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Abstract: Background: A growing number of clinical studies have confirmed that mRNA vaccines
are effective in the treatment of malignant tumors; however, their efficacy in head and neck squamous
cell carcinoma (HNSCC) has not been determined. This study aimed to identify the potential antigens
of HNSCC for mRNA vaccine development and further distinguish the immune subtypes of HNSCC
to select suitable patients for vaccination. Methods: We obtained gene expression profiles and
corresponding clinical information of HNSCC from Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA). We visualized the genetic alterations of potential antitumor antigens
using cBioPortal and obtained the immune gene set from Immport. The correlation between the
expression of the identified antigens and the infiltration of antigen-presenting cells was visualized
by Tumor Immune Estimation Resource (TIMER). We evaluated the potential biological functions
of different samples and described the immune landscape. Results: Increased expression of three
potential tumor antigens, CCR4, TMCO1, and SPACA4, associated with superior prognoses and
infiltration of antigen-presenting cells, was identified in HNSCC. Three immune subtypes (C1–C3)
with different molecular, cellular, and clinical characteristics were defined. Patients with C3 tumor
had a better prognosis, representing an immune “cold” phenotype, which may be more suitable for
mRNA vaccination. In addition, different immune characteristics were observed among the three
immune subtypes, including markers of immune cells, mutation burden, expression of immune
checkpoints, and immune modulators. Finally, the immune landscape of HNSCC showed a high
degree of heterogeneity between individual patients. Conclusion: CCR4, TMCO1, and SPACA4 may
be potential antigens for developing mRNA vaccines against HNSCC, especially for patients with
C3 tumor. This study could provide a theoretical basis for the development of an mRNA vaccine
against HNSCC.

Keywords: head and neck squamous cell carcinoma; mRNA vaccine; tumor antigen; immune
subtypes; immune landscape

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a lethal malignancy with biodi-
versity and genomic heterogeneity. HNSCC is the sixth most common malignant tumor in
the world, with 600,000 newly diagnosed cases and 350,000 deaths every year [1]. In the
past three decades, the survival rate of HNSCC has improved slightly with the advance-
ment of medical technology and treatment; however, the five-year survival rate is still only
about 66% [2]. Despite the approval of immune checkpoint blockade therapy for HNSCC,
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the overall response rate is less than 20% [3,4]. Therefore, novel approaches are needed to
improve the current treatment strategies for HNSCC.

mRNA vaccines are a new technology combining molecular biology and immunology,
which is closely related to gene therapy. In 1990, Wolff et al. reported, for the first time,
that the corresponding protein products were detected after the direct injection of in vitro
transcribed mRNA into mice [5]. This finding attracted attention to mRNA therapy. mRNA
approaches have many advantages. First, the open reading frame (ORF) of the mRNA
contains only the gene encoding the antigen. In addition, proper modification of mRNA
components and 3′-terminal untranslated region can significantly improve mRNA stability
and translation efficiency [6–8]. With the development of delivery vehicles, the stability
and translation efficiency of mRNA vaccines have also been significantly improved. Fur-
thermore, the introduction of mRNA encoding MHC-I and tumor-associated antigen (TAA)
into tumor cells can improve the immunogenicity of tumors and improve the therapeutic
efficacy of mRNA vaccines [9,10]. Therefore, mRNA vaccines have tremendous potential in
the fight against cancer and viral diseases due to their favorable safety profiles, efficacy,
and ease of industrial production.

mRNA vaccines can induce innate and adaptive immunity [11]. They induce an
increase of tumor infiltrating lymphocytes in the tumor microenvironment to achieve an
anti-tumor effect. In recent years, an increasing number of studies have confirmed the
safety and therapeutic effect of mRNA vaccines on different malignancies. For example, a
nanoparticle-loaded MUC1 mRNA vaccine could induce potent cytotoxic T lymphocyte
responses in triple-negative breast cancer [12]. Meanwhile, liposome-packaged mRNA
encoding tumor-associated antigens gp100 and TRP2 could significantly induce toxic CD8+

T cell response and prolong the overall survival rate of melanoma mice [13]. Currently,
multiple clinical trials of mRNA vaccines are being carried out for different malignancies
and infectious diseases under different delivery conditions [11,14–17]. Considering the
remarkable efficacy of mRNA vaccines, they may be promising candidates for tumor
therapy. However, there are few studies on mRNA vaccines against HNSCC.

The purpose of this study was to identify potential tumor antigens from publicly
available databases for the development of an anti-HNSCC mRNA vaccine and to deter-
mine the immune profile of HNSCC patients which would be suitable for vaccination via
bioinformatics methods. In this study, we identified three tumor antigens, CCR4, TMCO1,
and SPACA4, related to the prognosis and antigen-presenting cell infiltration of HNSCC.
Based on the clustering of immune-related genes, HNSCC patients were divided into three
immune subtypes and six functional modules with different cellular, molecular, and clinical
characteristics. The C3 subtype, i.e., the immune cold subtype, had lower IFN-γ response,
TGF-β response, macrophages, and T cells CD4 memory response relative to the C1 and
C2 subtypes. This indicated that mRNA vaccination may be most effective with the C3
subtype. In addition, by defining the immune landscape of HNSCC, we illustrate the
complexity of the immune microenvironment of HNSCC and provide a reliable reference
for the further development and management of mRNA vaccines.

2. Materials and Methods
2.1. Data Acquisition

We obtained the RNA-seq data of HNSCC samples (including 502 HNSCC samples
and 44 normal samples) from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/, accessed on 7 July 2021). The cBioPortal (http://www.cbioportal.org, version 3.2.11,
accessed on 7 July 2021) was used to show genetic alterations in the underlying anti-tumor
antigen in TCGA. The Series Matrix File of GSE39366 was downloaded from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, accessed on 7 July 2021)
public database. The annotation platform was GPL9053. The immune gene set (including
1811 immune-related genes) was obtained from the ImmPort database. Our workflow is
illustrated in Figure S1.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cbioportal.org
http://www.ncbi.nlm.nih.gov/geo/
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2.2. Tumor Immune Evaluation

The Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/
timer/, accessed on 14 July 2021) is a comprehensive resource for the systematic analysis
of the immune infiltrates of diverse cancer types. In this study, TIMER was used to
visualize the relationship between the infiltration of antigen-presenting cells (APCs) and
the expression of the identified potential antigens.

2.3. Classification of Immune Subtypes

The expression profiles of immune-related genes were clustered unsupervised using
the “Nonnegative Matrix Factorization (NMF)” package [18]. Then, the expression levels of
genes were normalized, and Cox regression analysis was performed to evaluate the correla-
tion between candidate genes and overall survival (OS) using the “Survival” package [19].
Then, the unsupervised NMF clustering method was applied, using the “NMF” package,
and the same candidate genes were used to apply the method to the external validation set
of GEO (to make the expression profile of the validation set a non-negative matrix, 8 was
added to the expression values). The k value, whose correlation coefficient began to decline,
was selected as the best cluster number. Then, based on the T-SNE approach, the mRNA
expression data of the above immune genes were used to verify the subtype distribution.

2.4. Drug Sensitivity Analysis

Drawing on the largest existing drug database (GDSC cancer drug sensitivity ge-
nomics database, https://www.cancerrxgene.org/, accessed on 14 July 2021), we used the
“pRRophetic” package [20] to predict the chemotherapy sensitivity of each tumor sample.
Estimates of the IC50 of each chemotherapeutic agent were obtained by regression, and the
regression and prediction accuracy was tested by 10 cross-validation tests using the GDSC
training set. Default values were selected for all parameters, including “combat” to remove
batch effects and the average of repeated gene expression.

2.5. Gene Set Variation Analysis

Gene set variation analysis (GSVA) [21] is a nonparametric and unsupervised method
to evaluate the enrichment of transcriptome gene sets. In this study, gene sets were
downloaded from the Molecular Signatures Database (Version 7.0) (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp, accessed on 14 July 2021), and aggregated scores were
given for each gene set using the GSVA algorithm to assess potential biological functional
changes in different samples.

2.6. Immune Landscape Analysis

The Reduce Dimension function of the Monocle package [22] with normal distribution
was adopted in our dimension reduction analysis. The maximum number of components
was set to 4, and the discriminant tree dimension reduction algorithm (DDRTree) [23] was
used to reduce the dimension. Finally, the plot_cell_trajectory function (package Monocle)
was used to visualize the immune landscape.

2.7. Weighted Gene Co-Expression Network Analysis (WGCNA)

By constructing a weighted gene co-expression network, the co-expression gene mod-
ules were found, and the associations between the gene network and phenotype were
explored, as well as the core genes. The “WGCNA” R software package [24] was used to
construct a co-expression network of all the genes in the data set, and the top 5000 genes
with variance were screened by this algorithm for further analysis, in which the soft thresh-
old was set to 3. The weighted adjacency matrix was transformed into a topological overlap
matrix (TOM) to estimate the network connectivity, and the hierarchical clustering method
was used to construct the cluster tree structure of the TOM matrix. Based on their weighted
correlation coefficients, genes were classified according to their expression patterns. Those

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.cancerrxgene.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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with similar patterns were grouped into a module, and tens of thousands of genes were
divided into multiple modules through gene expression patterns.

2.8. Analysis of GO and KEGG Functions

Functional annotation of key genes was performed using the “clusterProfiler” package
(R3.6) [25] to fully explore the functional correlations of the candidate genes. The Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to
assess related functional categories. GO and KEGG enrichment pathways with both p and
Q values < 0.05 were considered significant pathways.

2.9. Subtype GSEA Analysis

The log2FC (Fold Change) value for each gene between the subtypes was obtained
using the “limma” [26] and “clusterProfiler” [25] packages, while the GO and KEGG
pathways were analyzed using Gene Set Enrichment Analysis (GSEA) [27]. Finally, specific
up-regulated pathways (10 pathways with the highest NES value) were selected from the
results of each subtype, based on the MSigDB database (http://www.gsea-msigdb.org/
gsea/downloads.jsp, accessed on 14 July 2021).

2.10. Statistical Analysis

A survival analysis was carried out using Kaplan Meier methods and the results were
compared using the log-rank test. The Cox proportional risk model was used for multi-
variate analysis. All statistical analyses were performed using the R language (Version 3.6,
The University of Auckland, Auckland, New Zealand). All statistical tests were two-sided,
with p < 0.05 indicating statistical significance.

3. Results
3.1. Identification of Immune-Critical Genes in HNSCC

Through the cBioportal online tool, we obtained 21,999 genes that had copy number
variations and 13,304 genes that had mutations in TCGA-HNSCC (Figure 1A,B). Among
them, the overall survival (OS) analysis of 4136 genes was significant (p < 0.05), and
the disease-free survival (RFS) analysis of 2844 genes was significant (p < 0.05). On this
basis, three genes, i.e., CCR4, TMCO1, and SPACA4, were retained (Figure 1C); their
expressions were significantly correlated with the OS and RFS of HNSCC (Figure 1D–I).
B cells, macrophages, and dendritic cells (DCs) were the major antigen-presenting cells
(APCs). Furthermore, CCR4 was significantly correlated with tumor infiltration of B cells,
CD8+ T cells, CD4+ T cells, and macrophages, while TMCO1 was significantly correlated
with CD8+ T cells, and SPACA4 was significantly correlated with B cells, CD8+ T cells and
Neutrophils (Figure 2A–C). The above results indicate that CCR4, TMCO1, and SPACA4
have potential immune stimulating properties and could be processed by APCs to induce
an anti-tumor immune response.

http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
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Figure 1. Identification of potential tumor antigens in HNSCC. (A) The map of amplification in
HNSCC. (B) Map of mutation (MUT) in HNSCC. (C) Narrow-down analysis of potential tumor
antigens with both amplified and mutated features, and significant OS and RFS prognosis (in a
total of three candidates) in HNSCC. AMP represented amplification. Kaplan-Meier OS (D) and
RFS (E) curves comparing the groups with a different TMCO1 expression in HNSCC. Kaplan-Meier
OS (F) and RFS (G) curves comparing the groups with a different CCR4 expression in HNSCC.
Kaplan-Meier OS (H) and RFS (I) curves comparing the groups with a different SPACA4 expression
in HNSCC. Hexp and Lexp represented high expression and low expression, respectively.
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Figure 2. Identification of tumor antigens associated with antigen-presenting cells. Association of
TMCO1 (A), CCR4 (B), SPACA4 (C) expression with the purity of infiltrating cells and numbers of
B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in HNSCC.

3.2. Identification of Potential Immune Subtypes of HNSC

To further identify the key genes in the candidate gene set, we collected the clinical
information of HNSCC patients, and screened the characteristic genes in HNSCC by Cox
univariate regression analysis, allowing us to filter out 111 prognostic genes (p < 0.01). We
clustered the TCGA data set containing HNSCC samples according to the expression pro-
files of these 111 candidate genes using the NMF consensus clustering method, and selected
k = 3 as the best cluster number (Figure 3A). Subsequently, the data set of the GSE39366
cohort was independently verified. Using the previously selected k = 3 classification, three
different molecular subtypes were revealed, showing significant prognostic differences in
the TCGA dataset. Compared with the C1 and C2 subtypes, the overall prognosis of the C3
subtype was better (Figure 3B). Similar differences were observed in the GSE39366 subtype
(Figure 3C), indicating the stability and reproducibility of the results.
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We then analyzed the immune status of three subtypes. It was found that the C3
subtype had lower IFN-γ response, TGF-β response, macrophages, and T cells CD4 memory
response relative to the C1 and C2 subtypes (Figure 4A), belonging to the immune cold
subtype. This indicated that mRNA vaccination might be most effective with the C3
subtype. Considering the therapeutic effect of HNSCC by chemotherapy, we predicted
the chemosensitivity of each tumor sample to further explore the sensitivity of common
chemotherapy drugs based on the immune subtypes. The results showed that the immune
subtypes were significantly correlated with the sensitivity of patients to bexarotene, CMK,
dasatinib, docetaxel, metformin, and mitomycin. C (Figure S2). We further explored the
mutation map of patients according to immune subtypes (Figure 4B); this showed that
the mutation proportion of multiple genes, such as TP53, TTN, and FAT1, in the high-risk
group was significantly different among subtypes. Unfortunately, differences in the tumor
mutational burden (TMB) among the expression groups of the various subtypes did not
achieve statistical significance (Figure S3).
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3.3. Molecular Characteristics of Immune Subtypes

We analyzed the expression of immune checkpoints, immunomodulators, and cell
report gene among subtypes. It was found that the expression of a large number of immune
checkpoints and immunomodulatory genes was significant among subtypes (Figure 5A–E),
suggesting that the abnormal disturbance of immunomodulatory pathways among the
three subtypes is the potential mechanism explaining the difference in prognosis among the
three groups of patients. In a previous study [28] based on the immunogenomic analysis
of more than 1000 tumor samples from 33 cancers, Thomson et al. identified six immune
categories (c1–c6) which were significantly correlated with tumor prognosis and genetic and
immunomodulatory changes. To prove the reliability of our immunotyping, the correlation
between three immune subtypes of HNSCC and the six immune subtypes (c1–c6) was
explored (Figure 6A). It was found that HNSCC was mainly concentrated in c1, c2, c3,
c4, and c6, of which c1 (wound healing) was distributed in C3, while c3 (infrared) and c4
(lymphocytic completion) were mainly distributed in C2. This shows that the immune
microenvironment of HNSCC is significantly different from those of other tumor types.
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genes (E) among immune subtypes. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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three immune subtypes (C1–C3) from our results and six immune subtypes (c1–c6) from Thomson.
Differential expression analysis of activated CD8 T cell-related genes (B) and activated dendritic
cell-related genes (C). Macrophage-related genes (D) and NK cell-related genes (E) among subtypes.
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

In addition, the expression differences of immune cell markers between the three sub-
groups were analyzed (Figure 6B–E). There were significant differences in the expression of
cell markers from activated CD8+ T cells, activated dendritic cells, macrophages, and NK
cells among the three subgroups. Next, through a quantitative analysis using the single sam-
ple GSEA (ssGSEA) algorithm, it was found that there were many related pathways with
obvious differences among the three subgroups (Figure S4), among which the pathways
with higher scores in subtype C3 in GO analysis were URETE_METABOLIC_PROCESS,
3_UTR_MEDIATED_mRNA_STABILIZATION, and TRANSFORMATION_ACTIVATOR_
ACTIVITY (Figure S4A). In our KEGG analysis, the pathways with highest scores in
subtype C3 were METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450, ASCOR-
BATE_AND_ALDARATE_METABOLISM, and drag_METABOLISM_CYTOCHROME_P450
(Figure S4B).
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3.4. Immune Landscape of HNSCC

Then, immune-related gene expression profiles were integrated to construct the im-
mune landscape of HNSCC in order to visualize the immune distribution of each patient
(Figure 7A). The distribution of our three immune subtypes in the immune pattern was not
consistent (Figure 7B,C). PCA1 was found to be related to a variety of immune cells, includ-
ing the activation of macrophage M0 and DCs, while PCA2 was most negatively related to
the activation of NK cells. We further analyzed the prognoses of widely distributed patients
and found that the those of the S1 subtype were better than those of the S6 and S7 subtypes
(Figure 7D,E). According to the distribution position of the three immune subtypes in the
immune pattern, C1, C2, and C3 were further divided into different subgroups (Figure 7F).
We further analyzed the survival of the subgroups assigned to each subtype (Figure 7G–I)
and found that the prognosis of the C1-1 subtype was better than that of C1-7, while
the prognosis of C3-1 was significantly better than that of C3-6; however, there was no
significant difference in prognoses in the C2 subtypes.
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Figure 7. The immune landscape of HNSC. (A) The immune landscape of HNSC. Each point
represents a patient, and the immune subtypes are color-coded. The horizontal axis represents the first
principal component, and the vertical axis represents the second principal component. (B) Correlation
between PCA1 and immune infiltration. (C) Correlation between PCA2 and immune infiltration.
(D) Patients were separated by the immune landscape based on their location; (E) separated patients
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were associated with different prognoses. (F) C1, C2, and C3 are further stratified according to their
positions in the immune environment. Different groups in C1 (G), C2 (H), and C3 (I) were associated
with different prognoses.

3.5. HNSCC Immune Gene Co-Expression Module

To determine the co-expression network of immune-related genes in the HNSCC
cohort, we performed WGCNA analysis. We took the immune subtypes C1, C2, and
C3 as the clinical traits of the samples and further used them to construct a WGCNA
network to explore the biomarkers in HNSCC. A sample clustering diagram is shown in
Figure S5. Soft threshold β was set to 3, as determined by the sft$powerEstimate function
(Figure 8A). Then, six gene modules were detected based on the Tom matrix, i.e., blue
(n = 225), brown (n = 98), green (n = 71), turquoise (n = 652), yellow (n = 94), and green
(n = 60) (Figure 8B–D). Through further analysis of modules and traits, we found that the
correlation between the MEblue module and sample category (immune subtype) was the
highest and was negatively correlated (Cor = −0.24, p < 0.01) (Figure 8E). Therefore, the
MEBlue module was selected for subsequent correlation verification analysis. The modular
characteristic genes of the three immune subtypes were analyzed, and the expression of
the characteristic genes in blue, brown, grey, and turquoise modules was significant among
subtypes (Figure 8F,G).
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Figure 8. Identification of immune gene co-expression modules of HNSC. (A) Scale-free fit index for
various soft-thresholding powers (β), and mean connectivity for various soft-thresholding powers.
(B) Dynamic tree of feature modules. (C) Clustering tree of feature modules. (D) Dendrogram of all
differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (E) Relationship
between modules and immune subtypes. (F) Gene numbers in each module. (G) Differential
distribution of feature vectors of each module in HNSC subtypes. Expression of the identified gene
modules in the immune subtypes. ** p < 0.01 and **** p < 0.0001.

It was found that the genes of the MEblue module were significantly enriched in
ameboidal-type cell migration, focal adhesion, and receiver ligand activity by GO en-
richment analysis (Figure 9A), and the TGF-β and HIF-1 signaling pathways by KEGG
enrichment analysis (Figure 9B). At the same time, we analyzed the protein–protein inter-
action (PPI) network of the genes in the modeling candidate gene set using the Cytoscape
software (Cytoscape, https://cytoscape.org/, accessed on 15 November 2022, Cytoscape
Consortium, San Francisco, CA, USA) (Figure 9C). Next, we studied the specific signal
pathways that may be related to the genes of the MEblue module and explored the potential
molecular mechanisms that may affect the lesion and progression of head and neck cancer
by Gene Set Variation Analysis (GSVA) (Figure 9D). This showed that different immune
subtype groups were mainly enriched in the differential pathways.

https://cytoscape.org/
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Figure 9. Functional analysis of key module genes. (A) Go enrichment analysis. (B) KEGG enrichment
analysis. (C) PPI network analysis. (D) GSVA analysis.

In addition, a prognostic correlation analysis showed that only gene expression in the
meturquoise module was significantly correlated with the prognosis of HNSCC patients
(Figure 10A). Among them, the MEbrown, MEgreen, MEturquoise, and MEyellow modules
were significantly negatively correlated with PCA1, while the MEBlue, MEbrown, MEgreen,
MEyellow, and MEturquoise modules were significantly positively correlated with PCA2
(Figure 10B–M).

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

Figure 10. Identification of key immune genes of HNSC. (A) Forest maps of single-factor survival 

analysis of six modules of HNSC. (B–G) Correlation between six module feature vector and PCA1 

in immune landscape. (H–M) Correlation between six module feature vector and PCA2 in immune 

landscape. 

4. Discussion 

HNSCC is one of the most common malignant tumors in the world. At present, sur-

gical treatment, chemoradiotherapy, or combined therapy are still common treatment 

methods. Clinical trials of immune checkpoint inhibitors have proved the clinical efficacy 

of pembrolizumab and nivolumab [29,30], but the overall response rate of HNSCC is less 

than 20% [3,4]. At present, many clinical trials are exploring new immunotherapies. As a 

new type of immunotherapy, mRNA tumor vaccines have achieved significant curative 

Figure 10. Cont.



Biomolecules 2023, 13, 90 14 of 18

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

Figure 10. Identification of key immune genes of HNSC. (A) Forest maps of single-factor survival 

analysis of six modules of HNSC. (B–G) Correlation between six module feature vector and PCA1 

in immune landscape. (H–M) Correlation between six module feature vector and PCA2 in immune 

landscape. 

4. Discussion 

HNSCC is one of the most common malignant tumors in the world. At present, sur-

gical treatment, chemoradiotherapy, or combined therapy are still common treatment 

methods. Clinical trials of immune checkpoint inhibitors have proved the clinical efficacy 

of pembrolizumab and nivolumab [29,30], but the overall response rate of HNSCC is less 

than 20% [3,4]. At present, many clinical trials are exploring new immunotherapies. As a 

new type of immunotherapy, mRNA tumor vaccines have achieved significant curative 

Figure 10. Identification of key immune genes of HNSC. (A) Forest maps of single-factor sur-
vival analysis of six modules of HNSC. (B–G) Correlation between six module feature vector and
PCA1 in immune landscape. (H–M) Correlation between six module feature vector and PCA2 in
immune landscape.

4. Discussion

HNSCC is one of the most common malignant tumors in the world. At present,
surgical treatment, chemoradiotherapy, or combined therapy are still common treatment
methods. Clinical trials of immune checkpoint inhibitors have proved the clinical efficacy of
pembrolizumab and nivolumab [29,30], but the overall response rate of HNSCC is less than
20% [3,4]. At present, many clinical trials are exploring new immunotherapies. As a new
type of immunotherapy, mRNA tumor vaccines have achieved significant curative effects in
preclinical models and clinical studies of different malignancies including melanoma [13,31],
breast cancer [12], colorectal cancer [32], and gastrointestinal cancer [33]. However, there is
little research on the use of mRNA tumor vaccines with HNSCC.
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In this study, we constructed the copy number alterations and mutation landscape
of HNSCC and identified a series of targetable antigens. Three tumor antigens (CCR4,
TMCO1, and SPACA4) related to APCs infiltration and prognosis in HNSCC were identi-
fied, and it is expected that these genes might become candidate antigens for an mRNA
vaccine. However, the specific effects in HNSCC need to be further verified by functional
experiments. Reports in the literature pave the way for these three tumor antigens to
become mRNA vaccines against HNSCC. For example, studies have suggested that CCR4
is significantly associated with the tumor microenvironment (TME) and prognosis in HN-
SCC [34,35], and that CCR4 may serve as a new potential molecular target for HNSCC
therapy [36]. It should be noted that further research is essential, and there is an urgent
need to validate the effects of these identified vaccine antigens in HNSCC.

Considering that the mRNA vaccine is only effective for some patients, we clustered
HNSCC patients into three immune subtypes to identify those that may be suitable for
vaccination. These three subtypes have different clinical characteristics. Compared with
C1 and C2 subtypes, the C3 subtype has a better survival prognosis, which indicates that
immune typing can be used to predict the prognosis of HNSCC patients. The C3 subtype
belongs to the immune cold subtype. Cancer vaccines as adjuvants directly activate APC
and expand the tumor-specific T-cell repertoire, expand the tumor-specific T-cell reper-
toire, and enhance the innate anti-tumor immunity of the host [37]. mRNA vaccines can
change the tumor microenvironment from “cold” tumors to “hot” tumors, thus killing
the tumors [38,39]. Therefore, we speculate that mRNA vaccines may be most effective
with the C3 subtype. However, one study of 289 H&E whole slides of HNSCC found
that immunologic “hot” and “excluded” HNSCCs were associated with better overall
survival than “cold” HNSCC patients [40]. This result is in contrast to the findings in our
study, perhaps due to differences in the assessment of immune status. The authors of [40]
distinguished three categories by reading H&E slides, while in our study, the evaluation of
“cold” and “hot” tumors was based on a comprehensive evaluation of the tumor microen-
vironment by GSVA. The C3 subtype has a lower TP53 mutation load and better survival
prognosis, which is consistent with the previous literature results [41]. Similarly, a study
assessing the risk of the immune microenvironment in HNSCC demonstrated that the
lower the myeloid gene score, the better the response to immunotherapy and the better the
clinical prognosis [42]. Some studies using systems of unsupervised classification based on
tumor-related variable splicing genes have found that four categories exist, with different
molecular and clinical characteristics [43]. Combined with this study, this further explains
the complexity of the internal environment of the tumor, which is one of the challenges
associated with designing personalized mRNA vaccines.

In addition, immune subtypes also reflect the expression levels of immune checkpoints
and immune modulators. The up-regulated expression of immune modulators is more
suitable for a vaccination with an mRNA vaccine, while the high expression of immune
checkpoints is not suitable. Our analysis results show that the expression levels of im-
munosuppressants TGFB1, TGFBR1, IL10, and PDCD1LG2 are relatively high among the
C1 types, which may be one of the reasons for the poor prognoses associated with this
subtype. This is consistent with the results reported previously; for example, TGFB family
genes have been significantly associated with decreased survival of HNSCC patients [44].
Additionally, according to an analysis of the molecular profiling of circulating tumor cells
(CTCs) and clinical factors in HNSCC, it was found that the expression of PDCD1LG2 as
PD-1 ligand genes was related to poor prognosis of HNSCC [45]. However, the expression
levels of cytokines CXCL8, CXCL1, CXCL6, and CXCL17 in the C2 subtype are higher,
while the prognosis of the C2 subtype is relatively poor compared with those of the C1
and C3 subgroups. This is consistent with the results reported previously [46] and may
be related to tumor heterogeneity, suggesting that the abnormal disturbance of immune
regulatory pathways among the three subtypes of HNSCC may be the potential mechanism
of the difference in prognosis among the three groups.
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We studied the distribution of six categories (c1–c6) reported previously [28] and
observed that our three subtypes of HNSCC have different distribution rates, indicating that
the immune subtype of HNSCC reported by us is different from the previously determined
immune subtype and other tumor subtypes, such as cholangiocarcinoma [47] and pancreatic
adenocarcinoma [48]. Therefore, our results could supplement the classification of the
immune microenvironment of HNSCC. Meanwhile, further dimensionality reduction
revealed that the heterogeneity in the C2 subgroup is not significant. This may be related
to different dominant immune factors that significantly affect the prognosis of patients.
More research is needed to better understand the tumor microenvironment. The complex
immune landscape of HNSCC also showed that there was considerable heterogeneity
between individual patients and within the same immune subtype, which reduces the
immune components which could be used in the development of personalized gene vaccine-
based therapies. In these patients, a combination of an mRNA-based cancer vaccine with
another immunotherapy or chemotherapy may prove to more effectively regulate the host
immune response and the tumor microenvironment. Various reviews have summarized
the importance of cancer vaccines and emphasized that vaccine-induced immune initiation
produces a set of effectors whose function can be enhanced by immune checkpoint receptor
(ICR) inhibitors [37,49].

However, there are some limitations in this study. First, we lack multi-center clinical
data to validate our conclusions. In addition, the specific effects of the three tumor vaccines
in HNSCC need to be further verified by functional experiments, and the application of
mRNA vaccine in HNSCC needs further research. Additionally, a vaccine alone is less
likely to achieve long-term tumor regression, and therefore, cancer vaccine design, antigen,
adjuvant, and delivery methods need to be further explored to improve cancer vaccines.
Given the effect of the mRNA vaccine in coronavirus disease-2019 (COVID-19), this study
provides important information for mRNA vaccine development for other diseases.

5. Conclusions

mRNA vaccines represent a promising tumor immunotherapy method. This study
determined that CCR4, TMCO1, and SPACA4 may be potential antigens for HNSCC mRNA
tumor vaccine development, and patients with immune subtype C3 might benefit most
from mRNA vaccination. Therefore, this study provides a theoretical basis for the mRNA
vaccine against HNSCC.
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