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Abstract: As a cancer type potentially dominated by copy number variations, ovarian cancer shows
hyperploid karyotypes and large-scale chromosome alterations, which might be promising biomark-
ers correlated with tumor metastasis and chemoresistance. Experimental studies have provided
more information about the roles of aneuploids and polyploids in ovarian cancer. However, ploidy
evaluation of ovarian cancer cell lines is still limited, even in some ploidy-related research. Herein,
the ploidy landscape of 51 ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE)
were analyzed, and the ploidy statuses of 13 human ovarian cancer cell lines and 2 murine cell lines
were evaluated using G-banding and flow cytometry. Most human ovarian cancer cell lines were
aneuploid, with modal numbers of 52–86 and numerical complexity ranging from 5 to 12. A2780,
COV434 and TOV21G were screened as diploid cell lines, with a modal number of 46, a low aneuploid
score and a near-diploid ploidy value. Two murine cell lines, both OV2944-HM1 and ID-8, were
near-tetraploid. Integrated information on karyotypes, aneuploid score and ploidy value supplied
references for a nondiploid model construction and a parallel analysis of diploid versus aneuploid.
Moreover, the gene expression profiles were compared between diploid and aneuploid cell lines.
The functions of differentially expressed genes were mainly enriched in terms of protein function
regulation, TGF-β signaling and cell adhesion molecules. Genes downregulated in the aneuploid
group were mainly related to metabolism and protein function regulation, and genes upregulated in
the aneuploid group were mainly involved in immune regulation. Differentially expressed genes
were randomly distributed on all chromosomes, while chromosome 1 alteration might contribute to
immune-related alterations in aneuploid cell lines. Chromosome 19 alteration might be potentially
significant for aneuploid ovarian cancer cell lines and patients, which needs further verification in
ploidy research.

Keywords: RNA sequencing; ovarian cancer; polyploid; aneuploid; chromosome alteration

1. Introduction

Ovarian cancer is the major cause of death among gynecological cancers. With an
insidious onset and rapid progression, approximately 75% of ovarian cancer patients are
already at an advanced stage when diagnosed, with less than a 30% five-year survival
rate [1,2]. Nearly 80% of ovarian cancers undergo cancer recurrence and acquire chemore-
sistance, with a low progression-free survival of less than one year for recurrent populations
using platinum-based chemotherapy [3,4]. As a hallmark of cancer, approximately 75% of
solid tumors show aneuploidy and chromosomal instability (CIN), with a complex and
heterogeneous karyotypic landscape [5]. Karyotypic alterations have been considered to
contribute to tumor progression and immune editing, shaping the genetic heterogeneity
and karyotypic evolution of cancer cells under poor conditions, which directly or indirectly

Biomolecules 2023, 13, 92. https://doi.org/10.3390/biom13010092 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13010092
https://doi.org/10.3390/biom13010092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom13010092
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13010092?type=check_update&version=1


Biomolecules 2023, 13, 92 2 of 17

promotes chemoresistance in cancer [6–10]. Focusing on the ploidy status and karyotypic
alteration might provide inspiration for overcoming chemoresistance and exploring poten-
tially new therapeutic targets in ovarian cancer.

According to our previous summary of ploidy studies, many observational studies and
correlation analyses of aneuploidy and chromosomal instability have been performed in
patient samples [11]. Karyotype analysis revealed that nearly 80% of ovarian cancer patients
were hyperploid (http://atlasgeneticsoncology.org (accessed on 1 October 2022)). Flow
cytometry or image cytometry showed that nondiploid cancer cells existed in approximately
36%~75% of ovarian cancer patients, potentially affecting therapy choice and prognostic
prediction [12–14]. According to fluorescent in situ hybridization (FISH) and single cell
quantitative imaging microscopy (QuantIM), the levels of aneuploidy and CIN increased
with drug resistance and tumor relapse in ovarian cancer [15,16]. Copy number variation
(CNV) analysis showed that approximately 55% of ovarian cancers had undergone whole
genome doubling (WGD) and possessed a ploidy value of 3.3 (not 2.0), with decreased
tumor-infiltrating leukocytes (TILs) and increased total mutational burden and cancer
occurrence compared with near-diploid cancer patients [17–19]. Very recently, hyperploid
value of tumor tissues indicated a late stage in high-grade serous ovarian cancer [20]. CNV
analysis indicated that hyperploid cells enriched tumor metastasis and chemoresistance in
ovarian cancer [21–23]. The analysis of cell-free DNA or circulating-tumor DNA supports
the value of aneuploidy in the monitoring of tumor progression, therapeutic efficacy
and tumor recurrence [24,25]. Overall, as a genetically unstable tumor, aneuploidy and
chromosomal instability are prevalent and dynamic in ovarian cancer patients.

Considering the prevalence and significance of karyotypic evolution in ovarian cancer,
it is significant to take the ploidy status into consideration in experimental research, which is
important for uncovering the underlying mechanisms of ploidy-mediated chemoresistance
and exploring ploidy-targeted cancer therapy. The ploidy evaluation of cell lines is the
first step in cancer ploidy research because the cell line models are the most basal tools
in cancer research. Moreover, a comparison analysis between diploidy and aneuploidy
cell lines is also inspiring and can help to explore potential new therapeutic targets based
on aneuploid or polyploid cell lines in cancer. Recently, a comparative study based on
diploid versus aneuploid cell lines overturned the concept that the knockdown of small
GTPase Ran (Ras-related nuclear protein), a potential therapeutic target in cancer, causes
cancer cell death but does not affect normal cells [26]. This research demonstrated that
Ran knockdown selectively kills aneuploidy rather than diploid ovarian cancer cells. Once
again, this study illustrated the significance of ploidy evaluation for cancer cell lines and
supplied a new synthetic lethal strategy based on abnormal ploidy status in ovarian cancer.

However, unlike CIN evaluations of patient samples, few basic studies have focused
on the ploidy status and chromosomal alteration of ovarian cancer cell lines, and even fewer
studies have assessed their basic ploidy status, even though some cell lines are commonly
used, which makes current ploidy research in ovarian cancer confusing. Among various
ovarian cancer cell lines, a previous CIN study simultaneously evaluated the response to
CIN inducers with or without proteasome inhibitors, and tried to uncover the interplay
between CIN and sensitivity to proteasome inhibition [27]. However, the basal ploidy and
chromosomal status of cancer cell lines were not evaluated at first. Notably, aneuploidy and
diploidy cells themselves are significantly different in terms of proteotoxic stress and CIN,
which might cause different responses to inducers of CIN or other types of stress [26,28–30].
Diploid and aneuploidy cell lines with different levels of CIN were considered in parallel
comparisons without being noted, which might have interfered with the results.

Here, we evaluated the ploidy status and chromosomal alterations of 13 commonly
used ovarian cancer cell lines for reference and inspiration for further research in ovarian
cancer. To better understand the difference in expression profiles between the diploid
and aneuploid groups and find potential targets for nondiploid cancer, high throughput
RNA-sequencing and enrichment analysis are performed in this study. The effects of
chromosome alterations on gene expression were analyzed via chromosome enrichment.

http://atlasgeneticsoncology.org
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2. Materials and Methods
2.1. Online Tools

A total of 51 ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE)
and 582 ovarian cancer patients were involved in this study [31]. The aneuploidy score
(AS) and ploidy value partially reflect the ploidy status, which were calculated on the basis
of a copy number variation (CNV) analysis and a ploidy estimation using the ABSOLUTE
algorithm [19,32,33]. AS and ploidy value were obtained from cBioPortal (www.cbioportal.
org (accessed on 15 October 2022)). The pathway and process enrichment analyses of
genes enriched in specific chromosomes in cell lines and patients were performed using a
metascape analysis tool [34].

2.2. Cell Lines

A total of 15 cell lines were used for the experiments, including 13 human ovarian
cancer cell lines (A2780, A2780CP, SKOV3, Hey, IGROV1, COV434, HO8910, NIHOVCAR3,
OVCAR5, OVCAR8, OVISE, TOV21G and TOV112D) and 2 murine cell lines (OV2944-HM1
(HM-1) and ID-8). All cell lines were archived in our laboratory and the HM-1 cell line was
a gift from Professor Haiou Liu (Obstetrics and Gynecology Hospital, Fudan University).
The cells were cultured in an RPMI-1640 or DMEM or MC5A medium containing 10% fetal
bovine serum. All the cell lines were cultured at 37 ◦C in an incubator with 5% CO2.

2.3. G-Banding

A karyotype analysis was performed using the classic cytogenetic method [35,36]. The
cell lines were harvested for metaphase chromosomes after colcemid treatment (45 ng/mL).
After 45 min to 1 hour in colcemid, the cells were incubated for 30 min and placed in a
hypotonic solution at 37 ◦C (KCl solution (75 mM)) followed by a fixation process with
methanol-acetic acid (3:1). The chromosomes spreads and G-banding analysis were begun
after washing and drying in the drying chamber. A total of 100 metaphase spreads were
analyzed to determine the modal numbers and ploidy statuses. The karyotypic analysis
was based on the International System for Human Cytogenetic Nomenclature (ISCN) [37].
According to the ISCN, cell lines with a chromosome modal number between 35 and
45 are hypodiploid, and those with a number between 47 and 57 are hyperdiploid; cell
lines with a modal number between 58 and 68 are hypotriploid, and those with a number
between 70 and 80 are hypertriploid; cell lines with a modal number between 81 and 91
are hypotetraploid, and those with a number between 93 and 103 are hypertetraploid. For
numerical complexity, gains existing in at least two metaphases and losses existing in at
least three metaphases are considered as clonal numerical alterations [37,38].

2.4. Flow Cytometry

Ploidy analysis was performed according to previous analyses [12,13]. The cells were
harvested for 4–6 h followed by counting, washing and staining for 30 min using the Cell
Cycle Staining Kit (MultiSciences (Lianke) Biotech, Hangzhou, China). A flow cytometric
analysis was performed using a Beckman Coulter cytoflex flow cytometer with FACS
CytExpert software (Beckman Coulter). A total of 15,000–20,000 events per sample were
recorded at the low rate during cell acquisition and DNA analysis. According to the
karyotype analysis, the diploid cancer cell line COV434 was mixed (1:1) with other samples
to be assessed [39]. The data were analyzed with FlowJo software (Flow Jo, Ashland, OR,
USA).

2.5. RNA Sequencing

The total RNA was extracted from 6 ovarian cancer cell lines by Trizol reagent
(Nuoweizan, Nanjing, China) separately. The RNA quality was checked by an Agilent 2200
(Agilent Technologies, Santa Clara, CA, USA). Only samples with an RIN (RNA integrity
number) >7.0 were acceptable for cDNA library construction. The cDNA libraries were con-
structed using the NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina (NEB,

www.cbioportal.org
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USA) according to the manufacturer’s instructions. After purification and enrichment, the
final cDNA libraries were quantified by an Agilent2200. The tagged cDNA libraries were
pooled in equal ratios and used for 150 bp paired-end sequencing in a single lane of the
Illumina HiSeqXTen (Illumina, San Diego, CA, USA). The raw data were filtered to remove
the adaptor sequences and low-quality reads. The clean reads were then mapped to the
human genome (GRCh38_Ensembl104) using the Hisat2 [40]. HTseq was used to obtain
the gene counts, and the FPKM method was used to determine the gene expression [41].

2.6. Identification of DEGs and Enrichment Analysis

A2780, COV434 and TOV21G were categorized as diploid cell lines and NIHOVCAR3,
OVISE, OVCAR8 were categorized as aneuploid cell lines. DESeq2 (V1.6.3) was used to
filter the differentially expressed genes (DEGs) among diploid cell lines versus aneuploid
cell lines. The DEGs were determined by a log2FC of 1 and an adjusted FDR value of
0.05 [42]. Gene ontology (GO) analysis and pathway analysis via the Kyoto Encyclopedia
of Genes and Genomes (KEGG) were performed to determine the biological implications
and significant pathways. The top 20 terms of the GO categories and KEGG pathways
are shown in the form of bubble maps. Gene Set Enrichment Analysis (GSEA) was also
performed. For GSEA analysis, the thresholds for enrichment results were set to FDR < 0.25
and a nominal p-value < 0.05.

2.7. Statistical Analysis

The difference in ploidy value of 51 cell lines among different pathological types was
analyzed with the Kruskal–Wallis Test. Fisher’s exact test was applied to identify the
significant GO and KEGG pathways. p < 0.05 was considered significant.

3. Results
3.1. Ploidy Analysis from the CCLE for 51 Ovarian Cancer Cell Lines

The ploidy statuses of 51 ovarian cancer cell lines were obtained via cBioPortal on-
line analysis, which is based on CNV data and ploidy estimation using the ABSOLUTE
algorithm (Figure 1A). Most ovarian cancer cell lines were aneuploid. The ploidy values of
nearly all cell lines were not 2.0, and most cell lines possessed relatively high aneuploid
scores (Figure 1A). Some cell lines with near-diploid values showed low aneuploid scores,
such as SKOV3, A2780, COV434, TOV21G and IGROV1, while some hyperploidy cell lines
had high aneuploid scores, such as KURAMOCHI, OVCAR4, OVMANA and NIHOV-
CAR3. Detailed information on the chromosome alterations and ploidy values is provided
in Supplementary Table S1. A comparison analysis suggested that there was no significant
difference in ploidy value among the different pathological types (Figure 1B). Compared
with cell lines showing both relatively high ploidy values and relatively high aneuploid
scores, cell lines with low ploidy values and low aneuploid scores showed fewer copy
number variations (Figure 1C).
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Figure 1. Ploidy and aneuploid score of 51 ovarian cancer cell lines from the CCLE. (A): Ploidy and
aneuploid score of 51 ovarian cancer cell lines from the CCLE. The aneuploid score and ploidy value
are obtained from cBioPortal on the basis of chromosome copy variations and ABSOLUTE estimation.
(B): Comparison analysis of the ploidy value among different histological types (P = 0.138). Other
epithelial: cell lines from cystadenocarcinoma type or adenocarcinoma without clear types; Other
types: cell lines from granulosa cell tumor of mixed ovarian carcinoma. (C): Copy number variations
of representative samples of diploid and aneuploid cell lines. Terms from top to bottom are COV318
(AS = 29, ploidy value = 3.96); COV434 (AS = 0, ploidy value = 2.00); KURAMOCHI (AS = 30, ploidy
value = 2.80); A2780 (AS = 2, ploidy value = 2.01); TOV21G (AS = 2, ploidy = 2.05) and OVSAHO
(AS = 31, ploidy value = 2.89).

3.2. Karyotype Numerical Complexity and Integrated Ploidy Information for Ovarian Cancer
Cell Lines

FCM and G-banding were performed to assess the karyotypes and chromosome
numerations of 13 commonly used human cell lines and 2 murine cell lines. According
to the karyotype analysis using G-banding, only three ovarian cancer cell lines, A2780,
TOV21G and COV434, were diploid cell lines with a modal number of 46 and karyotypical
stability with relatively low numerical complexity (Figure 2A). The other human cell lines
were aneuploidy and showed relatively large-scale numerical changes (Figure 2A and
Table 1). The karyotype details showed that chromosomes 2, 7, 9, 17, 18, 20, 21 and X are
commonly altered in human aneuploid cell lines (Supplementary Table S1).
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Table 1. Karyotype analysis of 13 commonly used ovarian cancer cell lines. 
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Figure 2. Karyotype and ploidy analysis of 13 commonly used ovarian cancer cell lines. (A): Chromo-
some modal number and numerical complexity of 13 human ovarian cancer cell lines. (B): Ploidy
analysis of cell lines using flow cytometry. (Left panel: diploid cell line COV434; Right panel: COV434
mixed with SKOV3 in a ratio of 1:1). (C): Representative figures of karyotype analysis of human
diploid and aneuploid cell lines and murine cell lines.
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Table 1. Karyotype analysis of 13 commonly used ovarian cancer cell lines.

Histological Type Name
Karyotype Analysis

Modal Number Ploidy Numerical Range 1

Adenocarcinoma
Serous NIHOVCAR3 53 hyperdiploid 49–57

OVCAR5 54 hyperdiploid 47–57
OVCAR8 54 hyperdiploid 50–59

Endometrial TOV112D 52 hyperdiploid 47–55
A2780 46 diploid 46

A2780CP 63 hypotriploid 56–67
Clear cell OVISE 57 hypotriploid 54–58

TOV21G 46 diploid 45–47
Mixed IGROV1 86 hypotetraploid 84–89
NS 2 HO8910 55 hyperdiploid 51–55 3

HEY 82 hypotetraploid 72–83

Cystadenocarcinoma SKOV3 83 hypotetraploid 79–83

Granulosa cell tumor COV434 46 diploid 44–46
1 Only clonal numerical alterations were taken into the analysis. 2 Cell lines with unclear detailed subtypes of
adenocarcinoma. 3 Approximately 20% of metaphases are near-tetraploid for this cell line, and the range number
is between 98 and 101 in the near-tetraploid subpopulation.

However, some tetraploid cell lines presented low numerical complexity, such as
SKOV3 and IGROV1. The ploidy analysis also revealed a significant difference between
diploid and aneuploid cells using FCM, consistent with the karyotype analysis (Figure 2B).
Most human cell lines had various structural chromosome changes and showed multiple
and clonal alterations, which are manifested as chromosomal additions, arrangements,
deletions and the presence of marker chromosomes (Figure 2C). Two murine cell lines,
both HM-1 and ID-8, were near-tetraploid, with modal number of 78 and 73, respectively
(Figure 2D). For a more comprehensive evaluation of ploidy status, the chromosome
number, aneuploid score and ploidy value were collected from cell lines with all three
parameters in Table 2.

Table 2. Integrated information on the ploidy status of 9 commonly used ovarian cancer cell lines.

Name
Ploidy Status

Modal Number Ploidy Estimation Aneuploid Score Ploidy Value

IGROV1 86 hypotetraploid 0 2.00
SKOV3 81 hypotetraploid 5 1.90
OVISE 57 hypotriploid 23 2.88

OVCAR8 54 hyperdiploid 28 2.56
NIHOVCAR3 53 hyperdiploid 26 3.52

TOV112D 52 hyperdiploid 6 1.07
A2780 46 diploid 2 2.01

TOV21G 46 diploid 2 2.05
COV434 46 diploid 0 2.00

3.3. Difference in Expression Profiles between Human Diploid and Aneuploid Ovarian Cancer
Cell Lines

Considering the three parameters in Table 2, three cell lines with a modal number
of 46, a ploidy value of ±2.0 and a low aneuploid score were categorized into diploid
cell lines according to the integrated ploidy information, including A2780, COV434 and
TOV21G. NIHOVCAR3, OVISE and OVCAR8 were categorized into the aneuploid group
due to their modal number, relatively high ploidy value and relatively high aneuploid score.
Pathological types were not taken into consideration due to their nonsignificant association
with ploidy value. RNA sequencing and comparison analysis were performed between the
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diploid and aneuploid groups to explore ploidy control and regulation. Compared with
the diploid cells, 419 genes were upregulated and 182 genes were downregulated in the
aneuploid cells (Figure 3A). To understand the biological implications of the differentially
expressed genes (DEGs), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis were carried out. According to the top 15 significant
terms in BP (biological process), CC (cell component) and MF (molecular function) from
the GO enrichment analysis, the DEGs between the diploid and aneuploid groups were
mainly involved in the following pathways: “positive regulation of transcription by RNA
polymerase II”, “extracellular matrix organization”, “chemical synaptic transmission” and
“response to ATP” (Figure 3B and Supplementary Materials). KEGG analysis suggested
that these DEGs were particularly enriched in the “NOD-like receptor signaling”, “TGC-β
signaling”, “protein digestion and absorption” and “focal adhesion” pathways (Figure 3C).
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Figure 3. Identification and functional analysis of the differentially expressed genes. (A): Heat
map and volcano plot of the differentially expressed genes (DEGs) among diploid cell lines versus
aneuploid cell lines. (B): Gene Ontology summary of DEGs for biological process categories (BP),
cell component categories (CC) and molecular function categories (MF). (C): Kyoto Encyclopedia of
Genes and Genomes summary of DEGs.

A protein–protein interaction (PPI) enrichment analysis showed some interactions
among the downregulated and upregulated genes in aneuploid cell lines (Figure 4A). A
gene set enrichment analysis (GSEA) showed that genes downregulated in the aneuploid
group were mainly enriched in metabolism-related gene sets, such as “ribosome”, “hallmark
oxidative phosphorylation”, “hallmark fatty acid metabolism” and “KEGG arginine and
proline metabolism” (Figure 4B,C). Genes upregulated in the aneuploid group were mainly
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enriched in immune-related pathways, such as the “KEGG NOD-like receptor signaling
pathway”, “hallmark interferon gamma response”, “KEGG cytokine-cytokine receptor
interaction”, “hallmark inflammatory response”, and “hallmark TNFA signaling via NFκB”
(Figure 4B,C).
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Figure 4. GSEA of the differentially expressed genes. (A): Protein-protein interaction enrichment
analysis of genes downregulated (left) and upregulated (right) in aneuploid cell lines. (B): GSEA sum-
mary of genes downregulated (left) and upregulated (right) in aneuploid cell lines. (C): Significant
gene sets (left two panels: downregulated genes in aneuploid group; right two panels: upregulated
genes in aneuploid group).
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3.4. Effects of Chromosome Alterations on Gene Expression Regulation

Chromosome 1 (chr1) and chromosome 19 (chr 19) alterations are among the most
frequent cytogenetic changes in epithelial ovarian cancer [43–46]. We tried to determine
whether the 419 DEGs upregulated and 182 genes downregulated in aneuploid ovarian can-
cer cell lines may result from the chr1 and chr19 alterations. According to the chromosome
location, all the DEGs were randomly distributed across all chromosomes, but the majority
were found on chromosomes 1 (66 genes, 11%), 2 (49 genes, 18%), 17 (40 genes, 6.7%) and
19 (40 genes, 6.17%). However, chromosome 1 contained the most up-regulated genes (46
genes, 11%) and chromosome 19 contained the most downregulated genes (22 genes, 12%)
(Figure 5A). The enrichment analysis showed that the 46 upregulated genes were most
significantly enriched in the immune-related pathways, such as the “KEGG NOD-like re-
ceptor signaling” and “positive regulation of cytokine production” pathways (Figure 5B,C).
The 22 downregulated genes were most significantly enriched in the “BP-synaptic vesicle
exocytosis”, “export from cell” and “synapse organization” pathways (Figure 5C). The
results indicated that chr1 and chr19 alteration might mainly contribute to the expression
changes related to immunity and exocytosis in aneuploid cell lines.
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Figure 5. Location of differentially expressed genes and their functional analysis. (A): The enrichment
of chromosomes using 419 upregulated DEGs and 182 downregulated DEGs in aneuploid cell lines.
(B): Enrichment using the 46 upregulated DEGs on chromosome 1. (C): Enrichment using the
46 upregulated DEGs on chromosome 1 (left) and the 22 downregulated DEGs on chromosome
19 (right).
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3.5. Genomic Alteration Analysis between Euploid and Aneuploid Ovarian Cancer Patients

To better understand the association between potential crucial chromosome alterations
and ploidy status in ovarian cancer patients, we analyzed the genomic alteration between
euploid and aneuploid ovarian cancer patients. A total of 582 ovarian cancer patients were
included and ranked by aneuploid score from highest to lowest, which partially reflects the
aneuploid level [33]. The top quarter were categorized as a highly-aneuploid group and the
bottom quarter were categorized as a near-euploid group, similar to previous classifications
of cell lines [32]. The genomic alterations were analyzed between the highly aneuploid and
near-euploid group using the cBioPortal online tool. There was no significant difference
between the two groups in the frequency of the common mutations in ovarian cancer [20]
or the mutations with the highest frequency in any group (Figure 6A). However, the copy
number variations (CNV) between the two groups showed a clear difference (Figure 6B,C).
The frequency of CNV in frequently altered genes in serous ovarian cancer was also
significantly different between the two groups (Figure 6D) [42]. The location of genes with
CNV significantly enriched in the highly-aneuploid group showed that these genes are
mostly enriched in chromosome 19, regardless of amplifications or deletions (Figure 7A).
An enrichment analysis showed that these genes in chromosome 19 were mainly related to
the immune function (Figure 7B). All these data showed that the chromosome 19 alteration
might be potentially significant for aneuploid ovarian cancer.
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Figure 6. Comparison of genetic alterations between near-euploid and highly-aneuploid ovarian
cancer patients. (A) Mutation frequency in highly-aneuploid (high-aneuploid score) group and
near-euploid (low-aneuploid score) group. Left panel: Gene mutations with the highest frequency
in any group; Right panel: Common mutations in serous ovarian cancer. (Blue: euploid group;
red: aneuploid group). (B) Copy number alterations enriched in the highly-aneuploid group. Left:
amplification; right: deletion. (C) Copy number alterations enriched in the near-euploid group.
(D) Copy number alterations of genes frequently altered in serous ovarian cancer.
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Figure 7. Chromosome location and enrichment analysis of genes with significant CNV in the
highly-aneuploid group. (A) Chromosome location of genes with CNV enriched in the highly-
aneuploid group. (B) Enrichment analysis of genes with significant deletions enriched in the highly-
aneuploid group. (C) Enrichment analysis of genes with significant amplifications enriched in the
near-euploid group.

4. Discussion

In this study we evaluated the karyotype and chromosomal numerical complexity
of 13 human ovarian cancer cell lines and 2 murine cell lines using G-banding and flow
cytometry. According to the integrated ploidy status based on three parameters, modal
number, ploidy value and aneuploid score, three relatively stable diploid cell lines, A2780,
COV434 and TOV21G, were screened in our study and can be used for nondiploid model
construction for further aneuploidy and polyploidy research in ovarian cancer. However,
most commonly used human and murine ovarian cancer cell lines are aneuploid or hy-
perploid, showing a relatively high ploidy value and high aneuploid score and large-scale
numerical changes.

Many ploidy studies have used the diploid colon cancer cell line HCT116 and the non-
transformed diploid epithelial cell line RPE-1 to construct paired aneuploid and polyploid
cell models [17,32,47]. However, in ovarian cancer ploidy research, the pre-evaluation of
the basal ploidy status of cancer cell lines is usually ignored before the construction of
nondiploid cell models. For example, the commonly used cell lines for the construction of
the polyploidy giant cancer cells (PGCCs) Hey and SKOV3 [48] are already near-polyploidy.
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Herein, the three diploid cell lines screened in our study provide alterations for further
model construction in ploidy research in ovarian cancer.

In addition to supplying diploid alterations for model construction, the ploidy status
of commonly used cell lines provides inspiration for future comparative analyses of diploid
and aneuploid cell lines in ovarian cancer. Nondiploid cells are different from diploid cells
in terms of cell fitness and characteristics, featuring worse genomic, metabolic, proteotoxic
stress and immune stress, manifested as senescence and cell cycle arrest [49,50]. Through
comparisons of diploid and aneuploid cell lines at the same time, it might be possible
to uncover mechanisms of current therapy that already exist and find new therapeutic
targets in ovarian cancer. Additionally, nondiploid cell models from diploid parentals can
be pooled with aneuploid cell lines in the parallel comparisons of the responses of genetic
and chemical regulations.

Some commonly used chemotherapy drugs are not selectively lethal for cancer cells
and usually cause the death of normal cells with rapid reproduction, such as carboplatin
and paclitaxel. A previous study revealed that these two drugs showed no selectivity
between diploid and aneuploid cells, although most cancers are highly aneuploidy [51–53].
The prevalent characteristics in cancer, aneuploidy and polyploidy, as unique features
of cancer cells compared with diploid normal cells, have already been adopted in the
precise identification of circulating tumor cells (CTC) [54–56]. However, this feature has
not been well adopted as a therapeutic target in potential ploidy-selective cancer therapy.
Comparisons between nondiploid and diploid cell lines are necessary to explore ploidy-
selective targets and reduce ploidy-related chemoresistance.

A comparative analysis of expression profiles showed that, compared with diploid
cell lines, genes related to oxidative phosphorylation, lipid metabolism and regulation of
protein function were downregulated in the aneuploid group. Consistent with the survival
stress reported in nondiploid cells [11], metabolism and protein regulation might be promi-
nent vulnerabilities for aneuploid cell lines, a possibility that needs further verification.
Genes related to the immune response were significantly upregulated in aneuploidy cell
lines, especially the NOD-like signaling pathway, NF-κB signaling pathway, IFN-α or IFN-γ
responses and the inflammatory response. According to The Cancer Genome Atlas (TCGA),
aneuploidy and polyploidy correlated with immune evasion, with the downregulation
of genes related to antigen presentation, the lower infiltration of CD8+ T cells and NK
cells, and the upregulation of immune evasion pathways in nondiploid cancer [10,33,57,58].
Acute aneuploidy induced by ploidy shifts can increase the clearance of NK cells, and
tetraploid cancer cells have difficulty forming tumors in immunocompetent mice [59,60].
Overall, currently, the nondiploid-immune association remains poorly understood. Our
cell line analysis showed that aneuploidy might be tightly related to the immune response
and future work should concentrate more on the ploidy-immune association, which might
provide new insights for cancer immunotherapy. Moreover, chromosome 1 alteration might
contribute to the alterations in immune-related function, which needs more evidence in
cell lines. The location analysis showed that chromosome 1 and chromosome 19 alteration
might be significant for aneuploid cell lines and aneuploid ovarian patients, which needs
further verification.

For the integrated evaluation of ploidy status, it might be more comprehensive to
combine cytogenetic methods and sequence or array data to obtain the overall and detailed
chromosome variations. In our research, the cytological data of SKOV3 and IGROV1 indi-
cated that they are near-tetraploid, but the ABSOLUTE estimation showed that the ploidy
status was 1.9 and 2.0, respectively. The discordance of the ploidy evaluation results might
be due to the difference between the two methods. The aneuploid score or the ploidy value
using ABSOLUE estimation is based on copy number variations but cannot fully reflect
cytogenetics [19]. Although the karyotypes of IGROV1 and SKOV3 are near-tetraploid,
they have less CIN, showing less CNV and less numerical complexity (Tables 1 and 2).
This reminds us that the ploidy estimation according to copy number variations is not
exactly same as the ploidy value according to the G-banding karyotype. Despite the rele-
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vance of ABSOLUTE estimation, G-banding is still needed for the ploidy evaluation of cell
lines. Combined technologies and the integrated evaluation of chromosome alterations are
necessary for ploidy evaluation in cancer cell lines [61].

The largest limitation of this study is that the functional regulation of differentially
expressed genes was not verified; more work will be needed for clarification in ploidy
research. Additionally, the number of ovarian cancer cell lines used in our study was
limited. Despite these limitations, the ploidy information and comparison analysis in this
study still provide inspiration for ploidy research in ovarian cancer.

5. Conclusions

In conclusion, we analyzed the ploidy status of 51 ovarian cancer cell lines using
the cBioPortal and evaluated the karyotype numerical complexity of 13 commonly used
human ovarian cell lines and 2 murine cell lines using G-banding and flow cytometry.
We explored the biological function of differentially expressed genes between a diploid
and aneuploid group categorized by modal number, ploidy value and aneuploid score.
Inflammation- and immune-related genes were overexpressed in the aneuploidy group
while metabolism- and protein-related genes were downregulated in aneuploid cell lines.
Chromosome enrichment suggested that chromosome 1 and chromosome 19 alteration
might contribute to ploidy-related alterations in gene expression. In future research, on
the basis of the heterogeneous ploidy status of cell lines, more efforts need to be made to
uncover ploidy-mediated chemoresistance and explore ploidy-targeted cancer therapy in
further ploidy studies in ovarian cancer.
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cell lines.
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