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Abstract: Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium
ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are
responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure
of these transporters determines the specificity of each transporter, and structural analyses reveal the
mechanisms by which these transporters function. Following absorption, the nitrogen metabolism
pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate
synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine
synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on
environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival
under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in
plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress.
Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore,
alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota,
have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new
genes related to nitrogen fixation, which could be harnessed to improve plant productivity.

Keywords: beneficial microbes; nitrogen metabolism; nitrogen assimilation; nitrate transporters;
nitrite transporters; ammonium transporters

1. Introduction

Soil erosion, compaction, acidification, and contamination are significant factors caus-
ing soil degradation, affecting 50% of agricultural land and food production [1–3]. Conse-
quently, 75 billion tons of fertile soil are lost worldwide due to degradation annually [4].
Moreover, massive amounts of synthetic agro inputs to fertilize crops used by farmers
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harm environmental health [5,6]. In this sense, applying nitrogen (N) fertilizers has in-
creased sharply by 7.4 times compared with crop productivity, which has only increased by
2.4 times, indicating that crops have been reduced in their ability to use N efficiently [7],
increasing food insecurity [8,9]. Therefore, innovative and sustainable strategies in the agro-
biotechnological sector have received more attention from botanical scientists worldwide
over the last century to solve food security challenges and develop environmentally friendly
products [10]. Throughout time, microbial diversity and biomass have been assessed as
partners in the plant–microbe association in maintaining soil multifunctionality [11].

N is a vital macronutrient for plants and a crucial component of amino acids that
serve as the building blocks of enzymes and proteins in plants. Additionally, N is a part
of the chlorophyll molecule, an essential factor in photosynthesis for absorbing sunlight
energy, promoting plant growth and grain yield. Even the roots contain this essential
element because proteins and enzymes control water and nutrient intake [12]. Recently,
Zhang et al. (2022) found that N can significantly impact flowering time [13]. In addition to
being a crucial nutrient for plant growth and development, N has a strong correlation with
several abiotic stress responses [14]. Moreover, N has a leading role in plant adaptation to
the deficiency of macro- and micronutrients. For macronutrients, the processes of N and
phosphorus (P) uptake interact together, creating a nutritional balance under fluctuating
availability of nutrients [15], while potassium (K) and nitrate (NO3

−) translocation and
intake are positively connected as well [16]. The plant nitrate transporters (NRTs) regu-
late the K translocation [17]. Regarding micronutrients, ammonium (NH4

+) application
promotes iron (Fe) uptake [18]; in contrast, NO3

− triggers the chlorosis symptoms of Fe
deficiency [19]. Sulfur (S), a crucial component of enzymes involved in N metabolism [20],
is correlated with N uptake [21]. Alternatively, a reverse relationship between molybde-
num (M) and N has been noticed [22]. In addition, through the mechanism of anion-cation
balance, approximately 90% of stress responses are influenced by NO3

− uptake, which
promotes the synergetic transfer of cations, including K+, sodium (Na+), cadmium (Cd2+),
and zinc (Zn2+) while inhibiting the absorption of anions like chloride (Cl−) and sulfate
(SO4

−) [14]. Under drought stress, NO3
− and NH4

+ concentrations have unique impacts
on plant performance. While the usage of NH4

+ reduces the effects of drought on plant
development, NO3

− application has a reverse influence [23].
In this review, we aim to provide a detailed story of the N journey starting from its

uptake from soil either in NO3
− or NH4

+ form, followed by a structural investigation of
the transporters of these two forms. Upon reaching their destination, NO3

− and NH4
+

are exposed to various metabolic pathways (e.g., oxidation and denitrification). Next, N
assimilation occurs under the intersection with glutamine synthetase (GS) and glutamate
synthase or glutamine 2-oxoglutarate aminotransferase (GOGAT). Then, a comprehensive
survey of the role of N in plant adaptation/tolerance to abiotic stresses, either drought or
stress, is discussed. Finally, the detrimental effects of nitrogen mineral fertilization and the
possibility of microbial application and genomic approaches are summarized.

2. Nitrogen Uptake

N is an essential macronutrient for plants, and it can be acquired from the soil in
inorganic forms (NO3

− and NH4
+), which are transported across the root plasma membrane

by different families of transporters. Under normal soil conditions, N is mainly available
in the form of NO3

−, and four families of transporters mediate NO3
− uptake, namely

NRT1, NRT2, chloride channel (CLC-1), and slow anion channel-associated 1 homolog
3 (SLAC1/SLAH). These transporters have distinct characteristics in affinity, capacity,
regulation, and localization [24]. NH4

+ uptake is facilitated by ammonium transporters
(AMTs), high-affinity transporters expressed mainly in the root hairs and epidermis [14].
NH4

+ is the dominant form of N in flooded or acidic soils, and AMTs-mediated acquisition
is crucial for the N demand of plants growing in such conditions [25]. Besides inorganic N,
plants can also absorb organic N in the form of amino acids (AAs), which are abundant
in soils that receive organic amendments, such as manure or compost [26]. Several AAs
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transporters have been identified in plant roots, including amino acid permease (AAP1
and AAP5), proline transporter (ProT2), and lysine and histidine transporters (LHT1 and
LHT6) [27,28]. These transporters have different substrate specificities and expression
patterns contributing to the uptake of a range of amino acids from the soil solution [27,29]

3. Nitrogen Transporters
3.1. Plant Nitrate Transporters

Plants acquire NO3
− from the soil through various transporters that belong to different

families [30]. The NRT1 and NRT2 families are the primary transporters involved in NO3
−

uptake, and they have distinctive roles in plant growth and seed development. The NRT1
family is a large and diverse group of nitrate peptide transporter family (NPF). There
are 53 NRT1 genes in Arabidopsis and 93 in rice [31]. These genes can be classified into
8–10 subfamilies; NRT1.1 and NRT1.2 are responsible for NO3

− root uptake. The NRT1
family can transport NO3

− and other substrates such as hormones, nitrite, amino acids,
peptides, chloride, glucosinolates, and jasmonate-isoleucine [32]. The NRT2 family is a
smaller, more specific group of transporters expressed mainly under low NO3

− conditions.
In Arabidopsis, four NRT2 transporters (NRT2.1, NRT2.2, NRT2.4, and NRT2.5) function in
nitrate influx and account for 95% of nitrate uptake under low NO3

− concentrations [33].
However, NRT2.1 and NRT2.2 are significant members of the NRT2 family for nitrate
uptake. The NRT2 family has different spatial and temporal expression patterns, and
they transport NO3

− from different sources to different tissues. For example, NRT2.4 and
NRT2.5 absorb NO3

− from the soil root hairs, while NRT2.1 and NRT2.2 transport it from
the apoplast to the cortex and endodermis cells. Moreover, NRT2.5 is induced by long-term
starvation and enhances NO3

− uptake from both shoots and roots of mature plants [33,34].
Furthermore, another transporter family called NRT3 is also involved in NO3

− transport in
plants. The NRT3 family consists of two members: NRT3.1 and NRT3.2. These transporters
form a complex with NRT2 transporters and regulate their activity and stability [35].

NO3
− transceptor (transporter/receptor) NRT1.1 regulates the expression levels of

many NO3
− assimilation pathway genes by sensing the external NO3

− concentration
and modulating the root growth accordingly [36,37]. NO3

− transporters are regulated
through phosphorylation, mediated by calcium-dependent calcineurin B-like (CBL) and
CBL-interacting protein kinase (CIPK) [38,39]. The activity and specificity of NRT1.1 are
regulated by two CIPKs, CIPK8 and CIPK23, which interact with NRT1.1 and mediate
low- and high-affinity responses, respectively [40]. At high NO3

− concentrations, NRT1.1
activates the expression of Arabidopsis nitrate regulated 1 (ANR1), a transcription factor
that promotes lateral root growth and proliferation [41]. At low NO3

− concentrations,
NRT1.1 inhibits lateral root development by controlling auxin levels and meristem acti-
vation [42]. To transmit the NO3

− signals from NRT1.1 to the nucleus, calcium acts as a
secondary messenger that modulates the expression of NO3

−-responsive genes. Three
calcium-dependent protein kinases (CPK10, CPK30, and CPK32) and their partner CBLs
are involved in this process [43].

Several NRTs are involved in the loading and unloading of NO3
− from the xylem

and phloem, which affects the distribution and availability of NO3
– within the plant. For

example, NRT1.5, NRT1.8, and NRT1.9 are expressed in the xylem and phloem, and they
function in the influx/efflux, removal, and loading of NO3

− from/to the root vascular tis-
sues, respectively [43,44]. Other studies have shown that overexpressing NRTs in different
plant species can improve N-use efficiency (NUE) as well as plant biomass to nitrogen
input. However, the effects of NRT overexpression may depend on the tissue specificity,
NO3

– concentration, and interaction with other genes. For instance, only NRT1 transporters
have been successfully overexpressed in both leaves and roots to enhance NUE, while the
role of NRT2 transporters in this process is still unclear [45]. Recently, a chimeric NRT1
transporter, AtNC4N, was overexpressed in the phloem of old leaves in Arabidopsis, rice,
and tobacco, and it increased NO3

– uptake and NUE under low nitrate conditions [46].
Another NRT1 transporter, OsNRT1.1A (OsNPF6.3), was found to improve NUE, flowering
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time, yield, and maturity in rice [47]. Several other NRTs, such as OsNRT1.1B (OsNPF6.3B),
OsNRT2.1, OsNRT2.3a/b, OsPTR9, OsAMT1.1, and qNGR9, have also been reported to
enhance NUE under high or low nitrate levels in rice [47–50].

Moreover, some genes that regulate or interact with NRTs have been identified as po-
tential targets for improving NUE in plants. For example, the transcription factor OsNAC42
activates the expression of several NRTs and increases nitrate assimilation and NUE in rice.
The nitrate reductase gene OsNR2 converts nitrate to ammonium, affecting the expression
of NRTs and other nitrogen-related genes in rice. The nitrate transporter OsNPF4.5 is
regulated by a microRNA (miR827) and modulates nitrate distribution and remobiliza-
tion in rice. These studies demonstrate the complexity and diversity of nitrate transport
and signaling in plants as well as provide valuable insights for improving NUE and crop
production [51]. Notably, NUE can be improved by transcription factors (TFs) in multiple
crops [52,53]. TFs are primarily proteins (rarely RNA) that control the transcription of genes
by interacting with their unique promotor sequences [54]. Numerous TF families have
been found and proven to interact with particular DNA sequences on regulatory regions of
NO3

−-responsive genes. According to reports, these TF families act as essential regulators
of the plant N response, which encompasses MADS-box [55], NLP [53], b-ZIP [56], LBD [57],
NAC [58], MYB [59], GARP [60], TCP [61], AP2/ERF [62], and zinc/finger proteins [63].

NRT1, NRT2, and NRT3 have different structural conformations (Figure 1). As a
result, the Pfam database collects these genes under distinct families: PF00854 for NRT1,
PF07690 for NRT2, and PF16974 for NRT3 [64]. PF00854 refers to the proton-dependent
oligopeptide transporter (POT) family (also known as the peptide transporter (PTR) family)
and is a class of energy-dependent transporters discovered in organisms ranging from
bacteria to humans [65]. However, some family members are NO3

– permeases, while others
are in histidine transport [66]. The NRT1 transporter adopts a standard major facilitator
superfamily (MFS) fold, which is described by 12 transmembrane helices (TMHs) with
a pseudo 2-fold axis connecting the N-terminal (TMH1–6) and C-terminal (TMH7–12)
domains [67].
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green regions refer to the rest of the protein regions.
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NRT2 members belong to the PF07690 (MSF) family, representing the largest family
of secondary transporters, with members ranging from Archaea to Homo sapiens. MFS
proteins target a diverse range of substrates in both directions across the membrane,
including ions, carbohydrates, lipids, amino acids and peptides, nucleosides, and other
small molecules, in many cases catalyzing active transport by converting the energy stored
in a proton electrochemical gradient into a concentration gradient of the substrate [68].
NRT3 candidates lie under the PF16974 family, which contains a C-terminal transmembrane
domain required for high-affinity nitrate absorption [69,70]. NRT3 is implicated in the
inhibition of lateral root initiation in the presence of high sucrose-to-nitrogen ratios in the
medium. As a result, the NRT2 and NRT3 component systems are believed to be implicated
in the signaling pathway that integrates nutritional inputs for the regulation of lateral
root architecture [71]. In Arabidopsis, the functional unit of the high-affinity nitrate influx
complex is most likely a tetramer composed of two NRT2 and NRT3 subunits each [72].

3.2. Plant Ammonium Transporters

As mentioned earlier, NO3
− and NH4

+ are the principal inorganic nitrogen sources
absorbed by plant roots [73,74]. Because NH4

+ requires less energy than NO3
− assimilation,

NH4
+ is the preferred form of N uptake when plants grow under N deficiency [75,76].

Although NH4
+ uptake is more efficient, high absorbed amounts of NH4

+ by the plant
can be hazardous [77–79]; thus, the NH4

+ uptake system in plants receives special atten-
tion [80–82]. Recent research indicates that AMTs also play a role in a variety of other
physiological processes such as transporting NH4

+ from symbiotic fungi to plants [83,84],
delivering NH4

+ from roots to shoots [85], transmitting NH4
+ in leaves and reproductive or-

gans [86–88], and encouraging resistance to plant diseases through NH4
+ transport [89,90].

Aside from being a transporter, many AMTs are essential for root growth in the presence of
NH4

+ [81,91–93]. To avoid the adverse effects of insufficient or excessive NH4
+ intake on

plant growth and development, AMTs activities are fine-tuned not only at the transcrip-
tional level through the involvement of at least four transcription factors [94–97] but also at
the protein level through phosphorylation [98,99], pH [100], and endocytosis [101].

The NH4
+ transporter domain (PF00909) comprises two structural copies of five helices

plus one extra C-terminal helix. It has been defined as an 11-times-spanning membrane
channel. Ideal NH4

+ transporter domain is composed of 11–12 transmembrane spots, with
feature sequences “D (F Y W S) A G (G S C) X2 (L I V) (E H) X2 (G A S) (G A) X2 (G A S) (L
F)” at transmembrane spot 5 and “D D X (L I V M F C) (E D G A) (L I V AC) X3 H (G A
L I V) X2 (G S) X (L I V A W) G” at transmembrane region 10 [81]. AMTs can be divided
into two subtypes: AMT1 and AMT2 or methylammonium permeases (MEP) [81,85,102].
Figure 1 illustrates the diversity and complexity of the N transporters in plants and their
distinctive features.

3.3. Plant Nitrite Transporters

Cytosol is the first cellular compartment to encounter NO3
− in the root that needs

to be converted to NO2
− to make organic compounds such as amino acids. The cytosolic

NO2
− is toxic to the cytosol and needs to be transported to the chloroplasts, where it is

reduced to NH3 by NIR [103]. Cytosolic NO2
− needs to be actively transported across the

membrane of the chloroplasts by a specific transporter to avoid accumulation and toxicity.
Several types of plastids and plasma membrane-localized NIR have been described in
Escherichia coli, Cyanobacteria, green algae, red algae, Aspergillus nidulans, diatoms, and a
haptophyte, but there was no evidence of a nitrite-specific plastid and plasma membrane
transporter in higher plants [103,104]. Consequently, it has been hypothesized that NO3

−

and NO2
− enter the plasma membrane via similar transporters due to previously observed

competitive reduction of NO2
− absorption by NO3

− and vice versa [105].
In 1988, Brunswick and Cresswell found that illuminated chloroplasts take up NO2

−

in vitro [104]. In 2007, Saguira et al. revealed that CsNitr1-L is the NO2
− transporter in the

chloroplasts of plants and belongs to the proton-dependent oligopeptide transporter (POT)
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family [106]. CsNitr1-L, a homologue of NRT1 transporter, can transport NO2
− depending

on the energy availability. In 2013, Kotur et al. used 13NO2
− to characterize nitrite influx

and nitrite-specific transporter into roots of Arabidopsis thaliana [105]. Fortunately, they
successfully confirmed that Arabidopsis roots include a transporter specific for nitrite [105].
Furthermore, in 2014, Maeda et al. succeeded in characterizing two genes, AT5G62720
(AtNITR2;1) and AT3G47980 (AtNITR2;2), which encode an integral membrane protein
related to the NO2

− transport activity from Arabidopsis, and these two genes were detected
based on homologs genes from cyanobacterial genomes [107].

AtNITR2;1 and AtNITR2;2 are HPP-domain-containing proteins (Figure 1). These
two transporters belong to PF04982, constituting integral membrane proteins with four
transmembrane-spanning helices [108]. Interestingly, their work has great value, as the
HPP proteins had no functional annotation before their work [107]. Moreover, the kinetic
analyses showed that the proteins that encode from these previous two genes of Arabidopsis
have a much higher affinity for NO2

− than the cyanobacterial proteins [107]. AtNITR2;1,
isolated from the chloroplasts mutant lines, showed much lower NO2

− uptake activity than
the chloroplasts isolated from the wild-type Col-0 plants. AtNITR2;2, expressed in roots
and not detectable in shoots, had a putative transit peptide similar to that of AtNITR2;1
and demonstrated low but significant activity of NO2

− transport in the cyanobacterial
cell. Finally, it was discovered that NO2

− increased the expression of AtNITR2;1 and
AtNITR2;2 under the direction of NIN-like proteins, indicating that these two proteins are
nitrate-inducible parts of the nitrite transport system of plastids.

4. Nitrogen Metabolism

N is among the most widely distributed elements in the lithosphere, atmosphere,
hydrosphere, and biosphere [109]. The lithosphere contains 94% of all nitrogen on Earth
(e.g., NO3

−, NO2
−, and NH4

+), with the remaining 6% in the atmosphere (e.g., NO, N2O,
and N2) and a trace (0.006%) in the hydrosphere and biosphere (e.g., NO3

−, NO2
−, and

NH4
+). N is the fourth most prevalent element in the biosphere after oxygen, carbon, and

hydrogen and is an essential component of total biomass [110,111]. The relative quantity
of N in the biosphere reflects the relevance of N to living organisms. Although organic
N, such as amino acids, hormones, and nucleic acids, is vital to life on Earth [112–115],
The global N cycle is dominated by inorganic N molecules (i.e., NO3

−, NO2, nitrous
oxide (N2O), NO, dinitrogen (N2), and NH4

+) [112,116–118]. Figure 2 summarizes all N
metabolism pathways.

NO3
− is the most oxidized form of N, while NH4

+ is the most reduced form. Many mi-
croorganisms, mainly microbes, drive the global N cycle by metabolizing N through a variety
of redox processes for energy transduction, detoxification, or assimilation via various sub-
pathways such as N fixation (KEGG;M00175), assimilatory NO3

− reduction (KEGG;M00531),
dissimilatory NO3

− reduction (KEGG;M00530), denitrification (KEGG;M00529), nitrifica-
tion (KEGG;M00528), complete nitrification, complete ammonia oxidation (comammox)
(KEGG;M00804), and anammox (KEGG;M00973).

Moreover, each sub-pathway from these previous sub-pathways consists of a list of
genes and their encoded enzymes that are involved in the various biogenic processes in
the nitrogen cycle. The nitrogen fixation path consists of nitrogenase molybdenum-iron
protein alpha chain (NIFD), vanadium-dependent nitrogenase alpha chain (VNFD), and
nitrogenase delta subunit (ANFG) genes [119–121].

In this sub-pathway, these previous genes were used to convert N2 to NH3 by oxi-
doreductase reaction. NH3 is widely used in different vital pathways for living organisms,
such as arginine biosynthesis (KEGG;map00220), purine metabolism (KEGG;map00230),
alanine, aspartate, and glutamate metabolism (KEGG;map00250). Also, NH3 is involved
in glycine, serine, and threonine metabolism (KEGG;map00260) as well as cyanoamino acid
metabolism (KEGG;map00460), glyoxylate and dicarboxylate metabolism (KEGG;map00630),
and lipoic acid metabolism (KEGG;map00785). NH3 is a component in biosynthesis of
secondary metabolites (KEGG;map01110), microbial metabolism in diverse environments
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(KEGG;map01120), carbon metabolism (KEGG;map01200), biosynthesis of amino acids
(KEGG;map01230), proximal tubule bicarbonate reclamation (KEGG;map04964), collecting
duct acid secretion (KEGG;map04966), protein digestion and absorption (KEGG;map04974),
Vibrio cholerae infection (KEGG;map05110), and epithelial cell signaling in Helicobacter pylori
infection (KEGG;map05120) [119–121].
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Figure 2. Overview of N metabolism pathways. (A). An illustration shows all the genes, enzymes,
and substrates defined in the KEGG Pathway database regarding N metabolism. (B). The oxidation
state comprises six sub-pathways: N fixation, assimilatory NO3

− reduction, dissimilatory NO3
−

reduction, denitrification, nitrification, complete nitrification, comammox, and anammox.

In addition, the anammox path consists of hydrazine dehydrogenase (HDH), hy-
drazine synthase subunit (K20932), and nitrite reductase (NO forming) (NIRK) genes,
and these previous genes can convert NO2 to N2 or NH3 using nitrite reductase en-
zyme [122,123]. In that context, the denitrification path consists of four genes: nitrous-oxide
reductase (NOSZ), NIRK, nitrate reductase (cytochrome) (NAPA), and nitric oxide reduc-
tase subunit B (NORB) [124–126]. In this sub-pathway, the denitrification enzymes convert
NO3

− to N2 through NO2, NO, and N2O. Furthermore, assimilatory and dissimilatory
NO3

− reduction paths have different genes, such as nitrate reductase/nitrite oxidoreduc-
tase, alpha subunit (NARG, NARZ, and NXRA), NAPA, nitrite reductase (NADH) large
subunit (NIRB), nitrite reductase (cytochrome C-552) (NRFA), ferredoxin-nitrate reductase
(NARB), nitrate reductase (NAD-(P)-H) (NR), assimilatory nitrate reductase catalytic sub-
unit (NASC and NASA), nitrite reductase (NAD-(P)-H) (NIT-6), ferredoxin-nitrite reductase
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(NIRA), and nitrite reductase (NAD(P)H) large subunit (NASD and NASB) that can convert
NO2 to NH3 [127–130]. Figure 2 and Table 1 show the enzymes and genes involved in the
N cycle.

Table 1. List of genes and enzymes involved in the nitrogen cycle.

No. KEGG ID Gene Symbol Gene Name EC Number Reference

1 K04561 NORB Nitric oxide reductase subunit B 1.7.2.5 [125,126]

2 K15877 CYP55 Fungal nitric oxide reductase 1.7.1.14 [131,132]

3 K00376 NOSZ Nitrous-oxide reductase 1.7.2.4 [133–135]

4 K02586 NIFD Nitrogenase molybdenum-iron protein alpha chain 1.18.6.1 [136]

5 K22896 VNFD Vanadium-dependent nitrogenase alpha chain 1.18.6.2 [137]

6 R05186 NIFF Nitrogenase 1.19.6.1 [138]

7 K01455 FORMAMIDASE Formamidase 3.5.1.49 [139]

8 K20935 HDH Hydrazine dehydrogenase 1.7.2.8 [140]

9 K20932 K20932 Hydrazine synthase subunit 1.7.2.7 [141]

10 K01672 CA Carbonic anhydrase 4.2.1.1 [142,143]

11 K01725 CYNS Cyanate lyase 4.2.1.104 [144]

12 K00368 NIRK Nitrite reductase (NO-forming) 1.7.2.1 [145]

13 K02575 NRT2, NARK,
NRTP, NASA MFS transporter, NNP family, nitrate/nitrite transporter ------ [146]

14 K15576 NRTA, NRTB,
NRTC, NASD Nitrate/nitrite transport system substrate-binding protein 7.3.2.4 [147]

15 K00370 NARG, NARZ,
NXRA Nitrate reductase/nitrite oxidoreductase, alpha subunit 1.7.5.1

1.7.99.- [148]

16 K10534 NR Nitrate reductase (NAD(P)H) 1.7.1.1 1.7.1.2
1.7.1.3 [149]

17 K00367 NARB Ferredoxin-nitrate reductase 1.7.7.2 [150]

18 K02567 NAPA Nitrate reductase (cytochrome) 1.9.6.1 [130]

19 K17877 NIT-6 Nitrite reductase (NAD(P)H) 1.7.1.4 [128]

20 K00366 NIRA Ferredoxin-nitrite reductase 1.7.7.1 [151]

21 K00362 NIRB Nitrite reductase (NADH) large subunit 1.7.1.15 [152]

22 K03385 NRFA Nitrite reductase (cytochrome c-552) 1.7.2.2 [153]

23 K00459 NCD2, NPD Nitronate monooxygenase 1.13.12.16 [154]

24 K19823 NAO Nitroalkane oxidase 1.7.3.1 [155]

25 R00143 Hydroxylamine reductase (NADH) 1.7.1.10 [156]

26 K05601 HCP Hydroxylamine reductase 1.7.99.1 [157]

27 K10535 HAO Hydroxylamine dehydrogenase 1.7.2.6 [157]

28 R10230 Hydroxylamine oxidase (cytochrome) 1.7.3.6 [158]

29 K10944 PMOA-AMOA Methane/ammonia monooxygenase subunit A 1.14.18.3
1.14.99.39 [159]

30 K00926 ARCC Carbamate kinase 2.7.2.2 [160]

31 K01948 CPS1 Carbamoyl-phosphate synthase (ammonia) 6.3.4.16 [161]

32 K00260 GUDB, ROCG Glutamate dehydrogenase 1.4.1.2 [162]
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Table 1. Cont.

No. KEGG ID Gene Symbol Gene Name EC Number Reference

33 K00261 GLUD1_2, GDHA Glutamate dehydrogenase (NAD(P)+) 1.4.1.3 [163]

34 K00262 E1.4.1.4, GDHA Glutamate dehydrogenase (NADP+) 1.4.1.4 [164]

35 K01915 GLNA, GLUL Glutamine synthetase 6.3.1.2 [165]

36 K01501 E3.5.5.1 Nitrilase 3.5.5.1 [166]

37 K00265 GLTB Glutamate synthase (NADPH) large chain 1.4.1.13 [167]

38 K00264 GLT1 Glutamate synthase (NADH) 1.4.1.14 [168]

39 K00284 GLU, GLTS Glutamate synthase (ferredoxin) 1.4.7.1 [169]

40 K00372 NASC, NASA Assimilatory nitrate reductase catalytic subunit 1.7.99.- [127]

41 K26139 NASD, NASB Nitrite reductase [NAD(P)H] large subunit 1.7.1.4 [127]

42 K15864 NIRS Nitrite reductase (NO-forming)/hydroxylamine reductase 1.7.2.1
1.7.99.1 [170,171]

43 K00531 ANFG Nitrogenase delta subunit 1.18.6.1 [120]

44 K04561 NORB Nitric oxide reductase subunit B 1.7.2.5 [125,126]

4.1. GS and GOGAT

N uptake for plant growth has been extensively studied and discussed previously [172].
N uptake involves an active transport across the plasma membrane of both root epidermal
and cortical cells. The gene expression patterns, post-translational regulation, and the
localization of NRTs and AMTs enable directed transport from the epidermis to vascular
tissue and acclimation to various concentrations of N in the soil [173]. Mostly, the plant
uptakes N from the soil in the form of NO3

− that is reduced by NR to NO2
−, which

is then imported into the chloroplast and reduced further by NIR into NH4
+. NO2

−

reduction to NH4
+ occurs in the stroma of chloroplasts and is catalyzed by the enzyme NIR.

NIR reduces NO3
− to NO2

− using electrons from NAD(P)H, and the reduced ferredoxin
(Fdred) generated due to the photosynthetic electron transport is the electron donor for
NO2

− reduction. NH4
+ is combined with glutamate to be assimilated into glutamine [174].

NR is regulated by NO3
−, N, light, growth conditions, hormones, N metabolites, and

phosphorylation [175–178].
In various biological systems, the interconversion of glutamate and glutamine plays a

central role in N assimilation, transport, and recycling. GS and GOGAT are vital enzymes
orchestrating these interconversions, ensuring optimal N utilization and maintaining N
homeostasis [112]. The roots are the principal site of NH4

+ assimilation, where the enzyme
GS facilitates this conversion [179,180]. Following GS action, one of the amino groups
from glutamine is transferred to 2-oxoglutarate (2-OG) to synthesize glutamate, and this
reaction is catalyzed by GOGAT (Figure 3). The coordinated action of GS and GOGAT is
responsible for these interconnected processes [181–183]. Experimental studies involving
reverse genetic analysis have demonstrated that the absence of genes encoding NH4

+-
responsive GS/GOGAT isoenzymes reduces NH4

+ assimilation, particularly in the roots,
resulting in impaired growth [184–187]. These findings suggest that the NH4

+-responsive
forms of GS/GOGAT have a central role in the primary assimilation of NH4

+ within the
roots [188]. As the expression of these isoenzyme-encoding genes increases with NH4

+

availability, it is plausible to infer that plants possess a regulatory transcriptional network
that modulates their gene expression in response to NH4

+ availability [185].
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fertilizers, and organic decomposition. N uptake in the form of NO3

− or NH4
+ through NRTs and

AMTs, respectively. GS catalyzes glutamine synthesis from glutamate and NH4
+ ions. At the same

time, GOGAT catalyzes the synthesis of glutamate from glutamine and α-ketoglutarate, and thus, GS
and GOGAT play central roles in the N metabolism and assimilation in plants.

Plant GS (EC6.3.1.2), a highly conserved enzyme, catalyzes glutamine synthesis from
glutamate and ammonium ions, conserving the N atom in an organic molecule. This
conversion is fueled by the energy released through the hydrolysis of ATP to ADP, making
GS a crucial component of N metabolism across different life forms [189]. In addition, the
GOGAT in synthesizing glutamate involves transferring the amide amino group of glu-
tamine to 2-OG through a reductant-driven process, yielding two glutamate molecules [190].
Within the realm of plants, this enzyme exists in two distinct variants: one produces the
ferredoxin (Fd) as the electron donor (EC 1.4.7.1), while the other employs NADH as the
electron donor (EC 1.4.1.14). The Fd-dependent form of the enzyme is notably abundant
within the chloroplasts of photosynthetic tissues. In these regions, it utilizes light energy
directly to serve as a reductant source. Figure 3 provides an overview of the N cycle,
transport, and utilization in plants.

Conversely, the NADH-dependent variant, also present within plastids, is primarily
concentrated in non-photosynthesizing cells. The reductant is sourced from the pentose
phosphate pathway [191]. Notably, the expression of the Fd- and NADH-dependent forms
of glutamate synthase seems to exhibit dissimilar patterns across distinct plant tissues. It
has been suggested that in most plants, two genes encode each form of GOGAT [190].

4.2. Isoforms of GS and GOGAT

According to subcellular distribution patterns, investigations into plant GS enzymes
have identified two main categories. The initial group, designated as GS1, is primarily
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situated within the confines of the cytoplasm. Conversely, the second group, GS2, is
predominantly found within plastid structures [192,193]. Various multigenic families
are responsible for encoding multiple isoforms of GS1, whereas the plastidial GS2 arises
from a limited number of nuclear genes [194]. Typically, GS2 is linked to the process of
(re)assimilation of NH4

+ in leaves, whereas GS1 is associated with recycling N within the
plant. However, the relative activity levels exhibited by GS1 and GS2 are subject to variation
based on species, specific plant organs, N sources, developmental stages, and prevailing
environmental conditions, including abiotic stress factors. This variability underscores
the intricate involvement of these isozymes, reflecting a multifaceted role [193,195]. In
wheat research, a comprehensive exploration has unveiled four distinct variations of GS
genes: GS1, GS2, GSr, and GSe [192]. Employing advanced high-performance liquid
chromatography (HPLC) methods, ref. [196] successfully separated GS and discovered two
subtypes in leaves: cytoplasmic subtype GS1 and chloroplast subtype GS2. Both subtypes’
content and activity fluctuate in tandem with developmental processes. The subcellular
localizations of GSr and GSe align with the cytoplasmic compartment [197]. In addition,
the advancement of genome sequencing has unveiled various isoenzymes of GS/GOGAT
present in plants. Among these, specific isoenzymes such as GS1,2 and NADH-GOGAT1
from rice [198] as well as GLN1,2 and NADH-GOGAT (GLT1) from Arabidopsis [185,199]
are expressed in plant roots in response to NH4

+ supply. These isoenzymes’ expression at
transcript and protein levels highlights their specificity in NH4

+ assimilation.

4.3. Nitrogen Metabolism in Microalgae

Microalgae are unicellular aquatic microorganisms with sizes between 1 µm and
2 mm. They can generate biomass using light and carbon dioxide through the photosyn-
thetic process. Due to their remarkable tolerance for environmental stress, they can be
grown in various environmental conditions, including freshwater, saltwater, or wastew-
ater [200]. After C, N is quantitatively the most significant element contributing to the
dry matter of microalgal cells, accounting for between 1 and 10% of their dry weight. C
and N metabolism are related in microalgae since they share the following: (a) C provided
directly by respiration of CO2 or assimilated organic C and (b) the energy obtained by
the TCA cycle and mitochondrial electron transport chain. To create the amino acids glu-
tamate, glutamine, and aspartate, the primary absorption of inorganic N (NH4

+) needs
carbon skeletons in the form of keto acids (2-OG and oxaloacetate) as well as energy in
the form of ATP and NADPH [201]. There are four fundamental phases in the NO3

−

assimilation mechanism in eukaryotic microalgae and plant leaves: NAD (P) H-nitrate
reductase catalyzes NO3

− reduction into NO2
− in the cytosol of cells, which is required for

(a) NO3
− transport into the green cell, and (b) NO3

− reduction into NO2
− in the cytosol of

cells. In addition, in Cyanobacteria, ferredoxin-nitrate reductase catalyzes the reduction of
NO3

− to NO2
−, (c) NO2

− transport into the chloroplast of cells via NAR1 family and its
subsequent reduction into NH4

+ in a six-electron reaction catalyzed by ferredoxin-nitrite
reductase, and (d) the process mediated by the ATP-dependent GS- GOGAT cycle, which
results in the formation of L-glutamate by the incorporation of NH4

+ into the carbon skele-
ton of 2-OG [103]. Microalgae mostly use the GS-GOGAT pathway to assimilate NH4

+

as well as via the amination of 2-OG catalyzed by NAD(P)H glutamate dehydrogenase
[NAD(P)H-GDH [202,203].

5. The Role of Nitrogen in Plant Response to Abiotic Stress

Plants must endure abiotic stressors, including drought, salt, and severe temperatures,
because they are immobile. The spread of plants is significantly constrained by these
stresses, which also change plant growth and development and lower agricultural out-
put [204]. Since N is considered the most crucial nutrient for plant growth quantitatively,
plants have developed effective methods to control N levels in response to complicated
stresses [14].
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5.1. Nitrogen and Drought Stress

Drought stress significantly damages crops worldwide, particularly in arid and semi-
arid regions [205]. Hence, plants have evolved to adapt their resilience against drought via
avoidance (stomata adjustment to reduce transpiration rate) and tolerance (antioxidants
and osmolytes production) of drought [206] (Figure 4). Remarkably, the concentrations
of NO3

− and NH4
+ have impacts on plants’ underwater limitations. The application of

NH4
+ alleviates the effect of drought on plant development, while NO3

− has the opposite
impact [54]. In that sense, N fertilizers might enhance the physiological responses of plants
under drought stress by elevating the concentrations of N and chlorophyll and promoting
PSII photochemical activity [207]. It has been shown that adding N (NH4NO3) improved
water-use efficiency (WUE) by increasing plant dry mass and decreasing water loss [206].
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Figure 4. Adverse effects of drought stress on plant growth led to membrane damage, overproduction
of ROS, and the deleterious effect on enzyme activity and other physiological processes such as
photosynthesis rate. The induction of defense strategies in plants by NO through activation of
antioxidant enzymes reduces the toxicity of free radicals and ROS negative impact and improves
photosynthesis and membrane stability, which finally helps plants to avoid, tolerate, or escape
drought conditions.

Additionally, N may lessen drought’s inhibitory effects on photosynthesis and prevent
C starvation [208]. On the other hand, low N availability can make plants more sensitive
to dehydration and cause protein degradation, which lowers the amount of N-containing
osmolytes like proline [206,208]. N supply enhances osmotic adjustment and the activity of
antioxidant enzymes via proline accumulation induction to mitigate the physiological harm
from drought stress. However, the N effects depend on the ionic form of N supplied [209].
NH4

+ is essential in promoting plant drought tolerance by increasing root numbers (sur-
face area) and subsequently improving and facilitating water uptake. Also, decreased
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aerenchyma development may contribute to NH4
+-promoted drought tolerance [14]. The

influence of NO3
− on drought responses is linked to NO3

− transport/assimilation in plants.
Numerous NO3

− transport/assimilation-related genes, such as NRT2.5, GS, and GOGAT,
are repressed in response to drought stress [210]. Interestingly, a high N concentration
enhances root growth and photosynthetic traits, alleviates drought stress via stomatal
conductance, and increases the photosynthetic rate [211]. Plant nutrient management
is crucial to promote abiotic stress tolerance in cotton plants [212]. The use of nitrogen
fertilizer either in the soil or foliar spray can decrease the toxicity of reactive oxygen species
(ROS) by increasing the peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD)
levels in plant cells [205,212]. These enzymes improve the photosynthetic rate, promoting
stress tolerance by scavenging ROS and reducing photooxidation to preserve chloroplast
membrane integrity [212–214]. Applying nitrogen fertilizers (N60 kg.ha−1) can increase
the tolerance of drought stress in wheat plants combined with the highest yield [205].

Under drought stress, GS1 and GS2 exhibited differential expression among different
plant organs and species, with a prominent increase of GS1 in roots and leaves, while the
total GS activity showed a decrease in potato root [215,216]. A comparative proteomic
analysis under drought stress conditions in wheat was studied [217]. The researchers
found that drought-tolerant wheat varieties exhibited a significant upregulation of GS2
expression, indicating its potential role in enhancing drought tolerance. Similar results
were obtained by Nagy et al. [218], who explored GS activity in wheat leaves and observed
that older leaves had lower GS activity than flag leaves in drought-tolerant and sensitive
varieties under normal conditions. During drought stress, GS activity in sensitive varieties’
flag leaves decreased compared to tolerant varieties. This suggested that GS activity could
indicate drought stress sensitivity and tolerance, with elevated cytoplasmic-to-plastid GS
ratio and premature senescence as markers. Exposure to heavy metals such as cadmium,
molybdenum, copper, and aluminum led to the down-regulation of GS and decreased its
total activity in different plant species, including rice, soybean, tomato, and tea [219–222].

Like all organisms, plants must respond to various extreme environmental cues by
responding to various internal signals. NO is a small lipophilic molecule that diffuses
through plant cell membranes as active signals to thrive and survive under those conditions.
In addition, NO is a relevant signal molecule in many plant processes. Several pathways
for NO production, either oxidative in the presence of O2 or reduction from NO2

−, have
been described in plants [223]. NO regulates gene expression, modulates enzyme activities,
and acts as a metabolic intermediate in energy regeneration. However, the mechanisms and
proteins responsible for its synthesis remain complex, with many unresolved questions.

Moreover, several studies showed the involvement of NO in reproductive processes,
control of development, and the regulation of physiological responses such as stomatal
closure. NO also regulates the expression of several genes involved in the synthesis of
and response to pathogen attacks as well as reproductive mechanisms that operate during
pollen recognition by the stigma [224–227]. NO is a high redox to reactive N species
(RNS) formed in living cells under normal and stressful biotic and abiotic conditions,
and NO also functions as a detoxifier and lessens adverse effects when a plant’s ROS
content reaches dangerous levels [228]. It was reported that the synthesis of NO increased
in plant cells under drought stress conditions, and it has been suggested that this may
help enhance plants’ acclimation responses to cope with water limitation [229]. Drought
stress enhanced NO synthesis in beat, pea, tobacco, cucumber, grapevine, and rice plants;
likewise, the activity of NO synthase (NOS)-like and NO release rate increased under
dehydration conditions [230]. NO has a vital role in respiratory function, called pathways
of electron transport in mitochondria; it adjusts ROS as well as activates defense strategies
via promoted antioxidant formation in plants under various abiotic stresses [228]. NO
plays a crucial role in mediating hormonal activities and influencing gene expression as
well as protein activity during sensing and signaling processes that enable plants to survive
under environmental stressors. The exogenous supply of NO increased drought tolerance
in various plants such as maize, rice, and cucumber due to the increase of antioxidant
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defense, which acts to scavenge ROS, improve cellular membrane stability, and preserve
photosynthesis as well as water status [230,231].

Drought induces the synthesis of abscisic acid (ABA), which regulates several critical
plant processes like seed germination and stomatal conductance, with the help of signaling
molecules like NO and ROS [232]. Interestingly, NO acts as a critical signaling molecule
promoting ABA-induced stomatal closure in case of hyperosmotic stress [233]. The plants’
main enzyme responsible for NO production is the molybdoenzyme NR, which contains
two subunits, each bearing three prosthetic groups: FAD, heme b557, and molybdenum.
In an NR subunit, molybdenum is bound to a tricyclic pyranopterin and chelated by a
dithiolene named the molybdenum cofactor (Moco). Amongst the reducing sources of NO
in plants, NO2

− can be reduced to NO by a family of five molybdenum (Mo)-containing
enzymes, which include NR, xanthine oxidase reductase (XOR), aldehyde oxidase (AO),
sulfite oxidase (SO), and mARC [234,235].

In a study by Berger et al. (2020) three NR genes (MtNR1, MtNR2, and MtNR3) were
discovered in the genome of Medicago truncatula, and they study addressed their expression,
activity, and potential involvement in NO production during the symbiosis between M.
truncatula and Sinorhizobium meliloti [235]. These results revealed that MtNR1 and MtNR2
gene expression and activity are correlated with NO production throughout the symbiotic
process and that MtNR1 is mainly involved in NO production in mature nodules [235].
However, when plants were grown in soil containing NH4

+, the functional role of NR was
eliminated [236]. Moreover, NO can alleviate the negative impact of ROS through lipid
peroxidation, enhancing photosynthesis as well as the expression of antioxidant enzymes
via mitogen-activated protein kinase (MAPK) and other signaling pathways [228]. It was
found that exogenous application of NO caused a significant increase in seedling growth
of cucumber by decreasing seedlings injury and enhancing the antioxidant activities and
chlorophyll and free proline contents under stress conditions [237]. Moreover, an exogenous
supply of NO in wheat markedly preserved high relative water content via decreasing
transpiration and increasing K content and mitigated cell membrane damage [238]. Figure 4
explains how NO can work as a signaling molecule that can protect plants from drought
stress by modulating various physiological and biochemical processes.

5.2. Nitrogen and Salinity Stress

Salinity stress has a destructive impact on the metabolism and productivity of crops
worldwide, resulting in the remarkable conversion of agricultural arable soil into unpro-
ductive land [239]. The high level of salt ions in agricultural soil may be harmful to plants,
causing salt stress, where sodium (Na+) and chlorine (Cl−) concentrations increase in saline
soil and affect the natural physiological process in plants [240]. N application is an efficient
way to improve plants under saline conditions. N is a necessary nutrient that mediates
various molecular, physiological, and cellular responses essential to plant survival as well
as different signal transduction pathways linked to plant defense systems and salt-stress
tolerance [241,242]. Moreover, salt stress affects ammonification and nitrification in the
soil because Cl− competes with NO3

−, and NH4
+ competes with Na+ and creates ion

toxicities and inequalities, which can limit the processes of N uptake, transport, and assim-
ilation [243,244]. Salt stress has inhibited various enzyme activities that contribute to N
assimilation in plants such as maize, tomato, rice, cowpea, and mung bean, reducing N
uptake and utilization [245].

Interestingly, it was reported that the interaction between salt stress and N had an
impact on plant growth, and the effect of N on salt-exposed plants was dependent on the
N rate [240]. In the case of maize, excessive N treatment can successfully mitigate the
deleterious effects of salt stress [246]. Similar findings in tomatoes showed that supra-
optimum N was better than optimum N in reducing salt stress [247]. Under salinity
stress, the application of N significantly increased both N and K uptake and decreased Na
accumulation in wheat seedlings. Furthermore, N application can protect wheat seedlings
in saline conditions via the upregulation of osmolytes, antioxidant system, and secondary
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metabolite accumulation [239]. Even though excessive N application exacerbated the
negative effect of salt stress on wheat and rice, moderate N supply could ameliorate the
deleterious effect of salt stress. Therefore, applying an appropriate N rate is the key to
mitigating the adverse effects caused by salt stress [240].

On the contrary, it was reported that the application of NO3
− resulted in an increase of

Na+ uptake and loading of the sodium into the xylem, increasing root inhibition caused by
the salinity. Na+ and NO3

− co-transportation was suggested based on NO3
−-dependent

Na+ uptake data at various Na+ concentrations [14]. Similarly, NO3
−-dependent trans-

port mechanisms in salt-stress environments encourage Na+ ion uptake and loading into
the xylem, which may represent a main pathway for Na+ accumulation in Arabidopsis
shoots [241].

It is worth noting here that GS isoforms imply a multifaceted role for GS in navigating
through various dimensions of abiotic stress tolerance [193,248]. For instance, in rice plants
exposed to salinity stress, GS1 increased in the root at the seedling stage and old leaves with
no change in young leaves, while GS2 was down-regulated in old and young leaves [249].

It has been demonstrated that NO can act as a signal to induce the resistance of
salt stress by raising the K:Na ratio in plant cells, which is based on an increase in the
H1-ATPase activity of plasma membrane in calluses from maize seedlings, reed (Phrag-
mites communis) plants, and poplar trees [230]. Exogenous NO can improve salt tolerance
under salinity conditions by stimulating the K+/Na+ ratio, the Na+/H+ antiport in the
tonoplast, and proton pump activity [250]. Under salt stress, NO improves the absorp-
tion and translocation of several macro- and micronutrients, including K, Fe, Mg, and
Zn, which improve respiration and chlorophyll biosynthesis [251]. The uptake of min-
eral nutritional elements was improved due to NO application, thereby diminishing the
harmful effect of high salinity on strawberry plants [252]. The exogenous NO supply can
protect chickpea plants from salt stress-induced oxidative harm by promoting the biosyn-
thesis of photosynthetic pigment and antioxidant enzymes osmolyte accumulation, thereby
improving plant development under saline stress [253]. Furthermore, under salt stress
conditions, exogenous NO treatment enhanced wheat seed germination by converting
starch to sugars, where the application of NO led to an elevation in the effectiveness of α-
and β-amylase enzymes [251,254]. Under salt stress, NO treatment boosted plant develop-
ment and demonstrated a protective ability against salinity-triggered oxidative stress by
increasing the effectiveness of POD, SOD, and CAT enzymes in Triticum aestivum [252].

6. Hazardous Effects of N Fertilizers

Nutrient deficiency and/or availability are crucial to plant production [255,256]. One
of the severe issues the world faces is the adverse effects of fertilizers on the environment.
Farmers have been using fertilizers since ancient times, but long-term use has affected
soil fertility adversely. Due to over-fertilization in many agricultural areas, environmental
pollution was established [257]. N pollution in groundwater is a severe problem worldwide,
affecting animal and human health; in addition, NO3

− leaching decreases N availability for
crops and can cause water pollution [258]. The improper application of fertilizers damages
the farmlands, leading to heavy metal contamination and soil erosion. While ammonium
sulfate causes soil pollution, nitrogen oxides and NH4

+ cause air pollution, and NO3
− is the

final breakdown product accumulating in groundwater [259,260]. Since NO3
− levels above

10 mg L−1 N cause oxygen debt in the blood, the U.S. Environmental Protection Agency
set human drinking water to maintain nitrate levels below a maximum contaminant level
(MCL) at a critical value of 10 mg L−1 N [261]. In Argentina, the national food law set the
limit for human consumption at 11.3 mg L−1 N [258]. Consumption of NO3

−-rich water
has been associated with methemoglobinemia (blue child syndrome) and different forms of
cancer [262–264]. Furthermore, diabetes, adverse reproductive outcomes (especially neural
tube defects), and thyroid conditions are related to NO3

−-contaminated drinking water.
A notable study by Maghanga et al. (2013) was conducted to monitor changes in

surface water NO3
− levels in ten rivers within a Kenyan tea plantation for three years.
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Water samples were obtained before and after fertilizer application in 2004, 2005, and 2006.
For three years, there was no established trend between surface water nitrate levels and the
time of fertilizer applications. However, the highest nitrate–nitrogen levels were in thr river
Temochewa during the first fertilizer applications (4.9 mg L−1 to 8.2 mg L−1). Furthermore,
fertilizer application increased NO3

− levels, and the study indicated that initial nitrate–
nitrogen levels in most rivers were high, causing surface water contamination [261].

7. Promoting N-Fixation through Diazotrophic Microbiota

Rapid human population growth and declining agricultural soils intensify resource
competition, affecting human food hunger and sustainable agriculture systems world-
wide [5]. Hence, developing alternative strategies to increase the current food demand
is an inevitable need [265]. Accordingly, crop productivity is the pillar of nutritional
food security and heavily depends on applying N fertilizers [266]. Applying N fertilizers
consumes vast amounts of energy and causes excessive harm to the environment and
health, expensive costs, soil fertility reduction, and other negative consequences [267,268].
Therefore, increasing plant NUE is essential for developing sustainable agriculture [269].
Ultimately, N fixation has multiple benefits through improving the yields of landraces that
often receive little attention from breeders and empowering farmers using a sustainable
and less expensive strategy. Additionally, it reduces the need for fossil fuels requiring
synthetic N fertilizers [270,271]. Overall, the symbiotic relationship between leguminous
plants and Rhizobia is a powerful adaptation strategy that enables these plants to reduce
their dependence on synthetic fertilizers and thrive in N-deficient soils. Improving the
microbial activities that boost plant growth is necessary to increase food production [272].
In that sense, several beneficial mutualistic microbes have been discovered; however, their
dependable utilization as biofertilizers in soil conditions is still challenged. Thus, im-
proving the microbial inoculants and exploring their diversity performance in the external
habitat could lead to understanding the knowledge gap between the microbial performance
in vitro and the external habitat [273].

Bacterial endophytes associated with crops, i.e., corn and wheat, can produce various
sugar compositions, such as arabinose [274], to stimulate the production of a thick gelati-
nous layer (mucilage) around the root systems of these crops. This layer allows crops to
better uptake fertilizer by forming a continuous boundary layer between roots and soil
particles, protecting the root system from drought and supporting other microbes (Figure 5).
Most interestingly, mucilage structures associated with complex microbiota contribute to
nutrient acquisition and play a vital role in plant growth and defense [271].

Improving the sustainability of biological nitrogen fixation (BNF) to cereal crops is a
future reason to enhance crop productivity, representing a significant breakthrough in N-
fixation research. To achieve this goal, engineering key regulators of BNF by activating the
symbiotic signaling pathway between diazotrophic bacteria and cereal crops is a promising
strategy for sustainable development.

Fortunately, establishing new omics techniques such as metabolomics, metagenomics,
metatranscriptomics, and metaproteomics will help in-depth research and identify the
rhizospheric microbes using next-generation sequencing approaches [275]. Accordingly,
manipulating the promising microbes that replace synthetic fertilizers is a solution. Rhi-
zobium–plant symbiosis is now becoming challenging with diverse genetic modifiers of
the symbiosis relationship not only in the genomic variability of partners but also in the
soil microbiota. In that sense, there is a future direction to improve the specificity of the
partnership during symbiotic colonization using different methods (e.g., axenic cultures)
by eliminating other microbes. Therefore, identifying and developing bioinoculant strains
and genotypes by adapting and evolving elite strains in both lab-scale analyses and trials
to open-field applications to increase crop yield becomes crucial. Figure 5 shows how
microbes can help plants increase their N availability by colonizing their roots, releasing
exudates, and enhancing nutrient uptake.
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Figure 5. A simplified model represents the microbial beneficial effects and the signal pathways
involved in modulating the effects on N availability. This overview of plant–microbe interactions in
the rhizosphere represents the bacterial colonization of the roots to enhance nutrient uptake, resulting
in plant growth promotion. N source limitation also increases NH4

+ and NO3
− uptake activity as a

promising strategy to achieve the sustainability of agriculture. In response to the nutrient deficiency,
plant roots release some exudates that may recruit beneficial microbes to improve nutrient uptake. In
return, they make nutrients available to plants that influence plant development. The availability
of N is one of the critical elements in the process of BNF that converts atmospheric N2 to NH3.
Accordingly, this model confirms that microbes might replace synthetic fertilizers in the future.

8. Microbial Alternatives to Synthetic Fertilizers

Fertile soil is a primary component in the backbone of sustainable agriculture; however,
land degradation and rapid desertification cause an estimated global loss of 24 billion
tons of fertile arable land [276]. Noticeably, eutrophication and decline of soil fertility
result from massive application of chemical fertilizers, causing significant environmental
concern [277]. Moreover, with the limited N resources and increasing agricultural demands
for N supplies, there is a need to discover diverse mutualistic interactions between plant
roots and rhizosphere microbiome (Figure 5).

Soils are habitats for diverse microorganisms that are either harmful (pathogenic)
or beneficial (symbiotic) to plants, comprising organic substances, water, and nutrients.
Food production requires essential nutrients, metabolites, and water that the soil provides
to plants [5,278,279]. Besides the nutrient resources in the soil, plants attract microbes
via root exudates, root border cells, and mucilage formation that serve as food for the
rhizosphere microbiome and their assembly [280]. Interestingly, soil contains an extensive
reservoir of microorganisms (1 × 109 microbial cells g−1 dry soil) and microbial diversity
(1 × 105 microbial species g−1 dry soil) [281,282]. Rhizospheric microbes are crucial in
diverse biological processes, including soil structure, climate regulation, disease control,
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and organic matter decomposition. They also induce plant growth via nutrient uptake,
cycling water availability, and the formation of stable aggregates to reduce the risks of soil
erosion [283–285]. In addition, these microbes can improve plant health and serve as biocon-
trol agents against plant pathogens as well as biofertilizers (i.e., Rhizobium, Azotobacter, and
Bacillus subtilis) [273,286]. Accordingly, elucidating the functional role of these microbial
communities has garnered enormous efforts from botanical scientists over two decades
to eliminate hunger and improve soil fertility by reducing synthetic fertilizers [287–290].
Fortunately, legume plants represent a solution, including fava beans, soybeans, lentils,
and cowpea. They recruit symbiotic Rhizobia from the soil into nodules BNF. BNF is
an eco-friendly and manageable strategy by harnessing nitrogen-fixing endophytic and
free-living rhizobacteria to increase N levels in agricultural land by converting N2 to the
fixed form, NH3 [291]. The biologically fixed amounts of atmospheric N into NH3 inside
root nodules by legumes account for about 65% of N utilization in global agriculture via
N-fixing Rhizobia [292]. Accordingly, this process allows legume plants to grow well in
N-deficient soils, eliminating N fertilizer application [293]. The inoculation of Rhizobia
strains (native or commercial) was studied on the growth and nodulation of three cowpea
(Vigna unguiculata) genotypes in semiarid regions of Kenya. Field trials were performed in
a randomized complete block design with three replications, and the symbiotic efficiency
(SE) of Rhizobium isolates was evaluated. In the field, Rhizobia inoculation significantly
increased nodulation and shoot DW compared to the uninoculated controls. Interestingly,
Rhizobia inoculation significantly increased yields, whereas inoculation with native iso-
lates recorded a 22.7% increase compared to uninoculated control in the first season and a
28.6% increase in yield in the second season. This study concluded that the efficient native
Rhizobia in smallholder farms has promising potential to improve cowpea yield under a
changing climate. In particular, R. tropici clone H53, Mesorhizobium sp. WSM3874, and R.
pusense strain Nak353 showed more superiority in all the tested parameters [294]. A recent
study revealed that plant exudates play a role in the development of bacterial biofilms
(multicellular communities of microorganisms) in the soil, and creating microaerophilic
conditions improved the nitrogen-fixing efficacy of diazotrophic bacteria in the soil [295]
and exhibited enhanced flavonoid compounds. This study also hypothesized that manip-
ulating flavonoid synthetic pathways leads to the induction of BNF in cereals through
biofilm formation in soil diazotrophs [296,297]. N-limitation induces the production of
exopolysaccharides (EPS), which may function as a barrier to block excess oxygen in the air
and provide a suitable microaerobic condition for bacteria inside the EPS to fix N [298,299].
A large amount of EPS was reported in response to N limitation by cellulolytic bacteria
(e.g., Bacillus, Pedobacter, Chryseobacterium, and Flavobacterium [300].

Applying the symbiotic association between Rhizobia and leguminous plants is a
significant research area to reduce the dependency on chemical fertilizers. Bradyrhizo-
bium, Azospirillum, and Rhizobium had high plant-growth-promoting capacity and N-fixing
efficiency, indicating abundant functional microbial resources in extreme soil environ-
ments [301,302]. On the other hand, inoculation of Azospirillum, Burkholderia, and other
N-fixing bacteria had little success in the field [303]. Thus, developing a compatible host
for the indigenous N-fixing bacteria is critical for colonizing the host and improving nitro-
genase activity.

9. Genomic Approaches for Improving N-Fixation

The identification of new genes involved in N fixation, investigation of the genome
organization of N-fixing species, and the discovery of novel diazotrophic species have all
been made possible by plant and microbial genomics. The primary genes responsible for
N fixation encode nitrogenase enzymes, which play a crucial role in converting N2 into
NH4

+ [304,305]. These enzymes are classified into several types based on their structural,
evolutionary, and functional characteristics. The first three forms of nitrogenase share
similarities in their architecture, evolutionary origins, and mechanisms. However, they
differ in the type of metal they use as a cofactor, either vanadium or molybdenum, or
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they may rely solely on iron as their cofactor. In contrast, the fourth type of nitrogenase
operates differently; it utilizes a molybdopterin-containing system and depends on the
presence of superoxide. This distinct form of nitrogenase was initially identified in a spe-
cific species called Streptomyces thermoautotrophicus. The complete genomic sequence of
S. thermoautotrophicus and the precise amino acid sequence of this fourth type of nitrogenase
have not been determined [306,307]. The fact that the inventory and distribution of species
encoding for the fourth kind of nitrogenase are unknown highlights how few diazotrophs’
genomes have been sequenced. A. vinelandii is one of the extensively researched diazotroph
with sequenced genomes that can fix N in an aerobic culture. It has served as a model
for N-fixation for decades due to several factors, including (i) its genetic adaptability;
(ii) its capacity to fix N in aerobic growth conditions; (iii) its nutritional flexibility, which is
demonstrated by its capacity to fix N via three different pathways; and (iv) its capacity to
adapt its metabolism to a variety of nutrients and media additives; and (v) the genome’s
comprehensive sequencing and manual editing [308,309]. A. vinelandii has a single circular
chromosome with 5,365,318 base pairs in its genome, which is expected to code for 5051 pro-
teins [309]. The diazotroph Pseudomonas stutzeri is the closest companion of A. vinelandii
with a sequenced genome [310]. Moreover, P. stutzeri grows aerobically and can only fix
N in microaerobic conditions [311,312]. Alternatively, in ambient oxygen concentrations
(20% O2), A. vinelandii can catalyze N fixation in an oxygen-sensitive process [313,314]. Its
respiratory protection system makes it feasible to undertake two incompatible biological
processes, oxidative phosphorylation and N fixation, concurrently. A. vinelandii may mod-
ify its respiration rate to maintain a low amount of cytoplasmic oxygen while N-fixing is
taking place [315]. Five terminal oxidases were found in the genome, along with additional
NADH oxidoreductases and other respiratory complexes that provide electrons to terminal
oxidases, raising oxygen consumption [309]. Some of these genes, such as cydAB I, have
been linked to respiratory protection and are crucial for aerobic N-fixation [306,307]. The
discovery of novel N-fixing organisms and the quantity and kind of nitrogenases coding
in these species may also be targeted by genome sequencing utilizing NifD sequences as
queries [316–318]. The genomes of diazotrophs also encode for other proteins comparable
to NifD in addition to the Nif/Vnf/AnfD sequences [318].

10. Conclusions and Future Perspectives

N is an essential macronutrient required for the growth and development of all living
organisms. N uptake, transport, assimilation, and metabolism are finely tuned in plants.
Additionally, N serves as a key mediator in plant–microbe interactions, fostering beneficial
relationships through symbiotic partnerships that enhance nutrient availability. Moreover,
N plays a pivotal role in a plant’s response to various environmental stresses, such as
drought, salinity, and disease. Understanding N dynamics is critical for optimizing crop
yields and sustainability, as it impacts the health and productivity of individual plants and
the entire ecosystem and food security.

Consequently, harnessing N in agriculture addresses the challenges of feeding a
growing global population while minimizing the environmental footprint of farming
practices. In this sense, improving NUE by plants is a promising strategy to reduce the
negative impact of using synthetic fertilizers. BNF is an eco-friendly and manageable
strategy to increase N levels in agricultural land. Thus, improving BNF by genome editing
could replace synthetic fertilizers to reduce dependency on chemical fertilizers. In addition,
discovering new plant microbiomes and understanding their structure, abundance, and
diversity will open a new avenue to better understanding the agricultural scenario to
sustain global food security under limited N conditions. Despite understanding the role of
N in plant biology, the precise molecular mechanisms governing N sensing in plants are
still unclear, which could lead to the development of more efficient N-use strategies.

Furthermore, investigating the effects of climate change on N availability and its
environmental impact becomes increasingly crucial. For example, arctic land areas are
expected to warm, resulting in significant permafrost thawing [319,320] and significant
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alterations in ecological functioning [321]. With thawing, a massive pool of immobile C
trapped in permafrost [322] becomes available for breakdown and remobilization, resulting
in CO2 and methane (CH4) emissions. The gaseous C leak from thawing permafrost is
being extensively researched in order to determine the extent of the permafrost–carbon
feedback to the climate [323,324]. Permafrost soils, on the other hand, are huge N reservoirs,
with an approximate amount of 67 billion tons of total N in the top 3 m [325]. Organically
bound N is mineralized upon thawing, resulting in the release of NH4

+ and NO3
− and

driving nitrification and denitrification, the two primary processes producing greenhouse
gas in soils [326], and these microorganisms can convert to harmful NO or N2 gas [327]. In
addition to methane and carbon dioxide fluxes, warming arctic soils release N, which can
increase N2O emissions, another potent greenhouse gas. The significance and amount of
N2O released from arctic soils are unknown. There is a crucial need for a combination of in
situ field investigations, laboratory experiments, and cutting-edge metagenomic techniques
to better understand the role of microorganisms in climate change and seasonal changes
in bacteria.
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