studies clearly implicate impaired autophagy and
mitochondria-mediated myofiber apoptosis in the pathology of UCMD and other ColVI
dystrophies but raise questions about the viability of CsA as a therapy.

7. Conclusions

Advances in genetic, genomic, and proteomic technologies have resulted in an ac-
celeration in the unraveling of the molecular mechanisms underlying the histopathology
of more than 50 types of muscular dystrophy and opened the door to an exploration of
alternative therapeutic approaches to glucocorticoid suppression of fibrosis, fat accumu-
lation, and chronic inflammation associated with most muscular dystrophies. Strategies
with broad promise are those that reduce proinflammatory NF-κB and TNF-α signaling.
Studies in mouse models have shown success in ameliorating the pathology upstream of
their expression through antioxidants (e.g., COX enzyme inhibitor) [44], suppression of the
inflammasome (e.g., P2X7 antagonists) [149] or directly through the inhibition of NF-κB
activity (e.g., vamorolone) [186]. Alternatively, inhibition of the Akt/mTOR signaling path-
way by rapamycin suppresses the immune response to injury by reducing the proliferation
of immune cells [253]. This has shown potential for ameliorating fibrosis in Lmna- and
Ftkn-deficient mice [94,159–161]. Recent reports predict that direct suppression of fibrotic
deposition in fibroblasts at the site of injury by disrupting uPA/uPAR signaling via Serp-1
represents a strategy downstream of chronic inflammation to reduce fibrosis [32,50,51].

Though we have seen a growth in pharmacotherapeutic strategies to slow down
muscle loss through immunosuppression, the number of approved treatments for muscular
dystrophy patients remains limited. The rarity of many of these diseases has served as
an unfortunate barrier to the clinical trials essential for FDA approval [128]. To properly
control the trial, characteristics like a definitive genetic diagnosis, age, sex, and stage of
muscle wasting are required for inclusion. This requires establishing large multicenter trials
over an extended period to recruit enough participants to be able to generate statistically
significant results. Innovative off-label use of existing FDA-approved drugs, such as
vamorolone and rapamycin, may reduce some of the challenges. Vamorolone is an example
of a drug currently in clinical trials for the more prevalent DMD.
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