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Abstract: The prevalence of patients with hyperuricemia or gout is increasing worldwide. Hy-
peruricemia and gout are primarily attributed to genetic factors, along with lifestyle factors like
consuming a purine-rich diet, alcohol and/or fructose intake, and physical activity. While numerous
studies have reported various comorbidities linked to hyperuricemia or gout, the range of these
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associations is extensive. This review article focuses on the relationship between uric acid and thirteen
specific domains: transporters, genetic factors, diet, lifestyle, gout, diabetes mellitus, metabolic syn-
drome, atherosclerosis, hypertension, kidney diseases, cardiovascular diseases, neurological diseases,
and malignancies. The present article provides a comprehensive review of recent developments in
these areas, compiled by experts from the Young Committee of the Japanese Society of Gout and Uric
and Nucleic Acids. The consolidated summary serves to enhance the global comprehension of uric
acid-related matters.

Keywords: uric acid; lifestyle; cardiometabolic diseases; neurological diseases; transporters

1. Introduction

The worldwide prevalence of patients with hyperuricemia or gout is increasing [1–3].
Genetic factors are recognized as contributors to hyperuricemia and gout, along with
lifestyle factors such as consuming a purine-rich diet, alcohol and/or fructose intake,
and physical activity. Hyperuricemia is a well-established causative risk factor for gout
flares. Additionally, gout flare is associated with a higher risk of cerebrocardiovascular
diseases [4,5]. Therefore, lifestyle modifications are recommended for every individual
with hyperuricemia or gout.

The activity of uricase, an enzyme catalyzing the conversion of uric acid to allantoin,
was lost about 8–20 million years ago, and therefore, uric acid is the end product of
purine metabolism in humans. [6] In addition, the renal tubules reabsorb most uric acid
filtered in the glomeruli, resulting in 5 to 10 times higher concentrations of serum uric
acid in humans than those in other mammalians. These findings suggest that uric acid
was necessary for human evolution. Experimental studies have shown that uric acid is
a powerful antioxidant. [7] Uric acid may exert its beneficial effects by protecting cells
from oxidative damage by maintaining superoxide dismutase, scavenging radical species,
and chelating transition metals. [8,9] However, the worldwide prevalence of patients with
hyperuricemia or gout is increasing.

While medical treatment for patients with a history of gout and hyperuricemia is
recommended, the landscape for treating asymptomatic hyperuricemia remains intri-
cate and variable, with recommendations differing across countries due to insufficient
evidence [10–13]. Although a standardized international consensus for treating asymp-
tomatic hyperuricemia has not been established yet, a wealth of studies has revealed
various comorbidities intertwined with hyperuricemia or gout. This review article focuses
on the intricate relationship between uric acid and thirteen specific domains: transporters,
genetic factors, diet, lifestyle, gout, diabetes mellitus, metabolic syndrome, atherosclerosis,
hypertension, kidney diseases, cardiovascular diseases (CVD), neurological diseases, and
malignancies. An overview of this review is shown in Figure 1.

The blue lines indicate a high degree of established relationship, while the light blue
lines suggest that the relationship has not yet been clearly established.

A comprehensive review of recent developments in each of these domains has been
meticulously compiled by the professional members of the Young Committee of the
Japanese Society of Gout and Uric and Nucleic Acids. This summary of evidence will
prove instrumental in shaping forthcoming discussions and fostering a deeper understand-
ing of this intricate landscape.
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Because of its lipophobicity, uric acid cannot passively permeate the lipid bilayer. 

Therefore, it is reasonable to assume that membrane transporters play a pivotal role in 
regulating serum uric acid levels. Since identifying uric acid transporter-1 (URAT1) as the 
first transporter involved in uric acid reuptake from urine in 2002 [14], researchers have 
made great efforts to find transporters regulating uric acid homeostasis. Owing to these 
efforts, glucose transporter 9 (GLUT9) and ATP-binding cassette transporter G2 (ABCG2) 
were discovered as physiologically important uric acid reuptake and efflux transporters, 
respectively. However, these membrane proteins are not enough to explain the whole pic-
ture of uric acid regulation in our body; thus, scientists continue their studies to clarify 
the unknown factors. Considering that URAT1 is the molecular target of uricosuric agents 
such as benzbromarone and dotinurad, the discovery of novel transporters could lead to 
the development of a therapeutic strategy for abnormal uric acid homeostasis. This section 
focuses on recent advances in the attempts to identify novel uric acid transporters (Figure 
2). 
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2. Transporters

Because of its lipophobicity, uric acid cannot passively permeate the lipid bilayer.
Therefore, it is reasonable to assume that membrane transporters play a pivotal role in
regulating serum uric acid levels. Since identifying uric acid transporter-1 (URAT1) as the
first transporter involved in uric acid reuptake from urine in 2002 [14], researchers have
made great efforts to find transporters regulating uric acid homeostasis. Owing to these
efforts, glucose transporter 9 (GLUT9) and ATP-binding cassette transporter G2 (ABCG2)
were discovered as physiologically important uric acid reuptake and efflux transporters,
respectively. However, these membrane proteins are not enough to explain the whole
picture of uric acid regulation in our body; thus, scientists continue their studies to clarify
the unknown factors. Considering that URAT1 is the molecular target of uricosuric agents
such as benzbromarone and dotinurad, the discovery of novel transporters could lead
to the development of a therapeutic strategy for abnormal uric acid homeostasis. This
section focuses on recent advances in the attempts to identify novel uric acid transporters
(Figure 2).

Biomolecules 2023, 13, x FOR PEER REVIEW 3 of 26 
 

 
Figure 1. An overview of this review. 

2. Transporters 
Because of its lipophobicity, uric acid cannot passively permeate the lipid bilayer. 

Therefore, it is reasonable to assume that membrane transporters play a pivotal role in 
regulating serum uric acid levels. Since identifying uric acid transporter-1 (URAT1) as the 
first transporter involved in uric acid reuptake from urine in 2002 [14], researchers have 
made great efforts to find transporters regulating uric acid homeostasis. Owing to these 
efforts, glucose transporter 9 (GLUT9) and ATP-binding cassette transporter G2 (ABCG2) 
were discovered as physiologically important uric acid reuptake and efflux transporters, 
respectively. However, these membrane proteins are not enough to explain the whole pic-
ture of uric acid regulation in our body; thus, scientists continue their studies to clarify 
the unknown factors. Considering that URAT1 is the molecular target of uricosuric agents 
such as benzbromarone and dotinurad, the discovery of novel transporters could lead to 
the development of a therapeutic strategy for abnormal uric acid homeostasis. This section 
focuses on recent advances in the attempts to identify novel uric acid transporters (Figure 
2). 
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2.1. Glucose Transporter 12 (GLUT12)

GLUT12 is a member of the glucose transporter family and has been shown to have
glucose transport activity in vitro [15]. The relationship between GLUT12 and uric acid
was first identified in a genome-wide association study (GWAS) that focused on serum uric
acid levels [16]. Based on this GWAS report, Toyoda et al. examined the uric acid transport
activity of GLUT12 using in vitro transient overexpression cell systems and confirmed that
GLUT12 functions as a uric acid transporter [17]. Furthermore, this study investigated
the physiological importance of Glut12 in uric acid homeostasis using a knockout (KO)
mouse model. Since mice can metabolize uric acid to allantoin by uricase (Uox), a uric acid
metabolizing enzyme, double KO (DKO) mice of Glut12 and Uox genes (Glut12-Uox DKO
mice) were established and analyzed. As a result, plasma uric acid levels of Glut12-Uox
DKO mice were significantly higher than those of Uox single KO mice. On the other
hand, liver uric acid levels and the ratio of liver to plasma uric acid levels were lower in
Glut12-Uox DKO mice, suggesting the role of Glut12 in transporting uric acid from plasma
to the liver. Given that GLUT12 was identified in a GWAS of serum uric acid levels, it
appears that GLUT12 would also be a physiologically important uric acid transporter
in humans.

2.2. Organic Anion Transporter 10 (OAT10)

OATs are involved in the transmembrane transport of organic anions and belong to
a wide range of transporter families, including organic cation transporters and organic
cation/carnitine transporters, alongside the well-known uric acid transporter URAT1. Al-
though the uric acid transport activities of OAT10 were reported in in vitro studies [18],
its physiological importance in uric acid homeostasis had not been reported for a decade.
This was mainly because mutations in the OAT10 gene were rare in individuals other
than Japanese, preventing the detection of this gene in GWAS. Recently, to clarify the
roles of OAT10 in uric acid homeostasis, comprehensive exon sequencing analyses were
conducted in Japanese gout patients and healthy controls [19]. This study revealed that the
allele frequency of missense mutation in the OAT10 gene, 1129C > T, which induces the
amino acid substitution Arg377Cys (R377C), was lower in gout patients. In vitro functional
analyses demonstrated that the OAT10 R377C mutant had no uric acid transport activity. A
subsequent study revealed that the fractional excretion of uric acid to urine (FEUA) was sig-
nificantly high in people with the OAT10 R377C mutation [20]. Combining the genetic and
in vitro analyses, OAT10 was identified as a uric acid reabsorption transporter from urine.
Interestingly, some uricosuric agents inhibited the uric acid transport activity of OAT10
in vitro, suggesting the potential of OAT10 as a molecular target of hyperuricemia [20].

2.3. Sodium-Dependent Vitamin C Transporter 1/2 (SVCT1/SVCT2)

SVCTs are human homologs of the nucleobase–ascorbate transporter (NAT) family.
It is well known that SVCT1/SVCT2 transport vitamin C (VC) in a sodium-dependent
manner. Analyses of Svct1 KO mice revealed the involvement of Svct1 in the reuptake of
VC from urine and the regulation of plasma VC levels [21]. In contrast, Svct2 is considered
to regulate VC levels in various tissues, such as the liver and kidney, although Svct2 KO
mice die soon after birth [22]. Based on a report demonstrating that the bacterial NAT
family transporter YgfU transported uric acid, investigations into the uric acid transport
activities of SVCT1/SVCT2 were conducted using in vitro transient overexpression cell
systems [23,24]. As a result, it was clarified that both SVCT1 and SVCT2 transport not
only VC but also uric acid in a sodium-dependent manner. In mouse models, Svct1 was
suggested to regulate serum uric acid levels as a uric acid reabsorption transporter from
urine [23]. However, due to lethality, there are no reports investigating changes in uric
acid homeostasis in Svct2 KO mice. Future studies are needed to reveal the physiological
importance of SVCT1/SVCT2 in uric acid homeostasis in humans.
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3. Genetic Factors

Mendelian randomization analyses have provided evidence that genes responsible
for hyperuricemia are not independently associated with hypertension, ischemic heart
disease, type 2 diabetes, cerebrovascular disease, or heart failure [25–27]. These findings
suggest that the genes responsible for uric acid regulation, specifically those encoding uric
acid transporters, may not directly act as independent risk factors for these health issues.
However, it is worth emphasizing that not all genetic factors related to hyperuricemia exert
the same influence. Some studies have indicated a positive association between the xanthine
oxidoreductase (XOR) gene and blood pressure, hinting at the possible involvement of XOR
and oxidative stress in influencing blood pressure levels [28,29]. Additionally, evidence
shows a connection between serum uric acid levels and a genetic risk score based on eight
uric acid-regulating single nucleotide polymorphisms associated with cardiovascular death
and sudden cardiac death [30]. Moreover, Mendelian randomization research using data
from UK Biobank and clinical trials has suggested that higher serum uric acid levels may
indeed contribute to increased blood pressure, potentially mediating an increased risk
of CVD [31].

Uric acid levels are regulated by both uric acid transporters and XOR, which play
roles in its accumulation and production. Importantly, while most studies of the uric acid
transporter gene were negative, most studies exploring gene regulation of XOR have been
positive. In addition, it is crucial to recognize that hyperuricemia is influenced not only
by genetic predisposition but also by lifestyle factors, including diet, alcohol and fructose
intake, and physical activity. Dietary habits have rapidly changed in the last 100 years, and
these acquired factors possibly affect CVD [32]. Therefore, when assessing the risk of CVD
related to uric acid levels, we must consider both genetic and acquired factors, taking a
comprehensive approach to understand their interplay.

4. Diet

Hyperuricemia is a lifestyle-related disease; hence, advising patients to modify their
lifestyle is important, regardless of pharmacotherapy. A healthy diet tailored to each
individual according to lifestyle and coexisting diseases must be chosen rather than relying
solely on a low-purine diet alone. Long-term adherence is important for improving overall
health, managing metabolic comorbidities, and preventing and managing conditions such
as hyperuricemia or gout.

Healthy diets, such as dietary approaches to stop hypertension (DASH) and Mediter-
ranean diets, have been reported to reduce serum uric acid levels and gout incidences [33].
Studies suggest that a healthy diet combined with weight loss in overweight or obese
individuals significantly reduces cardiometabolic risk factors, including blood pressure,
cholesterol profile, triglycerides, and insulin resistance, and improves gout outcomes. Con-
sumption of certain dietary risk factors (e.g., alcohol, sugar-sweetened beverages, and red
meat) and adherence to a healthy diet are associated with serum uric acid levels and the
prevalence of gout; however, it has been shown that these have minimal effects compared to
genetic variation [34,35]. Only recently was the interaction between DASH diet adherence
and gout risk in women found to have a significant additive gene–diet interaction [36].
Shirai et al. reported that habitual coffee consumption reduced gout risk without altering
serum uric acid levels [37] like anti-inflammatory therapy. Similarly, a healthy diet may
also have anti-inflammatory effects.

Conversely, the impact of short-term dietary factors such as consuming purine-rich
foods and alcohol on gout flare-ups must be heeded. However, the idea of restricting
protein consumption to reduce purine load is not accurate. Kaneko et al. reported on
purines in foodstuffs [38]; based on the reported values obtained by calculating the optimal
energy intake (1800 kcal) and macronutrient energy distribution for 28 days in a hospital
diet, the purine quantity is approximately 190–600 mg/day, with a confirmed average
value of approximately 380 mg/day. However, it is slightly high at 600 mg/day for a menu
including fish such as cutlass [39]. Significant deviation from the recommended quantities
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is unlikely during energy intake optimization, even if high-purine foods are incorporated
throughout a daily diet.

Purine nucleotides are also umami components. Using nucleotide umami substances,
such as guanosine 5’-monophosphate and inosine 5’-monophosphate, in combination
with monosodium glutamate, has been reported to reduce salt intake without impairing
taste [40]. Furthermore, the intestinal epithelium has a high demand for nucleotides
for energy acquisition, proliferation, and innate immunity, and the significant increase
in nucleotide substrate requirement during injury, infection, and wound healing is well
known. It has been recently reported that gut microbiota can utilize multiple purines,
including uric acid, as carbon and energy sources and can act as the major source of purines
used for nucleotide production by the intestinal mucosa [41]. Various lactic acid strains and
other bacteria have been proven to lower serum uric acid levels and improve gout flare-ups
in human trials [42]. Gut microbiota changes associated with dietary changes may improve
host uric acid metabolism; hence, future research on these aspects is awaited.

5. Lifestyle (Children and Adults)

Hyperuricemia is associated with obesity and lifestyle diseases in adults. Gout, the
most common presentation of hyperuricemia in adults, is rare in children, and most chil-
dren with gout have some underlying disease such as Down syndrome, renal hypoplasia,
atrial septal defect, glycogen storage disease, leukemia, and methylmalonic acidemia [43].
Therefore, abnormal serum uric acid concentration in children is considered a biochemical
disorder with no clinical significance. However, recent evidence has suggested that hyper-
uricemia in children is an important lifestyle-related clinical problem [44–48]. Some recent
topics of uric acid research related to lifestyle are introduced below.

Hyperuricemia in children is associated with obesity, metabolic syndrome, and its
components of metabolic syndrome [43]. Because serum uric acid concentrations change
with growth in children, with differences between males and females appearing around
10 years of age [44], it is important to establish age- and sex-specific pediatric reference
values when defining hyperuricemia in children. In a recent large-scale population-based
study of Japanese children aged 9–10, hyperuricemia was found to be associated with
obesity, high hemoglobin A1c (HbA1c) levels, dyslipidemia (hypertriglyceridemia and
hypo high-density lipoprotein (HDL)-cholesterolemia), and liver damage [44]. In this
study, factors associated with hyperuricemia in children were more accurately assessed
by focusing on a limited age group. Non-alcoholic fatty liver disease (NAFLD) [45] and
non-alcoholic steatohepatitis [46], the main causes of liver injury in children, are associated
with elevated uric acid levels. Longitudinal studies have shown that hyperuricemia is a
risk factor for the future development of hypertension [47] and chronic kidney disease
(CKD) [48].

Because younger patients have fewer complications, studies in those patients with
hyperuricemia are reasonable. Further, longitudinal studies are needed to determine the
long-term prognosis of patients with hyperuricemia and the effectiveness of interventions.

In adults, lifestyle habits that prevent hyperuricemia include exercise, smoking cessa-
tion, and work participation. According to the 2021EULAR guidelines [49], people with
rheumatic and musculoskeletal diseases that include hyperuricemia should avoid physical
inactivity; they should engage in regular exercise according to their abilities. People with
hyperuricemia should be encouraged to stop smoking and be informed that smoking is
detrimental to symptoms, function, disease activity, disease progression, and the occur-
rence of comorbidities. Work participation may have beneficial effects on health outcomes
of people with hyperuricemia. However, the relationship between exercise habits and
hyperuricemia disappeared when the body mass index (BMI) was adjusted in the model,
indicating that the exercise effect was entirely mediated through BMI [35,50]. Conversely,
in two population-based cross-sectional studies [51,52], levels of physical activity and
sedentary behavior were significantly associated with hyperuricemia status, even with
adjustment for BMI. The important thing to remember is that lifestyle improvements com-
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plement medical treatment and do not replace it, and their effects cannot be expected
without correcting obesity.

Additionally, a recent topic is the relationship between taste (umami) and hyper-
uricemia. Umami is one of the five basic tastes and is the sense that detects whether a
food contains protein. Foods rich in purines often present an umami taste. Monosodium
glutamate (MSG), one of the umami flavors, may directly induce obesity and metabolic syn-
drome through the formation of uric acid as well as fructose metabolism [53]. Thus, further
research is needed to determine how purine-rich umami foods affect hyperuricemia [54].

6. Gout

Gout, distinguished by acute episodes of joint inflammation, occurs when there is an
increase in serum uric acid levels of more than 7 mg/dL (420 µmol/L), contributing to
the formation of deposits of monosodium urate (MSU), a tiny needle-shaped crystalline
formation of uric acid [55]. Mendelian randomization studies suggest convincing evidence
of an association with hyperuricemia exists for gout [56].

Gout can be a risk factor for CVD. A study showed that the risk for myocardial
infarction and stroke in patients with gout was elevated 1.82 and 1.71 times, respectively,
compared to those without gout [57]. Some studies have reported that CVD risk increases
within 120 days, especially during the first 30 days following an acute gout flare [58,59].
Therefore, preventive medicine and gout management could be effective for both acute
gout flare and CVD prevention.

Regarding the guidelines for gout management, they vary depending on the country.
The 2020 American College of Rheumatology Guideline for the Management of Gout
(ACR2020) recommends pharmacological treatment of hyperuricemia, uric acid-lowering
treatment (ULT), for all patients with tophaceous gout or frequent gout flares with serum
uric acid target levels of ≤5.0 mg/dL. It does not recommend treatment for patients
without gout, even those with CVD risks [11]. In contrast, the Japanese Guideline on
Management of Hyperuricemia and Gout (JGMHG) recommends lowering serum uric
acid levels to ≤6 mg/dL and recommends pharmacological treatment for hyperuricemic
patients (serum uric acid levels ≥ 8 mg/dL) with CKD and CVD risk and for hyper-
uricemic patients (serum uric acid levels ≥ 9 mg/dL) without CKD and CVD risk [12,60].
A recent retrospective cohort study using the JMDC Claims Database showed that oc-
currences of gout flare for both gout and asymptomatic hyperuricemia in patients who
achieved serum uric acid levels ≤ 6.0 mg/dL with ULT decreased compared to patients
whose serum uric acid levels remained >6.0 mg/dL or who were not receiving ULT [61].
Additionally, based on a meta-analysis of studies, a longer duration of ULT with achiev-
ing serum uric acid levels < 6 mg/dL was associated with reduced gout flares [62]. These
studies provide evidence of serum uric acid levels ≤ 5.0 or 6.0 mg/dL as a treatment target
for patients with gout and asymptomatic hyperuricemia.

From another perspective, MSU can be a better surrogate marker of gout flares. As a
pathophysiology of gout flare, a previous prospective observational study found that an
increase in MSU volume measured with dual-energy computed tomography was associated
with a higher risk for gout flares [63]. In a prospective study examining the impact of ULT
on MSU deposits in gout patients, the burden of MSU deposits significantly decreased over
an average of 18 months of follow-up in patients undergoing lifestyle intervention and
treated with allopurinol or febuxostat [64]. A change in MSU volume was significantly
but weakly associated with a change in serum uric acid levels. No significant decline in
MSU deposits was observed in patients who discontinued treatment. Recent research has
shown that over a third of gout patients stop taking their ULT [65]. Allopurinol interrupters
and discontinuers had indicators of more severe gout over time compared to adherers.
These data indicate that the crucial aspects of gout management are continuing ULT and
monitoring MSU deposits as a possible surrogate marker. Further research focusing on
MSU deposits is required.
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7. Diabetes Mellitus (Glucose Metabolism)

Serum uric acid levels are known to be influenced by the presence of diabetes mellitus
and other lifestyle-related diseases. Epidemiological evidence to date indicates that type
2 diabetes mellitus is associated with gout [66]. On the other hand, it is also known that
serum uric acid levels are not high in hyperglycemic conditions. According to past papers,
both uric acid levels and the rate of hyperuricemia increase with increasing HbA1c levels
but conversely decrease when HbA1c exceeds 6.0 to 6.9, indicating a bell-shaped relation
due to the uricosuric effect of glucosuria [67]. The association between diabetes mellitus
and serum uric acid levels is one of the most interesting topics.

Recently, Lee KW and Shin D reported that elevated serum uric acid levels may
exacerbate the development of risk of type 2 diabetes mellitus in the Korean Genome
and Epidemiology Study [68]. A total of 4152 Korean adults aged 45–76 years without
type 2 diabetes mellitus, cancer, or gout at baseline in 2007–2008 were followed up until
2016. In this study, they reported that high levels of serum uric acid and high-sensitivity
C-reactive protein (hsCRP) in combination were also associated with an increased incidence
of type 2 diabetes mellitus compared to low levels of serum uric acid and hsCRP.

Jiahao Zhu et al. investigated bidirectional associations of type 2 diabetes mellitus
and glycemic traits with plasma serum uric acid levels using a Mendelian randomization
approach [69]. The associations of type 2 diabetes mellitus and fasting insulin with serum
uric acid levels were shown. In addition, Xueting Hu et al. investigated the association
between elevated plasma uric acid levels and a higher risk of insulin resistance in newly
diagnosed type 2 diabetes through Mendelian randomization analysis. However, there was
no strong association between uric acid and insulin resistance in this study [70].

On the other hand, the relationship between serum uric acid level and sodium–glucose
cotransporter-2 (SGLT-2) inhibitors has also been attracting attention. Regardless of its
precise mechanism, it has been known for a while that SGLT-2 inhibitors could significantly
reduce serum uric acid levels in patients with type 2 diabetes mellitus6. Recently, Banerjee
M et al. reported that SGLT2 inhibitors significantly reduced the risk of gout in individuals
with type 2 diabetes mellitus and/or heart failure (HF) using data from five randomized
controlled trials (RCTs) [71].

8. Metabolic Syndrome

Hyperuricemia is known to be associated with metabolic syndromes such as obesity,
insulin resistance, and dyslipidemia. However, the causal relationship between uric acid
and these metabolic syndromes remains unclear. The following studies have recently been
reported and are expected to clarify the causal relationship between uric acid and metabolic
syndrome in the future.

The relationship between hyperuricemia and dyslipidemia has long been recognized [72].
A recent longitudinal cohort study showed that triglyceride and HDL cholesterol levels and
dyslipidemia were significantly associated with the development of hyperuricemia [73].
On the other hand, hyperuricemia is known to be associated with dyslipidemia [74],
although a meta-analysis reported that treatment with allopurinol for 4 to 24 weeks did not
significantly reduce serum triglyceride and low-density lipoprotein cholesterol levels [75].
Further studies, including long-term intervention trials, are needed to clarify the causal
relationship between uric acid and dyslipidemia.

Although hyperuricemia is associated with the risk of NAFLD in a systematic review
and meta-analysis [76], it remains unclear whether there is a bidirectional or temporal rela-
tionship between it and NAFLD. Using logistic regression and cross-lagged panel analysis,
Zhimin Ma and colleagues showed a unidirectional relationship from hyperuricemia to
NAFLD incidence [77]. This study suggests that hyperuricemia plays a fundamental role
in the development of NAFLD. However, the effect of ULT on NAFLD has not been fully
investigated [78]. Whether hyperuricemia is a therapeutic target for preventing the onset
and progression of NAFLD needs to be investigated.
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A meta-analysis of bariatric surgery showed that serum uric acid levels decreased
from three months after surgery and persisted until the third year after surgery, as well as a
reduction in the incidence of gout attacks. However, serum uric acid levels increased one
month after surgery [79]. In addition, weight loss after bariatric surgery is associated with
reduced serum uric acid levels. Bariatric surgery may be an important treatment option in
preventing and managing hyperuricemia or gout.

An association between metabolism and XOR, a rate-limiting enzyme involved in
the production of not only uric acid but also reactive oxygen species (ROS), has been re-
ported [80]. Plasma XOR activity, determined via liquid chromatography/triple quadrupole
mass spectrometry using radio-labeled xanthine, is associated with insulin resistance and
glycemic control status [81]. Since plasma XOR activity has been reported to be associated
with serum uric acid levels [82], the involvement of XOR activity should also be taken into
account when considering uric acid and metabolic syndrome.

In experimental and clinical studies, the administration of benzbromarone, a non-
selective inhibitor of URAT1, has been reported to increase adiponectin levels and improve
insulin resistance [83,84]. Dotinurad, a URAT1 selective inhibitor, has been shown to
ameliorate insulin resistance by attenuating hepatic steatosis and promoting brown adipose
tissue re-browning in mice [85]. Further studies in humans are needed to clarify the effects
of dotinurad on metabolism, including insulin resistance.

9. Atherosclerosis

Serum uric acid levels tend to be elevated by the presence of hypertension, CKD, and
metabolic syndrome, all of which are established risk factors for atherosclerosis. Therefore,
serum uric acid levels can be used as a useful biomarker for atherosclerosis. However, it
remains a matter of debate whether hyperuricemia per se is an independent causal risk
factor for atherosclerosis, such as endothelial dysfunction and arterial stiffening. Exper-
imental studies have shown that hyperuricemia causes oxidative stress, inflammation,
and dephosphorylation of endothelial nitric oxide synthase, which can lead to the pro-
gression of atherosclerosis and vascular dysfunction [86]. Indeed, observational clinical
studies have shown that hyperuricemia is independently associated with the progression
of atherosclerosis [87,88]. These findings indicate the possibility that hyperuricemia could
be a causal risk factor for atherosclerosis. However, it has not been determined whether
ULT inhibits the progression of atherosclerosis and deterioration of vascular function.

Allopurinol reduced the carotid intima-media thickness (CIMT) in hyperuricemic
patients with type 2 diabetes [89] and recent ischemic stroke [90]. Meanwhile, in the recent
PRIZE (program of vascular evaluation under uric acid control by xanthine oxidase in-
hibitor, febuxostat: multicenter, randomized controlled) study [91], 24 months of febuxostat,
compared to non-pharmacological lifestyle modification care for hyperuricemia, did not
delay the progression of CIMT in Japanese patients with asymptomatic hyperuricemia.
Interestingly, in a sub-analysis of the PRIZE study, a greater reduction in serum uric acid
was associated with an attenuation of CIMT progression, although no optimal target serum
uric acid level to delay CIMT progression was observed [92].

Regarding the effects on vascular functional parameters, febuxostat did not change
endothelial function as assessed by flow-mediated vasodilation [93], while the therapy
modestly improved arterial stiffness markers involving pulse wave velocity (PWV) and the
cardio-ankle vascular index (CAVI) [94]. A meta-analysis demonstrated that allopurinol
did not affect arterial stiffness as assessed by PWV [95]. In addition, neither febuxostat
nor topiroxostat had any obvious effects on arterial stiffness markers (PWV and CAVI) in
patients with hypertension and treated hypertension [96]. Whether these conflicts about
the effects of XOR inhibitors on atherosclerosis and vascular functional markers depend on
the differences in the study design, population, or drug remains uncertain. Finally, since
little clinical evidence on the effects of uricosuric agents, such as benzbromarone, on those
markers is currently available, further research is required to assess this issue.



Biomolecules 2023, 13, 1519 10 of 25

10. Hypertension

Epidemiological studies have suggested a significant association between elevated
serum uric acid levels and hypertension. In several RCTs, uric acid-lowering medicine,
including XOR inhibitors, showed a beneficial effect on blood pressure (BP), although
some intervention studies reported no effect on BP. Therefore, some recent topics of uric
acid research would be helpful to understand the relationship of serum uric acid with
hypertension better, as follows.

First, numerous epidemiological studies have shown that higher serum uric acid levels
predicted incident hypertension [97]. Serum XOR level was also associated with higher BP
through generating ROS in cross-sectional studies [98]. Second, Feig DI et al. suggested
that allopurinol reduced BP by both lowering systemic vascular resistance and plasma
renin activity compared to placebo as the first intervention study of the effect of XOR
inhibitor on BP [99]. A recent systematic review also suggested that allopurinol revealed
a greater reduction of both systolic BP and diastolic BP [100]. Conversely, the FEATHER
study (Febuxostat Versus Placebo Randomized Controlled Trial Regarding Reduced Renal
Function in Patients with Hyperuricemia Complicated by Chronic Kidney Disease Stage 3)
showed that febuxostat decreased BP, but there was no difference in BP reduction compared
to placebo [101].

There are some points to be discussed in serum uric acid-hypertension association,
which can explain the inconsistent study results of the above studies. First, a vast number
of metabolic confounders are involved in uric acid research. For example, the serum uric
acid-hypertension association varies depending on age, and it was stronger in children with
few confounders [102]. Moreover, recent cross-lagged and mediation analyses revealed the
role of BP on the association of serum uric acid with other diseases. Tian X et al. suggested
that serum uric acid can elevate both systolic and diastolic BP, which partially facilitated the
effect of serum uric acid on incident CVD (mediation effect: 57.6% for systolic BP and 46.3%
for diastolic BP) [103]. Mendelian randomization mediation analysis in UK Biobank also
supports the idea that higher BP mediates approximately one-third of the effect of serum
uric acid on CVD risk [31]. These results may help us to elucidate the complicated network
of serum uric acid and other confounders and estimate the effect of lowering BP on CVD
prevention. Second, uric acid extracellularly acts as a strong antioxidant but intracellularly
shows pro-inflammatory effects [104]. Intracellular uric acid, which is influenced by food
very much, is more important in terms of an increased risk for vascular disease; however,
it remains to be elucidated how uric acid-lowering medicines, including XOR inhibitors,
affect extracellular and intracellular uric acid levels, respectively. Third, serum uric acid
levels are also regulated by uric acid excretion. A retrospective study of 84 patients (mean
age: 64 ± 16 years) suggested that systolic BP significantly decreased at 3 months after
the start of dotinurad compared to baseline. The authors concluded that dotinurad could
reduce systolic BP by possibly a relative inhibition of glucose transporter 9 (GLUT9) [105].
On the other hand, pegloticase, a recombinant uricase, significantly reduced mean arterial
pressure for 6 months in patients with chronic gout, independent of changes in renal
function [106]. The beneficial effect of uric acid-lowering medicines on BP may depend on
how they work in the process of uric acid regulation.

Many epidemiological studies support the significant relationship between serum uric
acid and hypertension. However, further RCTs are needed to clarify how its association
varies depending on age, confounders or mediators, uric acid distribution, and regulation
for an appropriate strategy to manage CVD risk.

Hypertensive Disorders of Pregnancy

Hypertensive disorders of pregnancy (HDP) are defined as hypertension in pregnant
women, which is classified according to the timing of hypertension diagnosis and the
presence or absence of clinical findings such as proteinuria and organ damage as follows:
chronic hypertension; white coat hypertension; masked hypertension; gestational hyper-
tension; and pre-eclampsia (de novo and superimposed on chronic hypertension) [107]. It



Biomolecules 2023, 13, 1519 11 of 25

is very important to distinguish pre-eclampsia from other types of HDP in clinical practice
despite all types of HDP being high-risk pregnancies [108].

Previous studies have indicated an association between uric acid and pre-eclampsia [109],
and measurement of serum uric acid is recommended in patients with HDP by European
and American guidelines [110,111]: Elevated uric acid levels occur in pregnancies with
pre-eclampsia compared to normal pregnancies [112,113]. Several mechanisms of elevated
uric acid levels in pre-eclampsia have been reported [109]. Firstly, vasoconstrictors such as
angiotensin II reduce renal blood flow, leading to decreased uric acid excretion. Secondly,
hypoxia associated with placental insufficiency increases ROS and oxidative stress, resulting
in increased uric acid production and decreased uric acid excretion. In contrast, some
studies have reported that elevated serum uric acid levels indicate the severity of the
disease process in pre-eclampsia [109], and the ratio of serum uric acid to creatinine is
associated with the development of pre-eclampsia and adverse pregnancy outcomes [114].
Furthermore, an observational cohort study revealed that the development of pre-eclampsia
is associated with elevated serum uric acid levels before 20 weeks of gestation, especially
during the early 8–12 weeks, and the effect diminishes with increasing gestational weeks,
suggesting that elevated serum uric acid in early pregnancy may be a potential causative
role in pre-eclampsia [115]. However, it is not yet clear whether uric acid is merely a risk
marker or a cause that contributes to the progression of pre-eclampsia pathology, and
future investigation is needed.

Women who have experienced HDP suffer higher rates of CVD events, including heart
failure, coronary artery disease, and stroke [116]. Additionally, the offspring of women
with hypertensive pregnancy are more likely to suffer from CVD [117]. Uric acid may play
an important role in the link between HDP and the subsequent development of CVD in
both mother and child.

11. Kidney Diseases

The kidney plays a crucial role in regulating serum uric acid levels, accounting for
60–70% of uric acid excretion. Normally, the kidney reabsorbs approximately 90% of
the uric acid filtered by the glomerulus in the proximal tubules [118]. Gout is present in
one-third of patients with CKD, and a “gouty nephropathy” resulting from MSU deposits
could be a significant cause of CKD [119]. A study reported that patients with gout are
29 percent more likely to suffer from advanced CKD and more than 200 percent more likely
to have kidney failure [120]. Additionally, another study noted that patients with severe
gout exhibited a diffuse hyperechoic kidney medulla pattern [121]. Therefore, gout serves
as a warning sign for CKD or indicates a higher risk for kidney disease. However, the
precise role of uric acid in CKD has not been completely determined. Hyperuricemia is
associated with hypertension and aging and with renal atherosclerosis in patients with
CKD, according to a cross-sectional analysis [122]. Although many epidemiologic studies
have reported that elevated serum uric acid is a predictor of the development of CKD,
the causal relationship remains controversial. The relationship between hyperuricemia
and kidney disease was described by the International Kidney Disease (KDIGO) in its
2012 “CKD Guidelines” [123]. Although the guidelines indicate the importance of man-
aging hyperuricemia in CKD, the evidence for the use of uric acid-lowering agents for
renal protection in CKD without gout is insufficient and not recommended. In 2015, an
RCT of patients with CKD stage G3–4 and asymptomatic hyperuricemia showed that
6 months of febuxostat treatment reduced renal dysfunction compared to placebo [124].
In 2018, the results of two RCTs of febuxostat and topiroxostat for hyperuricemia were
reported [101,125]. In the FEATHER study of CKD stage G3 patients with asymptomatic
hyperuricemia, febuxostat treatment in the setting of adequate CKD treatment showed no
significant effect in preventing renal dysfunction [101]. However, a post-hoc analysis of the
FEATHER study reported a significantly higher mean estimated glomerular filtration rate
(eGFR) slope in the febuxostat group than in the placebo group in CKD patients without
proteinuria [126]. In the UPWARD study of diabetic nephropathy patients with hyper-
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uricemia (with/without gout), ULT with topiroxostat significantly reduced eGFR decline
compared to placebo, although there was no significant difference in albuminuria [125].
In 2019, the FREED (Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion
StuDy) showed a significant reduction in renal dysfunction, including proteinuria, in the
febuxostat treatment group [127]. The PERL (Preventing Early Renal Loss in Diabetes)
study and CKD-FIX (Controlled Trial of Slowing of Kidney Disease Progression from
the Inhibition of Xanthine Oxidase) showed that allopurinol-assisted ULT did not slow
the decline in eGFR compared with placebo [128,129]. However, it is important to note
that both the PERL and CKD-FIX included a large number of participants with normal
uric acid levels. In this regard, it is important to note that lowering uric acid levels in
normouricemic patients should not be included in clinical trials investigating the effects
of hyperuricemia in CKD, as normouricemia is not associated with CKD progression. A
meta-analysis including these RCTs was reported in 2020 and found that ULT did not
reduce renal failure events (such as a 30% decline in eGFR during follow-up, doubling
of serum creatinine levels, and renal failure) but reduced GFR decline (weighted mean
difference, 1.18 mL/min/1.73 m2/year; 95% confidence interval, 0.44–1.91) [130]. Taken
together, these results suggest that ULT is probably not indicated for all patients with CKD
and that future clinical trials should be conducted in specific subgroups, such as younger
patients and those with nephrosclerosis and hyperuricemia.

12. Cardiovascular Diseases (CVD)

Uric acid is an end-product of purine metabolism in humans that is mainly regulated
through the XOR pathway [131]. The activation of the XOR pathway generates oxidative
stress and uric acid, causing vascular inflammation, which may play a role in developing
CVD (Figure 3) [132]. Ample evidence has suggested that there is a plausible link between
hyperuricemia and/or gout and worsening prognosis in patients with overt CVD [132]. This
chapter will summarize the recent studies that have highlighted the clinical significance
of hyperuricemia/gout, particularly in the fields of HF, ischemic heart disease (IHD),
and arrhythmia.
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Figure 3. Uric acid and cardiovascular diseases.

12.1. Heart Failure

HF patients are more likely to associate hyperuricemia [133]. Additionally, there
has been evidence that hyperuricemia is associated with an increased risk of incident
HF and adverse outcomes [134]. However, the guidelines currently do not recommend
ULT to improve the prognosis in patients with hyperuricemia and HF. As shown before,
although it is possible that XOR inhibition may have clinical benefits in patients with
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symptomatic HF [132], previous prospective interventional studies with XOR inhibitors
have not yet reported an improvement in HF outcomes. For instance, one of the XOR
inhibitors, oxypurinol, did not improve clinical outcomes in unselected patients with
moderate-to-severe HF in the OPT-CHF (The Efficacy and Safety Study of Oxypurinol
Added to Standard Therapy in the Patients With New York Heart Association Class III-IV
Congestive Heart Failure) study [135]. Contrary to the result, post-hoc analysis revealed
that high serum uric acid (≥9.5 mg/dL) received improvement in clinical status by taking
oxypurinol compared with placebo [135]. Another XOR inhibitor, allopurinol, failed to
improve clinical status in patients with HF with reduced ejection fraction (≤40%) and
elevated serum uric acid levels (≥9.5 mg/dL) in the EXACT-HF (the Xanthine Oxidase
Inhibition for Hyperuricemic Heart Failure Patients) trial [136]. A systematic review
and meta-analysis regarding the effect of ULT on patients with HF did not reveal any
improvement in ejection fraction, B-type natriuretic peptide, 6 min walk test, all-cause
mortality, and CVD death with ULT compared with placebo [137].

Thus, the efficacy of ULT in HF patients has not been previously determined, although
the results of the FAST (Febuxostat versus Allopurinol Streamlined Trial) showed the
possibility that febuxostat could have favorable effects for HF compared to allopurinol [138].
The LEAF-CHF (Effect of Urate-LowEring Agent Febuxostat in Chronic Heart Failure
Patients with Hyperuricemia) study, which evaluates the improvement of plasma B-type
natriuretic peptide using febuxostat in chronic HF patients with reduced ejection fraction
and hyperuricemia, is currently in progress [139]. Clinical evidence needs to be established.

12.2. Ischemic Heart Disease

Albeit with the excellent predictive value of hyperuricemia for patients with IHD [140],
whether or not ULT allows CVD risk reduction for this population remains an open
question. It has been reported that high-dose allopurinol (600 mg/day) exerts beneficial
effects on exercise tolerance in patients with stable chronic angina pectoris [141]. Indeed,
allopurinol significantly increased total exercise time and the time to chest pain from a
baseline when compared to placebo [141]. Most recently, the ALL-HEART study was
conducted to determine whether ULT with allopurinol improves major CVD outcomes in
patients with IHD [142]. The ALL-HEART study enrolled 5721 patients aged 60 years or
older with IHD, irrespective of serum uric acid levels. While allopurinol (600 mg/day)
profoundly decreased serum uric acid levels (from 0.34 mmol/L to 0.18 mmol/L), there
was no difference in major CVD outcomes between the allopurinol group and the usual
care group [142]. One of the major criticisms was that the ALL-HEART study did not
include patients with a history of gout. In this regard, a retrospective observational study
has underlined that preceding gout flare was more prevalent in patients who experienced a
CVD event as compared with those who did not experience it [58].

MSU is frequently observed in synovial fluid of gout patients. MSU exacerbates gout-
associated inflammation through inflammasome activation and interleukin-1β secretion
(Figure 2) [143]. A recent study reported that dual-energy computed tomography makes it
possible to identify MSU depositions in human aorta and coronary arteries in vivo [144].
Future studies with a novel imaging approach can be encompassed to explore the role of
MSU in living patients.

12.3. Arrhythmia

In 2010, the first association between hyperuricemia and atrial fibrillation (AF), one of
the most common and clinically important arrhythmias, was reported [145]. Subsequent
studies have consistently validated this association, particularly in the incidence of new-
onset AF [146–148]. A recent comprehensive meta-analysis involving 608,810 participants
from 11 studies confirmed the increased risk of incident AF in individuals with hyper-
uricemia (risk ratio, 2.42; 95% confidence interval (CI), 1.24–3.03) across countries [149].
Moreover, serum uric acid concentrations also serve as a valuable marker for AF recurrence
following AF catheter ablation [150]. Another meta-analysis involving 2046 patients from
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14 studies demonstrated that individuals who experienced AF recurrence had a higher
serum uric acid level compared to those who did not experience it (weighted mean dif-
ference, 0.69 mg/dL; 95% CI, 0.46–0.91) [151]. Furthermore, elevated serum uric acid was
significantly associated with a higher AF recurrence rate after AF catheter ablation (odds
ratio, 2.21; 95% CI, 1.73–2.83) [151]. These collective findings highlight the potential of
elevated serum uric acid as a useful tool for stratifying risk in both new-onset AF and AF
recurrence post-catheter ablation.

While investigations remain limited, some studies have reported associations between
serum uric acid and other types of arrhythmic disorders, including ventricular arrhyth-
mias [152] and atrioventricular block [153]. Such associations necessitate more robust and
extensive validation through further research. A recent Mendelian randomization study
supports the causal relationship between elevated serum uric acid and increased risk of
CVD death, especially sudden cardiac death [30]. This finding is congruent with several
prior studies examining patients with different backgrounds [152].

Despite these connections, it is critical to acknowledge the existence of conflicting evi-
dence surrounding the potential benefits of ULT in the reduction of arrhythmias [154,155].
Further research is imperative to ascertain the effectiveness and usefulness of ULT defini-
tively. In summary, while serum uric acid has been recognized as a significant indicator
for AF and other arrhythmias, the therapeutic potential of ULT warrants further and
detailed exploration.

13. Neurological Diseases

The effects of uric acid in neurological diseases are likely to vary greatly between stroke,
a vascular disease, and Parkinson’s and Alzheimer’s diseases, which are neurodegenerative
diseases [156]. A systematic review of umbrella reviews revealed a significant association
of high serum uric acid levels with a decreased risk of several neurological diseases (i.e.,
Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, neuromyelitis
optica, and amyotrophic lateral sclerosis) [157]. Several recent studies that focused on the
relationship between uric acid and varying neurological diseases are summarized below.

13.1. Stroke

There seems to be no doubt about the relationship between serum uric acid and
stroke [158,159]. The Reasons for Geographic and Racial Differences in Stroke (REGARDS)
study, a case-cohort study with large data sets, concluded that hyperuricemia may be a risk
factor for stroke [160]. A meta-umbrella review showed class I evidence that high uric acid
levels were associated with risk for stroke mortality [157]. However, some epidemiological
studies reported inconsistent findings on the relationship between serum uric acid levels
and stroke [161,162]. In addition, Jiaqi et al. conducted a prospective cohort study in Japan
and showed that elevated serum uric acid levels are an independent predictor of total and
ischemic stroke in women only [163]. Therefore, the causality remains controversial.

A retrospective cohort study conducted using the Taiwanese population-based Na-
tional Health Insurance Research Database showed that gout patients treated with ULT
had a lower risk of hospitalized stroke and all-cause mortality compared to those without
ULT. In addition, the effect of uricosuric agents on reducing the risk of hospitalization due
to stroke showed a dose-response relationship [164]. The ALL-HEART did not differ in the
outcome of nonfatal stroke between participants assigned to allopurinol therapy and those
assigned to usual care [142]. Thus, there is still little clear evidence of stroke prevention
by ULT.

13.2. Parkinson’s Disease

Parkinson’s disease is the second most common neurodegenerative disease after
Alzheimer’s disease. Serum uric acid levels are known to be low in Parkinson’s disease.
Furthermore, lower serum uric acid levels have been associated with the risk of developing
Parkinson’s disease, severity, nonmotor symptoms, and slow disease progression [165,166].
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This mechanism is thought to be due to low uric acid levels, which inhibit oxidative stress
that predisposes to dopaminergic neuron degeneration in Parkinson’s disease [167]. To
demonstrate this mechanism, a clinical trial was conducted in early Parkinson’s disease
patients receiving inosine to increase serum uric acid levels. However, no difference in
the rate of clinical disease progression in Parkinson’s disease was observed compared
to placebo [168].

13.3. Alzheimer’s Disease and Dementia

The relationship between uric acid and dementia, especially neurodegenerative dis-
eases such as Alzheimer’s, has been studied. Higher serum uric acid levels were associated
with better cognitive function and appeared to be neuroprotective. A prospective cohort
study conducted in Sweden involving women only over a 44-year period showed an
association between higher serum uric acid levels and a lower risk of dementia. This
study supports the hypothesis that serum uric acid levels play a protective role in the
development of dementia, regardless of dementia subtype [169]. A cross-sectional study
obtained from the ReGAl 2.0 project in Italy also showed that serum uric acid levels were
lower in patients with Alzheimer’s disease [170]. In contrast, the Atherosclerosis Risk in
Communities (ARIC) cohort showed no association between serum uric acid levels and inci-
dent dementia [171]. Since evidence from observational studies is susceptible to numerous
biases, the effects of gender, age, and dementia subtypes must also be considered. To date,
few clinical interventional studies have investigated the potential of inosine therapy in
patients with Alzheimer’s disease. However, basic evidence suggests that inosine might be
a promising therapeutic strategy for Alzheimer’s disease thanks to its ability to modulate
different brain mechanisms involved in neuroprotection [172].

13.4. Multiple Sclerosis and Neuromyelitis Optica

Multiple sclerosis and neuromyelitis optica are autoimmune central nervous system
diseases; a meta-analysis of 10 case-control studies found that patients with multiple
sclerosis and neuromyelitis optica had lower serum uric acid levels compared to healthy
controls [173]. In a 12-month randomized, placebo-controlled trial following patients after
inosine administration, it was determined that inosine did not possess neuroprotective
effects, thus proving ineffective for relapsing–remitting multiple sclerosis. Nevertheless,
a comprehensive evaluation of the efficacy of inosine for multiple sclerosis is needed,
involving an extended follow-up period of over one year [174].

13.5. Amyotrophic Lateral Sclerosis

A national database of South Korea study found that the prevalence of amyotrophic lat-
eral sclerosis (ALS) in gout patients was substantially lower than in the general
population [175]. A cross-sectional study was conducted to determine the relationship
between serum uric acid levels and cognitive impairment in patients with ALS in China.
The results showed that a low serum uric acid level was an independent risk factor for
cognitive impairment in patients with amyotrophic lateral sclerosis [176]. Furthermore, a
longitudinal cohort study in China found an inverse association between serum uric acid
levels and risk of death, particularly pronounced in male patients with ALS [177].

14. Malignancies

The relationship between malignancy and hyperuricemia requires multifaceted refer-
ences to antioxidant effects and etiology. Although it has long been proposed that uric acid,
particularly as an endogenous antioxidant, may exert anticarcinogenic properties [7,178],
recently, some studies have been conducted on cancer risk of hyperuricemia and inflam-
mation caused by gout, or oxidative stress involved in ROS, in the etiology of malignant
tumors [179].

The association between uric acid levels and prognosis has also been examined in
several papers on hematologic malignancies and solid tumors. It has been suggested that
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high uric acid levels are a poor prognostic factor in acute myeloid leukemia [180]. In
diffuse large B-cell lymphoma, a high uric acid level is a shorter progression-free and
overall survival [181].

Tumor lysis syndrome (TLS) is a life-threatening complication that is caused by the
sudden and massive death of cancer cells upon chemotherapy [182–184] (Figure 4). Ac-
cording to the Japanese Adverse Drug Event Report database, the incidence of TLS has
increased 7.5 times from 2003 to 2019, with a total of 620 cases reported. The mortality
rate due to TLS is reported to be 15–30%, making it one of the oncologic emergencies for
which preventive treatment is recommended in the guidelines. Intracellular metabolites,
which include proteins, potassium, phosphorus, and nucleic acids, are rapidly released
from lysed cells to circulating blood. This may result in hyperkalemia, hyperphosphatemia,
and hyperuricemia, thereby inducing renal insufficiency, cardiac arrhythmias, seizures,
neurological disorders, and ultimately death. As far as TLS treatment, the use of rasburicase
and febuxostat has led to a breakthrough in ULT, guidelines have been developed, and a
consensus has been reached.
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lignant tumors [179]. 

The association between uric acid levels and prognosis has also been examined in 
several papers on hematologic malignancies and solid tumors. It has been suggested that 
high uric acid levels are a poor prognostic factor in acute myeloid leukemia  [180]. In 
diffuse large B-cell lymphoma, a high uric acid level is a shorter progression-free and 
overall survival [181]. 

Tumor lysis syndrome (TLS) is a life-threatening complication that is caused by the 
sudden and massive death of cancer cells upon chemotherapy [182–184] (Figure 4). Ac-
cording to the Japanese Adverse Drug Event Report database, the incidence of TLS has 
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preventive treatment is recommended in the guidelines. Intracellular metabolites, which 
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lysed cells to circulating blood. This may result in hyperkalemia, hyperphosphatemia, and 
hyperuricemia, thereby inducing renal insufficiency, cardiac arrhythmias, seizures, neu-
rological disorders, and ultimately death. As far as TLS treatment, the use of rasburicase 
and febuxostat has led to a breakthrough in ULT, guidelines have been developed, and a 
consensus has been reached. 
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In the past, TLS was mainly concerned with acute lymphocytic leukemia, aggressive
lymphomas in advanced stages, and acute myeloid leukemia with high tumor volume. In
recent years, however, caution has been exercised in cases of TLS in chronic lymphocytic
leukemia and acute myeloid leukemia in the elderly with the advent of B-cell lymphoma-2
(BCL2) inhibitors, and in multiple myeloma, where multidrug combination therapy has
become the mainstay with the advent of proteasome inhibition, immunomodulatory agents,
and antibody drugs. While the risk of TLS in these cases has not been systematically
examined, Howard et al. identified published Phase I–III clinical trials of monoclonal
antibodies [185]. According to the paper, the incidence of TLS with alvocidib was 4.2%
in recurrent treatment-resistant ALL, 13.2% in mantle cell lymphoma, indolent B-cell
lymphoma, and chronic lymphocytic leukemia (CLL), and 42.2% in acute myeloid leukemia.

The relationship between uric acid and malignancies is uncertain. Therefore, it is
necessary to continue to investigate the mechanism of how hyperuricemia is associated
with the development of malignancy and to continue to manage TLS that may develop
following chemotherapy. We must remember to evaluate and control TLS as a side effect
prior to the use of new anticancer drugs.

Since there is no uniformity in the selection and use of uric acid-lowering medicine for
TLS prophylaxis in clinical studies, adequate TLS management should also be evaluated
when assessing the frequency of each TLS incidence.

15. Conclusions

Taking into account recent research on uric acid, it is important to acknowledge that
while numerous studies have identified associations between uric acid and various diseases,
establishing a definitive causal relationship remains challenging in numerous instances.
Given the intricate and multifaceted nature of uric acid’s involvement across many diseases,
there is a clear need for conducting additional comprehensive investigations into uric acid.
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One proposed solution to address these challenges is the implementation of high-quality
prospective RCTs while considering their intricate interactions and potential implications.
Such research endeavors are essential, as they hold the key to unraveling the complexities
surrounding uric acid and revealing its potential role in disease pathogenesis.
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