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Abstract: Single-cell RNA sequencing (scRNA-seq) technology has significantly advanced our under-
standing of the diversity of cells and how this diversity is implicated in diseases. Yet, translating these
findings across various scRNA-seq datasets poses challenges due to technical variability and dataset-
specific biases. To overcome this, we present a novel approach that employs both an LLM-based
framework and explainable machine learning to facilitate generalization across single-cell datasets
and identify gene signatures to capture disease-driven transcriptional changes. Our approach uses
scBERT, which harnesses shared transcriptomic features among cell types to establish consistent
cell-type annotations across multiple scRNA-seq datasets. Additionally, we employed a symbolic
regression algorithm to pinpoint highly relevant, yet minimally redundant models and features for
inferring a cell type’s disease state based on its transcriptomic profile. We ascertained the versatility
of these cell-specific gene signatures across datasets, showcasing their resilience as molecular markers
to pinpoint and characterize disease-associated cell types. The validation was carried out using
four publicly available scRNA-seq datasets from both healthy individuals and those suffering from
ulcerative colitis (UC). This demonstrates our approach’s efficacy in bridging disparities specific
to different datasets, fostering comparative analyses. Notably, the simplicity and symbolic nature
of the retrieved gene signatures facilitate their interpretability, allowing us to elucidate underlying
molecular disease mechanisms using these models.

Keywords: biomarker; LLM; interpretability; scRNA-seq; machine learning; symbolic regression

1. Introduction

All living organisms consist of numerous specialized cells, each performing distinct
functions. These cells and the organisms they compose are determined by hereditary
information, which significantly influences the traits of offspring [1].

Cell types play a crucial role in the development and progression of many diseases.
Each cell type in the human body performs a unique set of functions, and the disruption
of these functions can lead to disease [2]. Identifying the cell types that contribute to the
development of a disease is key to understanding its etiology and developing targeted
treatments [3].

Analyzing the role of different RNA segments in cellular changes and disease pro-
gression requires understanding alterations in the transcriptome. Traditional RNA-seq
methods involve sequencing a mix of different cells, providing average expression levels
for each RNA transcript across millions of cells in the examined population. While this
approach has been valuable, it suffers from a crucial limitation as it loses heterogeneous
information due to grouping various cell types. To address this limitation and achieve a
deeper understanding, single-cell RNA-sequencing (scRNA-seq) is employed, where the
transcriptome is sequenced at the level of individual cells [4].
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The increased interest and investment in scRNA-seq arise from technological advance-
ments and the rising occurrence of diseases linked to cell-level changes. As single-cell
sequencing becomes more cost-effective and sophisticated, generating vast amounts of
useful data becomes more accessible. However, a big challenge is figuring out the im-
portant information from all these data by using advanced modeling techniques such as
machine learning.

Recent studies have shown that machine learning techniques coupled with single-cell
RNA sequencing (scRNA-seq) [5–7] can be used to identify cell-type-specific disease-
associated gene expression patterns [3,8]. These studies have demonstrated that a disease
manifests itself in a cell type through forming a statistically significant disease gene mod-
ule [3]. By identifying these cell-type-specific disease gene modules, researchers can gain
insights into the molecular mechanisms underlying the pathogenesis and progression of
diseases [3].

To make the most of computational approaches such as machine learning for scRNA-
seq modeling, it is essential to have interpretable results. These results should offer insights
without depending on excessively intricate models. This transparency and comprehension
of how algorithms make decisions are vital for both scientific exploration and practical
clinical uses [9].

Despite its potential, scRNA-seq analysis presents several challenges [10,11], including
high dimensionality, sparsity, and batch effects. Machine learning (ML) approaches have
emerged as a powerful tool to address these challenges, enabling accurate cell type classifi-
cation, precise gene expression prediction, and effective biomarker discovery. Nevertheless,
the application of ML models in scRNA-seq analysis poses three main challenges.

Firstly, ML models require well-annotated data, which can be limited and time-
consuming to obtain. Cell labeling relies on expert knowledge and can be subjective.
To tackle this issue, we fine-tuned the original scBERT model using data from the Gut Cell
Atlas [12].

Secondly, while ML models excel at prediction, their lack of interpretability hinders
the understanding of biological mechanisms. This issue is particularly pronounced when
using complex algorithms.

Lastly, ML models trained on specific scRNA-seq datasets might not generalize well
to new datasets due to differences in experimental protocols and cell types. This limitation
reduces the applicability of ML models to diverse research questions.

To address these challenges, we developed an approach that combines supervised
learning and a large language model. Our method, which involves fine-tuning scBERT
and utilizing the QLattice, enhances cell type annotation and improves interpretability,
generalizability, and scalability for scRNA-seq analysis.

We investigated the application of machine learning (ML) approaches to address
the challenges in single-cell RNA-sequencing (scRNA-seq) analysis by focusing on cell
type classification in the context of disease states. To this end, we utilized four distinct
datasets, each comprising samples from healthy individuals and individuals diagnosed
with ulcerative colitis (UC), sourced from various tissues [13–16].

The four datasets used in our study represented a diverse range of biological contexts,
providing a comprehensive perspective on cellular responses across UC.

To train our ML models, we leveraged the patient status information, using it to
classify cell types into two categories: those associated with disease states and those not
linked to the disease. By doing so, we aimed to discern the distinct molecular signatures
associated with different cell types in the presence or absence of disease conditions.

To ensure robustness and assess the transferability of our models, we carried out
multiple experiments. We trained the ML models on each of the four datasets independently
and then evaluated their performance on the other three datasets where the same cell types
were present. This approach allowed us to gauge how well the ML models generalize
across different datasets and to identify any potential biases or limitations arising from
dataset-specific features.
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Our results demonstrated promising transferability across datasets, suggesting that
the learned patterns were not overly biased by dataset-specific characteristics. This finding
underscores the potential utility of our ML-based approach in broader scRNA-seq analysis,
enabling cell type classification in various disease contexts and tissue types.

By using multiple datasets encompassing healthy and disease states, we obtained a
comprehensive understanding of cell type dynamics and their association with disease
conditions. The identification of cell types specific to disease states can serve as a foundation
for further investigation into disease mechanisms and potential therapeutic targets.

Overall, our study sheds light on the importance of ML-based approaches in advanc-
ing scRNA-seq analysis, particularly in the context of cell type classification and disease
state identification. By increasing the resolution of the data through fine cell type sub-
groupings, we show that it is, in turn, possible to reduce model complexity and thereby
increase interpretability. The transferability of the ML models between different datasets
provides confidence in the robustness and generalizability of our findings, facilitating
future studies aimed at deciphering the intricacies of cellular responses in various diseases.
Our work showcases the potential of ML in scRNA-seq analysis, providing researchers
and clinicians with a new tool to study diseases at the single-cell level. Our study was
intentionally designed within a specific scope, which did not involve establishing causal
relationships. Instead, our primary objective was to leverage single-cell information and to
use an alternative and agnostic approach to uncover potential associations and insights
into diseases.

2. Materials and Methods
2.1. Datasets

We utilized four diverse datasets on ulcerative colitis (UC), originating from various
tissues. Dataset 1 comprised information from intestinal epithelial cells, while Datasets
2 and 3 focused on colonic mesenchymal and epithelial cells, respectively. All original
datasets were generated using the 10X Chromium procedure and Illumina machines for
sequencing. These cutting-edge techniques allowed us to capture detailed molecular
data from different cell types within the UC samples. By incorporating these tissue-
specific datasets, we aimed to unravel the intricate molecular signatures associated with UC
pathology and gain insights into the underlying mechanisms driving disease progression
and inflammation in specific cell populations.

The first dataset was taken from Smillie et al. [13] and consists of the gene expression
from intestinal epithelial cells of 30 samples, collected in three sample groups (12 healthy,
4 inflamed, and 14 non-inflamed). We treated inflamed and non-inflamed as the same class
(not healthy). We used the QLattice to predict whether a sample is healthy (dependent
variable = 1) or not (dependent variable = 0). The patients in the study were recruited
from two hospitals in the United States: the University of California, San Francisco (UCSF),
and the Mayo Clinic. The study included 18 patients with ulcerative colitis and 12 healthy
controls. The patients with ulcerative colitis were all adults, with an average age of 45 years.
They had all been diagnosed with ulcerative colitis for at least 6 months, and they were
all currently in remission. The healthy controls were also all adults, with an average age
of 45 years. They had no history of ulcerative colitis or any other chronic inflammatory
diseases. The tissue samples were collected from the colons of the patients and controls
during routine colonoscopy procedures [13].

The second dataset was taken from Kinchen et al. [14] and consists of gene expression
from colonic mesenchymal cells of 4 samples, collected in 2 sample groups (2 healthy vs.
2 not healthy). We used the QLattice to predict whether a sample is healthy (dependent
variable = 1) or not (dependent variable = 0).

The third dataset was taken from Parikh et al. [15] and consists of gene expression from
colonic epithelial cells of 9 samples, collected in 3 sample groups (3 healthy, 3 inflamed, and
3 non-inflamed). As for the first dataset, we treated inflamed and non-inflamed as the same
class (not healthy). We used the QLattice to predict whether a sample is healthy (dependent
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variable = 1) or not (dependent variable = 0). The data included 3 repeat experiments
with biopsy samples taken from colonic biopsies collected from healthy patients (Healthy)
and those with UC inflammation from an inflamed area of the colon and adjacent non-
inflamed area.

The fourth dataset was taken from Boland et al. [16] and consists of gene expression
from the gastrointestinal mucosal and peripheral immune systems of 14 samples, collected
in two sample groups (7 (9 in the original publication) healthy vs. 7 not healthy). We
used the QLattice to predict whether a sample is healthy (dependent variable = 1) or not
(dependent variable = 0). Intestinal biopsies and peripheral blood samples were collected
from patients who underwent colonoscopies at UCSD and the VA San Diego Healthcare
System. The control group consisted of healthy individuals who underwent colonoscopy as
part of routine clinical care for colorectal cancer screening/surveillance or noninflammatory
gastrointestinal symptoms, such as constipation or rectal bleeding. The inclusion criteria
for participants were being over 18 years old and having no significant comorbidities or a
history of colorectal cancer. For UC patients, those with active endoscopic disease were
selected for the study [16]. It is important to mention that we removed two subjects from the
healthy sample group because of poor quality and a significant number of missing values.

2.2. scBERT to Fine-Tune Cell Type Annotation

scBERT [17] is a large-scale, pre-trained deep language model used for cell type
annotation of single-cell RNA-seq data. It is designed to accurately identify different
cell types in single-cell RNA sequencing data, which is a critical step in analyzing such
data. scBERT is based on the Bidirectional Encoder Representations from Transformers
(BERT) model [18], which is a state-of-the-art deep learning model for natural language
processing. scBERT is pre-trained on a large corpus of text data, which allows it to learn
complex patterns and relationships in the data. scBERT has been shown to be effective at
accurately annotating cell types in single-cell RNA sequencing data, even in datasets with
imbalanced classes. This makes it a valuable tool for researchers studying gene expression
and cell biology.

We used the pre-trained version of scBERT and fine-tuned it on the Gut Cell Atlas [12] to
obtain a gut-specific version of scBERT. The full implementation details of scBERT followed
those of the original paper by Yang et al. [17], with the only difference being that we fine-
tuned the pre-trained version on the Gut Cell Atlas rather than the Zheng68K dataset of
peripheral blood mononuclear cells (PBMCs). Aside from this important difference, we
used the same preprocessing pipeline, training procedure, and architecture.

All hyperparameters were set to default, including the threshold for identifying novel
cell types. Using an 80/20 training and test split with 100 epochs in total, the final scBERT
model used here attained an accuracy of 85%, which was artificially lowered by the fact
that some cell types were not predicted due to the threshold. To comply with the scBERT
framework, we also used the preprocessing method intended for datasets upon which
scBERT is to be applied, as provided by Yang et al. [17]. The advantage obtained by
using scBERT instead of conventional cell annotation (Figure 1b) methods such as marker
gene sets is that scBERT uses a deep model that takes the expression of all genes into
account, providing an unprecedented level of granularity. This makes it more robust
and interoperable between datasets, as shown Figure 2a. Furthermore, since scBERT was
trained on the full Gut Cell Atlas, it is able to finely resolve the cells taken from the four
datasets. The Gut Cell Atlas aims to map every cell type in the human gut, from the small
intestine to the colon, and the resulting dataset includes over 428,000 single cells from
multiple anatomical regions of the human gut throughout life. The project is part of the
Human Cell Atlas [19], an international effort to map all the cells in the human body. It is
essential to highlight that the cell type annotations produced by scBERT not only cover the
same cell types as identified by the original gene markers, but also incorporate numerous
additional ones. This addresses the ongoing challenge of achieving consistent cell type
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annotations. However, it is important to acknowledge that there are still imperfections in
this approach.
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Figure 1. (a) illustrates the sequential steps employed in the workflow for identifying biomarkers
specific to each cell type. (b) illustrates the refined granularity in cell type annotations resulting
from the fine-tuning of scBERT in comparison to the conventional gene marker method across the
four datasets. The annotations produced by scBERT not only include the same cell types identified
by the original gene markers, but also introduce several additional ones, effectively addressing the
core challenge of achieving consistent cell type annotations. The visuals on the left depict cell type
labeling based on traditional gene markers, while those on the right reveal the augmented annotations
obtained through scBERT fine-tuning.

2.3. The QLattice and Its Application on Single-Cell Transcriptomic Data

The QLattice [20–22] is a supervised machine learning techniques for symbolic re-
gression. The QLattice aims to generate high-performing models capable of providing
valuable decision-making recommendations. Similar to methods such as decision trees,
random forests, gradient boosting, and neural networks, the QLattice constructs predictive
models based on input data. Notably, the QLattice stands out by representing its models as
interpretable mathematical formulae, facilitating the unraveling of complex biological data
at the cellular level and offering insights into disease mechanisms.

To overcome the challenges posed by the search space of mathematical equations, the
QLattice employs an evolutionary approach in conjunction with random sampling. This
strategy enables the exploration of potential mathematical relationships between input
variables and the desired output variable. For further technical details, refer to [20–22].
Symbolic regression methods such as the QLattice [20–22] offer a remarkable capacity
to generate multiple models that can unveil intricate processes within complex datasets.
This means that researchers are presented with a diverse set of mathematical equations
to scrutinize, each offering a unique perspective on the underlying data patterns. In the
context of genes and single-cell data analysis, this versatility translates into the ability to
derive multiple gene signatures that capture cell-type-specific biomarkers. These signa-
tures can shed light on the nuanced genetic markers associated with distinct cell types,
contributing to a deeper understanding of cellular heterogeneity and its implications in
various biological contexts.
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One strength of the QLattice is its ability to identify gene signatures that collectively
explain the data better than individual genes that are differentially expressed. By finding
models described by mathematical functions and response plots, key genes and biomarkers
that contribute to disease progression can be discovered.
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Figure 2. (a) illustrates the presence of various cell types within these datasets. (b–e) shows the
QLattice models and response plots that serve to illustrate how the models have incorporated the
disease state information.

Furthermore, the QLattice proves adept at handling etiological heterogeneity among
patients, where different patients may exhibit variations in disease causes. Despite this
heterogeneity, similarities in molecular or endophenotype alterations, such as downstream
expression changes or inflammation, can be identified.

Our approach in the present work was to resolve the cell types from each dataset
using gutBERT. Since gutBERT takes the full expression profile of each cell into account,
we expected that cells identified as type X in one dataset would be very likely to actually
be biologically equal to cells identified as type X in another dataset. With this similarity
in place and by using the QLattice, it should also be theoretically possible to construct
simple interpretable genetic signatures on each cell type that transfer across datasets. The
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fundamental idea behind this is that it would require large neural networks or gradient-
boosting trees to construct a model that can classify every cell type correctly. However,
if cell types are identified as accurately as possible in every dataset, it would maximize
the chances of obtaining simple interpretable models whose validity can be confirmed by
transferring to other datasets. If validated as strong predictive signatures, these can then be
used to elucidate disease mechanisms.

2.4. Model Training and Model Selection

To ensure robust evaluation of our models, we trained using the 4 datasets indepen-
dently. The QLattice was then run on a single dataset, and the resulting models were
tested on the other 3 datasets. We recorded various metrics, including the PR AUC for both
training and test sets, the number of inputs in the model, and the model architecture. By
default, the QLattice run generated 10 models per fold, resulting in a total of 40 models
(4 datasets × 10 models). To ensure reproducibility, we set a fixed random seed for the
QLattice. All 40 models are shown in the Supplementary Tables S1–S4.

To select the final model, we employed the following strategy: We considered models
with a PR AUC difference of less than 10% between the test and training sets, ensuring
they were not overfitting. We favored models that were simple and explainable, preferably
additive in nature with fewer features, as they are easier to interpret. We assessed the
models based on their number of included features, complexity (including different model
types and feature transformations), accuracy, recall, precision, precision–recall (PR) curves,
and ROC AUC.

Since the aim of our analysis was to find gene expression signatures that distinguish
disease states and that can be transferred between datasets, we used a quantitative measure
that reflects both absolute performance, as well as transferability. In this context, transfer-
ability is taken to mean the similarity in performance on the training dataset compared
to the test dataset. For the score to reflect performance, we used the average PR AUC
between the training dataset and the test dataset. Subsequently, this is penalized by the
delta between the training and test PR AUC. The transferability-corrected performance score
between dataset X and Y for a particular cell is, thus, calculated as:

sXY = Mean(AUCPR,X , AUCPR,Y)− |AUCPR,X − AUCPR,Y| (1)

Using sXY, a training performance of 0.7 on Dataset X and a test performance of 0.9 on
Dataset Y will only result in sXY = 0.6, while a performance of 0.8 on both datasets would
result in sXY = 0.8. Thus, the highest sXY is attained for signatures that have high and
similar performances on both datasets.

3. Results and Discussion

As shown in Figure 1a, we employed a comprehensive approach to study the distinc-
tion between healthy and ulcerative colitis samples.

To begin, we curated four publicly available datasets on ulcerative colitis, each con-
taining valuable information on the disease. Leveraging the Gut cell atlas, we fine-tuned
scBERT, an advanced large language model (LLM), to obtain a detailed and refined cell
type annotation, as visualized in Figure 1b.

Using the refined scBERT resulted in a high degree of granularity on each dataset,
since each dataset contained many different cell types. For every combination of dataset
and cell type, we trained a QLattice model that enabled us to analyze and interpret complex
relationships mapping the transcriptomic profile of a cell to the disease state of the patient
it was taken from.

With this integrated approach, we thereby successfully derived precise cell-type-
specific gene signatures.

The versatility of our workflow is noteworthy, as it can be readily extended to study
other diseases or conditions, given the availability of similar datasets.
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The results of our study are presented in Table 1, which summarizes the performance
of our models on different cell types using the transferability-corrected performance score.

We evaluated the performance of our models using the PR AUC and a score metric
that quantifies both the performance and the transferability of the signatures we found. The
calculation of this score metric is described in the methods section. Additionally, we also
analyzed the fraction of cell types corresponding to disease samples in both the training
and test datasets to understand the representativeness of the data. Using the score metric,
we were able to determine which cell-specific RNA signatures transferred best from one
dataset to another. To facilitate this comparison, we transferred the signature found on cell
type C in Dataset X to Dataset Y (and vice versa) if scBERT identified cells of Type C in
both Datasets X and Y. In Figure 2a, we visualize all cell types that were predicted to be
present in more than one of the datasets.

3.1. Performance and Transferability across Datasets

From Table 1, we can see that the Arterial Capillary model (Training ID: D1, Test ID:
D2) demonstrated strong predictive ability, achieving a high PR AUC of 0.95 and a score of
0.94. Similarly, the Goblet Cell model (Training ID: D1, Test ID: D3) performed well, with a
PR AUC of 0.94 and a score of 0.91. The Intestinal Stem model (Training ID: D1, Test ID:
D3) also showed promising results, with a PR AUC of 0.95 and a score of 0.86. Notably, the
BEST2+ Goblet Cell model (Training ID: D1, Test ID: D3) exhibited the highest PR AUC of
0.96, indicating its superior predictive capability.

Table 1. Summary of the performance of the best models across cell types and datasets. This table
provides a comprehensive overview of our model’s performance across diverse cell types, employing
various features and evaluating through PR AUC. The “Dominant Features” column highlights the
gene that consistently emerges as the most-frequent among the 10 models generated by the QLattice.
The “Score” column in the table represents the transferability-corrected performance score explained
in detail in the methods section. Furthermore, the “UC Fraction” column delineates the proportion of
cell types corresponding to disease samples within both the training and test datasets.

Training
ID Test ID Cell Type Dominant Features PR AUC Score Count UC Fraction

D1 D2 Arterial Capillary RPL39, PLAT 0.95/0.94 0.94 1814/559 28%/22%

D1 D3 Goblet Cell LYZ, LGALS4 0.94/0.92 0.91 1714/325 26%/38%

D1 D3 Intestinal Stem B3GNT7, FABP1 0.95/0.89 0.86 14,930/2821 35%/36%

D1 D3 BEST2+ Goblet Cell LYZ, FABP1 0.96/0.88 0.84 11,444/1436 24%/42%

D2 D1 Myofibroblast APOC1, RPS4Y1 0.94/0.92 0.91 105/1189 45%/16%

D3 D1 BEST2+ Goblet Cell FABP1, LCN2 0.92/0.94 0.91 1436/11,444 42%/24%

D3 D1 Intestinal Stem FABP1, LCN2 0.93/0.91 0.90 2821/14,930 36%/35%

D3 D1 Stem Cell LCN2, DDIT4 0.92/0.88 0.86 102/123 19%/21%

D4 D3 Activated CD8 T KLF2, RPL39 0.82/0.84 0.81 3212/460 41%/43%

Interestingly, we observed differences in the fraction of cell types corresponding to
disease samples between the training and test datasets. For example, the Arterial Capillary
model (Training ID: D1, Test ID: D2) had 28% of cell types corresponding to disease samples
in the training dataset, while the test dataset contained 22% of such cell types. This finding
suggests some degree of transferability of the model to a new dataset.

The Myofibroblast model (Training ID: D2, Test ID: D1) demonstrated good perfor-
mance with a PR AUC of 0.94 and a score of 0.91. However, it showed a higher fraction of
cell types corresponding to disease samples in the training dataset (45%) compared to the
test dataset (16%), indicating potential challenges in model transferability.
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In addition, we evaluated the BEST2 Goblet Cell model (Training ID: D3, Test ID:
D1) and the Intestinal Stem model (Training ID: D3, Test ID: D1) on the reverse transfer
scenario. The BEST2+ Goblet Cell model achieved a PR AUC of 0.92 and a score of 0.91,
while the Intestinal Stem model achieved a PR AUC of 0.93 and a score of 0.90. Both
models demonstrated promising results, with a fraction of cell types corresponding to
disease samples in the test dataset (42% and 35%, respectively) relatively close to that in
the training dataset.

The Stem Cell model (Training ID: D3, Test ID: D1) showed a PR AUC of 0.92 and a
score of 0.86, with 19% of cell types corresponding to disease samples in the test dataset
and 21% in the training dataset. Finally, the Activated CD8 T model (Training ID: D4,
Test ID: D3) exhibited a PR AUC of 0.82 and a score of 0.81, with a fraction of cell types
corresponding to disease samples in the test dataset (43%) slightly higher than that in the
training dataset (41%).

Figure 2a illustrates the presence of various cell types within these datasets. Remark-
ably, only IgA plasma cells were found to be shared across all four datasets. Additionally,
some cell types were common to two datasets and, occasionally, three datasets, limiting the
scope of direct comparisons. These findings emphasize the diversity of cell types in the
datasets and underscore the importance of considering such variations in future analyses.

Our findings highlight the promising transferability of models across diverse cell types,
underscoring the significance of carefully assessing the representativeness of training and
test datasets in developing predictive models for disease samples. However, to thoroughly
evaluate the generalizability and clinical relevance of these models, further analysis and
validation on larger and more diverse datasets are essential. Additionally, exploring the
role of frequently occurring genes will be crucial in fully understanding the mechanisms
underpinning these models’ predictions. These steps are vital in advancing the practical
application of these models.

In our study, we chose to present the top-performing model, focusing on performance,
simplicity, and transferability as our primary criteria. This decision aimed to provide
a clear and practical approach for researchers seeking insights from single-cell data, en-
suring that the results are readily interpretable and usable. However, it is essential to
emphasize that our framework allows for the generation of multiple models. We included
all the generated models in Supplementary Tables S1–S4 to provide transparency and
enable further investigation by researchers interested in alternative approaches or different
gene selections.

3.2. The QLattice Identified Unique Combinations of Biomarkers Specific to Cell Types for
Distinguishing Disease States

In Figure 2b–e, we present the QLattice models and response plots. These response
plots serve to illustrate how the models incorporated the disease state information. By
visually examining these plots, we gain valuable insights into how the QLattice models
have captured and integrated the disease-related aspects in their predictions for both the
training and test datasets.

The best-performing model from Dataset 1, as depicted in Figure 2b, is composed of
three key features: LYZ, FABP1, and LGALS4. The QLattice model utilized the addition
of LYZ and FABP1, followed by the multiplication of LGALS4, to define the disease state.
This combination of features allows the model to effectively distinguish between healthy
(Class 0) and disease (Class 1) states based on the expression levels of these genes. The
response plot in Figure 2b provides a clear visual representation of the model’s behavior. It
reveals that, as the level of LGALS4 increases, the cells tend to be in a healthy state (Class
0). Conversely, at lower expression levels of LGALS4, the cells are more likely to be in a
disease state (Class 1), considering the median values of LYZ and FABP1.

In Figure 2c, the top-performing model from Dataset 2 consists of three features:
IL32, APOC1, and RPS4AY1. To define the disease state, the QLattice model employs a
multiplication of IL32 and APOC1, followed by an addition of RPS4AY1. The response
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plot in Figure 2c clearly illustrates that, as the level of APOC1 increases, the cells tend
to be in a healthy state (Class 0). In contrast, reduced APOC1 expression levels correlate
with an increased probability of cells being in a disease state (Class 1). This correlation is
established while taking into account the median values of IL32 and RPS4AY1.

Figure 2d showcases the top-performing model from Dataset 3, comprising three
features: LCN2, FABP1, and ZG16. To determine the disease state, the QLattice model
combines LCN2 and FABP1 through multiplication, followed by the addition of ZG16. The
response plot in Figure 2d demonstrates that, as FABP1 levels increase, the cells tend to
be in a healthy state (Class 0). However, when FABP1 expression levels decrease, the cells
are more likely to be in a disease state (Class 1), considering the median values of LCN2
and ZG16.

Figure 2e displays the top-performing model from Dataset 4, comprising three features:
RPL39, MT2A, and KLF2. To discern the disease state, the QLattice model combines
RPL39, MT2A, and KLF2 through addition. The response plot in Figure 2e reveals that,
as RPL39 levels increase, the cells tend to be in a healthy state (Class 0), and when RPL39
expression levels decrease, the cells are more likely to be in a disease state (Class 1), with
the consideration of the median values of MT2A and KLF2.

3.3. The Importance of Recurrent Genes in Discerning Disease Conditions

Our primary objective was to offer a means of discovering new gene associations with
diseases. Importantly, our approach does not limit researchers from exploring alternative
gene selections or removing less-relevant genes. In essence, our study was focused on
demonstrating an alternative and unbiased method for harnessing single-cell data to gain
fresh insights into diseases. It is crucial to emphasize that our intention was not to establish
causality. Instead, we aimed to uncover previously unknown or challenging-to-detect
associations within the data. Our approach seeks to expand the breadth of knowledge by
revealing novel connections between genes and diseases. Additionally, as seen in Table 1, a
clear pattern arises with FABP1, LCN2, LYZ, and RPL39 consistently appearing. Specifically,
FABP1 occurs four times, LCN2 three times, while both LYZ and RPL39 show up twice.
These frequent instances of key genes highlight their potential importance in differentiating
healthy and ulcerative colitis samples.

3.3.1. Emergence of LCN2 and FABP1 as Key Players in Ulcerative Colitis Context

Lipocalin-2 (LCN2) is a multifunctional innate immune protein that plays a crucial role
in the body’s response to inflammation [23]. Its expression has been linked to inflammatory
processes. Extensive research has been conducted using murine models and human patients
with ulcerative colitis (UC), and the results have shown a systemic increase in LCN2 levels
in these individuals. This finding indicates that LCN2 has the potential to serve as a
diagnostic biomarker for UC-associated carcinogenesis, with its levels being associated
with the duration of the disease [24,25].

Specifically, studies have revealed that serum LCN2 levels are significantly higher in
patients experiencing active UC compared to healthy individuals. This observation has led
to the suggestion that LCN2 could be used as a biomarker to assess the activity of UC [26].

Moreover, researchers have identified a possible link between LCN2 and the devel-
opment of colorectal cancer (CRC) from colitis. It appears that LCN2 may contribute to
tumorigenesis through the IL-6/STAT3/NF-xB signaling pathway. This finding implies
that increased LCN2 levels could potentially indicate the progression of CRC in the context
of chronic inflammation [25].

LCN2 is an important player in the body’s innate immune response and is closely as-
sociated with inflammation. It shows promise as a diagnostic biomarker for UC-associated
carcinogenesis, potentially aiding in the evaluation of disease duration and activity. Addi-
tionally, its involvement in colorectal cancer development suggests that monitoring LCN2
levels could be beneficial in assessing the risk of CRC in patients with chronic inflammation.
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Further research in this area may uncover even more insights into the role of LCN2 in these
conditions and its potential applications in clinical settings.

FABP1, also known as intestinal fatty acid binding protein 1, has emerged as a significant
player in the context of ulcerative colitis (UC) [27–29]. Numerous studies have delved into
its potential as a valuable plasma marker for assessing intestinal injury in patients with UC.
The exploration of FABP1’s role in this condition has yielded promising findings that could
aid in the diagnosis and monitoring of the disease.

One of the key observations made in these studies is the elevated serum concentration
of FABP1 in UC patients, especially in those experiencing a severe form of the disease. The
ability to detect increased FABP1 levels in the bloodstream could provide clinicians with
valuable insights into the severity and extent of the inflammatory process in UC.

Moreover, the identification of FABP1 as a relevant marker in UC opens up new
avenues for research into the underlying mechanisms of the disease. Understanding how
FABP1 contributes to intestinal injury and inflammation could provide crucial insights into
the pathogenesis of UC and aid in the development of novel targeted therapies.

3.3.2. LYZ and RPL39 as Potential Indicators of Inflammatory Processes and
Immune Dysregulation

Lysozyme is an antimicrobial enzyme that plays a crucial role in the body’s innate
immunity, functioning as a frontline defender against bacterial pathogens. While lysozyme
is not directly implicated in ulcerative colitis, its role as an antimicrobial enzyme involved
in innate immunity makes it relevant in the context of chronic inflammation and immune
dysregulation [30]. In the specific setting of ulcerative colitis, which is characterized by
chronic inflammation of the colon, lysozyme’s involvement in the immune response becomes
particularly relevant. Chronic inflammation often results from an overactive immune
response to various triggers, including bacterial components and antigens. While lysozyme’s
primary role is in bacterial defense, its presence in the colon and mucosal surfaces suggests
that it may also contribute to the regulation of inflammation in this region.

RPL39, a ribosomal protein, is a critical component of the ribosome, the cellular
machinery responsible for protein synthesis. Its involvement in protein production makes
it an essential player in various cellular processes, including cell growth, proliferation, and
differentiation. There is not a known implication of RPL39 in the context of ulcerative
colitis (UC); however, as ribosomal proteins are fundamental to cell biology, investigating
RPL39’s role in UC may also yield insights into broader aspects of inflammatory processes
and immune dysregulation in various physiological and pathological conditions [31].

3.4. PLAT Models in Arterial Capillary Cells to Investigate and Account for Both Biological and
Technical Variations

In this work, the models found by the QLattice may be influenced by various factors,
including biological and technical variations. The relationship we established between
input features and the disease state target variable for a specific cell type might result
from downstream effects influenced by system-wide factors or interactions with other
cell types, whose states could potentially be more indicative of a pathological condition.
While the main focus here was to develop simple models to be used as potential diagnostic
biomarkers, we found that biological variation in particular can be recognized directly
from the identified dominant features of particular cell types. For example, in Table 1,
we found that one of the two dominant features for a model trained on arterial capillary
cells in Dataset 1 was PLAT, which was not found in any other models. From a biological
perspective, it is reasonable that PLAT is chosen as a distinguishing feature for arterial
capillary cells since PLAT is the gene coding for the tissue-type plasminogen activator (t-PA)
in human tissue. This serine protease plays a vital role in the breakdown of blood clots by
facilitating the transformation of plasminogen into plasmin, which is the principal enzyme
responsible for dissolving blood clots [32]. The PLAT gene is known to be expressed
in endothelial cells, which are the cells that line the interior of blood vessels, including
capillaries [33]. In the context of ulcerative colitis, Kurose et al. found that sigmoid colon
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biopsy specimens from ulcerative colitis patients reveal significantly elevated t-PA levels
in the mucosa, particularly during active disease stages [34]. This finding is interesting
when paired with the findings of Kaiko et al. [35], who recognized that mice with induced
PLAT deficiency had higher degrees of inflammation through IL-6. Similarly, these mice
were much less efficient in healing colonic damage induced by mucosal colonic pinch
biopsies. Thus, it was concluded that PLAT/tPA suppresses colitis and mucosal biopsy
colon damage, and thus, the original finding of increased t-PA levels in UC patients in
Kurose et al. could be explained as a counteracting mechanism. The inclusion of PLAT in
our model, given its association with ulcerative colitis (UC) and the specific cell type where
it was identified, demonstrates that our framework is adept at capturing and responding to
significant biological variations inherent in the dataset. Furthermore, our study showed
that the highly predictive PLAT-dominant models in arterial capillary cells found in Dataset
1 transfer well to Dataset 2 in which arterial capillary cells were also present, with PR AUCs
of 0.95 and 0.94, respectively. This finding shows that the model is likely not influenced by
confounding factors such as the specific experimental conditions of Dataset 1 (in which the
model was found), but rather that the model is likely to express a biological relation that
can be reproduced in future studies.

4. Conclusions

As illustrated in Figure 1a, we implemented a novel workflow to investigate the dis-
tinction between healthy and ulcerative colitis samples. Our approach involved integrating
four distinct datasets, each containing valuable information about these samples. By har-
nessing the power of the gut cell atlas, we fine-tuned the advanced language model, scBERT,
to gain deeper insights into the molecular profiles and cellular characteristics of the samples.
The next step in our workflow was to utilize the refined scBERT to train the QLattice for
each dataset. This enabled us to analyze and interpret complex relationships within the
data, leading to a more-thorough understanding of the underlying patterns and factors
contributing to the disease. The outcome of our integrated approach was the successful
derivation of precise cell-type-specific gene signatures. These signatures hold significant
potential for enhancing our understanding of ulcerative colitis and could potentially aid
in the development of more-targeted and -effective treatments. One of the strengths of
our workflow lies in its versatility. It can be readily adapted to study other diseases or
conditions, given the availability of similar datasets. This adaptability offers a powerful
tool to unlock valuable insights into various pathologies, leading to a more-comprehensive
understanding of disease mechanisms. By focusing on the transferability and performance
of predictive models trained on different cell types using key gene features, we observed
remarkable results, showcasing both the transferability of these models and their high
predictive accuracy. The models exhibited impressive performance metrics, particularly
in the prediction of disease samples. Notably, the Arterial Capillary model displayed a
remarkable PR AUC of 0.95 and a score of 0.94, indicating its robust predictive capability.
Similarly, the Goblet Cell model achieved a PR AUC of 0.94 and a score of 0.91, high-
lighting its effectiveness in disease prediction. Moreover, the BEST2+ Goblet Cell model
demonstrated exceptional performance, with a striking PR AUC of 0.96, suggesting its
potential as a powerful predictive tool for disease samples. Excitingly, our analysis also
revealed the promising transferability of these predictive models across different cell types.
Models trained on specific cell types showed remarkable adaptation and success when
applied to new datasets. This transferability is especially evident in the Intestinal Stem
model, which achieved a PR AUC of 0.95 and a score of 0.86, underscoring its potential
for wider applicability. These findings emphasize the potential of leveraging predictive
models based on key gene features to successfully classify disease samples in diverse cell
types. The high performance and transferability of these models hold significant promise
for practical applications in disease diagnosis and precision medicine. The adaptability of
our approach also opens the door to personalized treatments and precision medicine. By
tailoring the workflow to different diseases, we can uncover specific characteristics and
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factors unique to each condition, paving the way for more-effective and -individualized
therapeutic strategies. These alternative approaches pave the way for future advancements
in disease classification and personalized treatment strategies, contributing to improved
patient outcomes and transformative medical applications. On the machine learning side,
our analysis showed that, when the resolution of the data was increased, the resolution of
models can be decreased. This in turn led to better model interpretability, which is critical
for moving computational discoveries into translational insights. In our case, we showed
that, by finely resolving the cell subspace of scRNA-seq datasets using a performant large
language model for annotation, we could discover simple, but highly predictive and trans-
ferable gene signatures. These were analyzed for their biological significance, and we were
able to show that the signatures that transfer best between datasets have plausible underly-
ing reasons for performing better than others. In conclusion, our comprehensive workflow,
encompassing the integration of diverse datasets and advanced analytical techniques,
holds great promise for advancing our knowledge of various diseases. By unraveling
the complexities of these conditions, we can make significant strides towards improving
patient outcomes and ultimately achieving more targeted and personalized healthcare in
the future.
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