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Abstract: To improve current infertility treatments, it is important to understand the pathophysiology
of implantation failure. However, many molecules are involved in the normal biological process of
implantation and the roles of each molecule and the molecular mechanism are not fully understood.
This review highlights the hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E)
vector, which uses inactivated viral particles as a local and transient gene transfer system to the
murine uterus during the implantation period in order to investigate the molecular mechanism of
implantation. In vivo screening in mice using the HVJ-E vector system suggests that signal transducer
and activator of transcription-3 (Stat-3) could be a diagnostic and therapeutic target for women with
a history of implantation failure. The HVJ-E vector system hardly induces complete defects in genes;
however, it not only suppresses but also transiently overexpresses some genes in the murine uterus.
These features may be useful in investigating the pathophysiology of implantation failure in women.

Keywords: implantation; implantation failure; uterine receptivity; female infertility; HVJ-E vector;
gene delivery system; NF-kappa B; Stat-3

1. Introduction

Implantation failure has long been considered as a major problem in assisted re-
productive technology (ART) treatment. This is especially so since the technology for
preimplantation genetic testing for aneuploidy (PGT-A) has been implemented worldwide
for ART treatment [1–3]. Uterine receptivity has been clinically evaluated using serum
progesterone (P4) levels, ultrasonographic endometrial thickness, and histological dating
by endometrial biopsy. A discrepancy between the hormonal milieu and endometrial
morphology and/or function has been suggested as an important cause of implantation
failure [4–7], despite the lack of a consensus diagnostic criteria to date.

Implantation can only occur within a very short period, known as the “implantation
window”, which is approximately 24 h in the rodent uterus [8]. Even though the implan-
tation period is brief, the uterus undergoes multiple complex orchestrated changes [9,10].
Implantation is primarily organized by estrogen (E2) and P4. E2 stimulates the prolifera-
tion of uterine endometrium. Following ovulation, the corpus luteum secretes P4, and it
changes the uterine endometrium in the secretory phase. The uterine endometrium ceases
epithelial proliferation and begins to undergo differentiation during the secretory phase.
P4 priming, which is superimposed with E2 priming, leads to the uterine endometrium
entering the receptive phase. The pre-receptive (preparatory) phase occurs on days 1–3
in mice and in the early luteal phase in women (approximately one week directly after
ovulation). Blastocysts implant the uterine endometrium only during the receptive phase
(day 4 in mice, mid-luteal phase in women) but not in the pre-receptive phase [9,11]. After
the receptive phase, the uterine endometrium shifts to the non-receptive phase. E2 and
P4 are essential for the initiation of the receptive phase of the uterine endometrium [9,12].
For infertility treatment, both E2 and P4 have been and assessed and used to support and
optimize implantation in ART treatment for a long time. Moreover, the dosage form and
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route of administration of E2 and P4 have been optimized however, the pregnancy rate is
still not satisfactory. A systematic review showed no difference in the clinical pregnancy
rate per woman after frozen-thawed embryo transfer between the natural menstrual cycle
and various controlled regimes using exogenous E2 and P4 supplements [13]. E2 and P4
have the essential primary roles in preparing the uterine endometrium for the receptive
phase. However, they do not have total control over the state of uterine receptivity.

During and before the receptive phase in the uterine endometrium, many molecules,
including adhesion molecules, growth factors, and cytokines, are involved in the biological
process of implantation in this short period and are highly organized [9,14]. However, their
roles in uterine receptivity and implantation and their underlying molecular mechanisms
are not fully understood. Many transgenic mouse models have been used to assess their
roles in uterine receptivity and implantation. However, this did not always help because
their constitutive deletion led to embryonic lethality or other systemic deficiencies. Unlike
other organs, uterine endometrium changes their structure and roles within a short period.
Implantation is a very short period; however, uterine endometrium is controlled by the
hierarchical directives. To investigate the hierarchical directives that orchestrate the uterine
endometrium, a transient and local in vivo gene transfer system, rather than long-term and
systematic gene manipulation, to the murine uterus would be helpful. In this review, we
introduce an in vivo screening mouse model that uses a transient and local gene transfer
system to understand the pathophysiology of implantation failure in women.

2. HVJ-E Vector System as a Gene Delivery System

Endocytosis-mediated delivery systems, such as liposomes, have been widely used
as gene delivery systems. Their weakness, however, is the degradation of nucleotides
and other molecules before they reach the cytoplasm [15]. Fusion-mediated delivery
systems have been developed to avoid this problem. As fusion-mediated delivery systems,
the development of paramyxovirus vectors for gene delivery have received considerable
attention, as these viruses show robust fusion activity with the cell membrane and replicate
in the cytoplasm without integration into the DNA [16].

The mouse parainfluenza virus, hemagglutinating virus of Japan (HVJ), also known
as Sendai virus, is a paramyxovirus [17]. HVJ binds to cell surface sialic acid via its
hemagglutinin neuraminidase (HN) protein and promotes membrane fusion via its fusion
(F) protein [18]. The HVJ envelope (HVJ-E) vector employs a native HVJ shell with powerful
cell-fusion properties. The viral RNA is completely degraded and inactivated by UV
irradiation and subsequent treatment with mild detergent to incorporate plasmid DNA,
proteins, synthetic oligonucleotides, and drugs inside the HVJ-E vector [19,20]. The HVJ-E
vector system can deliver genes to a wide range of cells, both in vitro and in vivo [19–24].

3. A Transient and Local In Vivo Gene Transfer System to Murine Uterine
Endometrium Using HVJ-E Vector

To investigate the hierarchical directives that orchestrate the uterine endometrium in
mice, we optimized the HVJ-E vector system as a transient and local in vivo gene transfer
system for the murine uterus [22]. Mice on day 1.5 post-coitum (p.c.; the morning on which
vaginal plugging was first observed was designated as day 0.5 p.c.) were anesthetized
and subjected to a laparotomy to expose the uterus. The HVJ-E vector containing plasmid
DNA or oligodeoxynucleotides (ODNs), total 25 µl in human tubal fluid medium, was
injected slowly into the uterine cavity using a 30-gauge needle from the oviduct side of
the utero-tubal junction, and the injection sites and cervix were clamped for 10 min using
vascular clips for small animals (Figure 1).

Gene transfer using the HVJ-E vector is approximately 120-fold or 17-fold more
efficient than the introduction of the same dose of DNA using liposomes or HVJ-liposomes,
respectively [20,22]. Gene transfection of the uterus using the HVJ-E vector is transient. The
maximum efficiency of gene transfection was achieved 24 h after gene transfer. On day 3
following gene transfer, the transferred gene expression was approximately 50% lower than
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that of 24 h after transfection [22]. On day 5 after gene transfection of luciferase-pcDNA3
plasmid DNA (pcDNA3-LUC-GL3), luciferase activity was not detected (Figure 2) [22].
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When plasmid DNA (pcDNA3-LacZ) was transferred to the uterus, the transferred
gene was distributed in both the luminal and granular epithelium. In contrast, when
FITC-labelled ODNs (20 mer in a random sequence) were transferred using the HVJ-E
vector, it was distributed not only in the endometrial epithelium but also in the stromal cell
layer and a few myometrial cells [22].

HVJ-derived protein (F-protein) disappeared from the uterine cavity within 72 h of
transfection [22]. The HVJ-E vector had no effect on pregnancy rate, course of pregnancy,
litter size, fetal growth in utero, or parturition. Furthermore, it did not transfect the
exogenous gene to the fetus [22]. The HVJ-E vector system can also be applied to the murine
uterus during the mid-late term of pregnancy without disturbing the pregnancy [25].

For in vivo uterine gene transfection in animal models, various methods have been
reported, including liposomes [26–29], adenovirus [30], retrovirus [31], electroporation [32],
bionanocapsule (BNC) comprising a hepatitis B virus envelope L-protein particle [33], and
HVJ-E vector [20,22,24,25,34,35]. However, only a few studies have assessed the efficiency
of gene transfection and distributions of transferred genes. To our knowledge, HVJ-E vector
system is one of the most efficient gene delivery systems to the murine uterus.

4. An In Vivo Screening Model

Many molecules have been reported to be expressed in the uterine endometrium
during implantation [9]. These molecules are under strict temporal and spatial regulation
within a short period, although the biological process of implantation orchestrates complex
changes. To maintain this strict temporal and spatial regulation, we hypothesized that a
few multipotent transcription factors may regulate the transcription of various molecules
that initiate the cascade of biochemical modification of the endometrium to open the
implantation window. We used the HVJ-E vector system in a mouse in vivo screening
model to modulate the function of endometrial signaling molecules during the implantation
window without disturbing the course of pregnancy.

We focused on nuclear factor-kappa B (NF-κB) and signal transducer and activator
of transcription-3 (Stat-3) as multipotential transcription factors that might regulate the
transcription of various molecules.

To assess their function in uterus during implantation, local and transient suppression
of these transcription factors in the uterus was induced using the HVJ-E vector system.
For the transient suppression of NF-κB and Stat-3, a dominant negative mutant inhibitor
κBα of NF-κB (pcDNA3-IκBαM, Clontech #631923) and Stat-3 (Y705F, pcDNA3-Stat-3-
Y705F, RIKEN DNA Bank #RDB02354) or double-stranded decoy ODNs (Table 1) were
transferred into the uterine cavity using HVJ-E vector on day 1.5 p.c. On day 15.5 p.c.,
the viable fetuses in utero in each group were assessed (Figure 3). All mice became
pregnant in the groups transferred with control plasmid DNA (pcDNA3-LUC-GL3), control
double-stranded scramble decoy ODNs, and Stat-3 decoy (#1 in Table 1, single cis-binding
sequence). However, in the pcDNA3-IκBαM and NF-κB decoy-transferred groups, only
70–80% of mice became pregnant, and in the pcDNA3-Stat3-Y705F and Stat-3 decoy (#2 in
Table 1, double cis-binding sequences)-transferred group, approximately 70–75% of mice
lacked viable fetuses.

Table 1. Double-stranded decoy ODN sequences.

NF-κB decoy 5’-CCTTGAAGGGATTTCCCTCC-3’
3’-GGAGGGAAATCCCTTCAAGG-5’

Stat-3 decoy #1 5’-GATCCTTCTGGGAATTCCTAGATC-3’
3’-CTAGGAAGACCCTTAAGGATCTAG-5’

Stat-3 decoy #2 5’-CCTTCCGGGAATTCCTTCCGGGAATTC-3’
3’-GGAAGGCCCTTAAGGAAGGCCCTTAAG-5’

Underlines indicate the consensus elements.
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Figure 3. Effect of gene transfer in mouse uterus using HVJ-E vector on pregnancy rate. The dominant
negative mutant of NF-κB (pcDNA3-IκBαM), the dominant negative mutant of Stat-3 (pcDNA3-Stat-
3-Y705F), or double-stranded decoy ODNs (Table 1) were transferred into the uterine cavity using
HVJ-E vector on day 1.5 p.c. On day 15.5 p.c., viable fetuses in utero were assessed in each group.

5. NF-κB Activation Determines the Timing of Implantation

NF-κB is a member of a protein family whose members, NF-κB1 p50, NF-κB2 p52, Rel
A (p65), Rel B, and c-Rel, form heterodimers. In the resting form, NF-κB is inactivated in
the cytoplasm by its endogenous inhibitor IκB [36]. The signal to stimulate NF-κB first
results in the phosphorylation of IκB, leading to the release of NF-κB from the inactive
NF-κB-IκB complex. NF-κB is a transcription factor involved in many inflammatory and
immune responses. NF-κB is activated in the pro-estrus and estrus phases in the uterine
endometrium of nonpregnant mice [37]. Starting on day 1.5 p.c., NF-κB is gradually
activated in the pregnant uterus every day and the activation continues throughout the
implantation period [37]. The immunoreactivity of p50 and p65 was predominant in
the endometrial epithelium and weaker in the endometrial stromal cells. Knockout of
p65 in mice results in embryonic lethality, whereas targeted disruption of p50 causes no
developmental abnormalities [38,39].

Using the HVJ-E vector system, the transfection of pcDNA3-IκBαM or NF-κB decoy
on day 1.5 p.c. suppressed approximately 50% of NF-κB activity compared to that in
the control group on day 4.5 p.c.; NF-κB activity recovered to the control level on day
5.5 p.c. [35]. At day 4.5 p.c., the implantation site was not observed after an intravenous
(i.v.) injection of 0.5% Evans Blue [40], but on day 6.0 p.c., the uterus formed an epiblast and
a primitive endoderm (development stage 6, equivalent to day 4.0 p.c. by Theiler [41]). This
transient and local suppression of NF-κB activity led to a significant delay in implantation
and a delayed delivery date (Figure 2), but it did not affect litter size per mouse or birth
weight. During implantation, p50 and p65 proteins were predominantly expressed in the
luminal and glandular epithelium. The transfection of pcDNA3-IκBαM with the HVJ-E
vector system suppressed NF-κB activity predominantly in the luminal and glandular
epithelium. In contrast, the transfection of NF-κB decoy suppressed NF-κB activity in the
luminal and glandular epithelium as well as the stromal cells layer. Both pcDNA3-IκBαM
and NF-κB decoy-transfection groups showed similar rates of implantation failure. This
transient and local suppression of NF-κB significantly decreased leukemia inhibitory factor
(LIF) mRNA expression in the uterus on days 3.5 and 4.5 p.c., whilst the expression of
cyclooxygenase-2 (Cox-2) and Hoxa-10 mRNA did not differ. The overexpression of LIF
significantly increased the number of implantation sites on day 4.5 p.c. in the pcDNA3-
IκBαM transferred mice (mean ± SD, 4.9 ± 0.9, range: 1−9) compared to the control
overexpression group (pcDNA3-LacZ + pcDNA3-IκBαM, 0.7 ± 0.42, range: 0−3); however,
it remained significantly lower than in the negative control mice (pcDNA3 + pcDNA3-LacZ
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transferred mice, 11.6 ± 0.4, range: 10–13). NF-κB activation determines the timing of
implantation, at least in part, by controlling LIF expression (Figure 4) [35].
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of implantation, at least in part, by controlling LIF expression. LIF recruits JAK kinases by binding
to LIF receptor (LIFR)-gp 130 and, in turn, recruits the transcription factor Stat-3. NF-κB nuclear
factor-kappa B; LIF, leukemia inhibitory factor; JAK, Janus kinase; Stat-3, signal transducer and
activator of transcription 3 [38,39,42,43].

6. Interaction between Ovarian Hormones (E2 and P4) and NF-κB Activity

NF-κB plays different roles during the three stages of pregnancy which are (i) estab-
lishment; (ii) maintenance of pregnancy; and (iii) labor [44–47]. During the establishment
of pregnancy, NF-κB plays important roles in opening the implantation and also regu-
lates trophoblast invasion [47]. As previously described, pregnancy events are primarily
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coordinated by E2 and P4. NF-κB activation is also related to these hormones. E2 and
estrogen receptor (ER) modulate NF-κB activity via both genomic and non-genomic pro-
cesses, which are membrane-initiated steroid signaling [48] and actions [49]. E2 can rapidly
activate NF-κB via non-genomic pathways [49]. However, many studies have reported
that ER inhibits NF-κB activity in E2-dependent cells [50–59]. While the very rapid ac-
tivation of NF-κB by E2 has been demonstrated in the uterus in vivo [60] and in other
cells, including endothelial cells, cardiac myocytes, and splenocytes [49], the inhibition of
NF-κB by E2 occurs much slower than the rapid response [49]. Moreover, ERα cooperates
with NF-κB to activate other promoters without inhibiting the actions of NF-κB [50]. The
molecular mechanism of ER and NF-κB activity is complicated. The mechanism may have
negative feedback and other transcription pathways. The mechanism of NF-κB activity
via E2 and ER is not fully understood. Numerous studies on various cells other than the
uterine endometrium [47,61–63] have reported that activation of NF-κB by administration
of P4 withdraws and suppresses NF-κB activity. Mutual repression between progesterone
receptor (PR) and NF-κB in tissue targeted by P4 [47,63] has been reported. In women,
E2 and P4 withdrawal occurs during menstruation and parturition. NF-κB is activated
in the uterine endometrium during the perimenstrual phase and labor [47]. However, in
mice, NF-κB is activated before labor [47] and at proestrus and estrus in the non-pregnant
period [37]. Similar to women, E2 and P4 withdrawals occur during parturition in mice.
Circulating levels of E2 and P4 during the estrous cycle in mice are slightly different from
those in women during the perimenstrual phase. At proestrus stage, an increase in cir-
culating levels of E2 and P4 is observed; however, the circulating levels of E2 decrease
and withdraw at estrus [37], increase at diestrus, and peak at proestrus. However, the
circulating levels of P4 increase at diestrus and peak at metestrus [37]. In mice, mating,
which induces ovulation [64] occurs within a limited period of estrus. During early stage
of pregnancy in mice, circulating levels of P4 increase on day 2–6 p.c. and are maintained
at high levels throughout pregnancy [65]. Similar to women, during pregnancy, there is
an increase in circulating levels of P4. In mice, PR mRNA levels increase on day 1.5 p.c.
and the expression of PR protein reaches the maximum on day 3.5 p.c. [11,12]. Similar
to women, PR expression in the uterine endometrium of mice diminishes on day 4.5 p.c.
before embryo implantation [66–68]. However, NF-κB activity in the uterine endometrium
starts to rise on day 1.5 p.c. until at least day 6.5 p.c. [37], which is the stage of trophoblast
invasion. Subsequently, during the maintenance of pregnancy, decreased activation of
NF-κB in women and mice until labor period is observed [47]. NF-κB regulates the ma-
ternal inflammatory response for opening implantation and trophoblast migration and
invasion [35,47]. However, E2, P4, and their receptors’ expression do not fully explain how
NF-κB activity is controlled in the uterine endometrium during implantation.

7. Stat-3 Regulates Blastocyst Attachment and Decidualization

STATs are a family of latent cytoplasmic proteins that transmit extracellular signals to
the nucleus [69]. Stat-3 is activated by glycoprotein 130 (gp130), a subunit of the receptor
for the interleukin-6 (IL-6) family of cytokines, including LIF and IL-11 [70]. Among the
cytokine family members, only LIF and IL-11 receptor-α knockout in mice have an implan-
tation failure phenotype [42,71,72]. LIF expression peaks shortly before the implantation
window, whilst IL-11 expression peaks on day 5.5–7.5 p.c. [71]. Stat-3 is activated immedi-
ately prior to implantation in the uterine endometrium of mice and rats. Stat-3 deficiency
in embryos is lethal [43].

In our study, the transfer of pcDNA3-Stat-3-Y705F or Stat-3 decoy #2 with double
cis-binding sequences on day 1.5 p.c. suppressed Stat-3 activity in the uterus by approx-
imately 50% on day 5.0 p.c. (Figure 2). It inhibited blastocyst attachment and impaired
decidualization, which is an indispensable process for implantation and results in <30%
implantation with normal progesterone levels [34].

Is Stat-3 activity vital to uterine receptivity? We aimed to investigate whether over-
expression of Stat-3 in the uterine endometrium allows blastocysts to implant during pro-
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estrus, which is certainly not an implantation period. A constitutively active form of Stat-3
(Stat-3-C, Addgene plasmid #8722, pcDNA3-Stat-3-C), wild-type Stat-3 (pcDNA3-Stat-3,
Addgene plasmid #8706), or control plasmid DNA (pcDNA3-LUC-GL3) was transferred
into the uterine cavity during pro-estrus using the HVJ-E vector system. Seven to twelve
blastocysts per horn were transferred into the uterine cavity 48 h after gene transfection.
On day 2 after blastocyst transfer, the number of implantation sites per horn in the Stat-3-C
group (n = 27, mean ± SD, 3.6 ± 0.4, Shapiro–Wilk normality test and Wilcoxon’s rank-sum
test, p < 0.001) was significantly higher than those in the LUC-GL3 (n = 15, 0.5 ± 0.2) and
wild-type Stat-3 (n = 10, 0.600 ± 0.4) groups.

To investigate the role of Stat-3 in the uterine endometrium during implantation,
studies that used conditional knockout mice with Stat-3 gene only in PR-positive (PRcre/+

Stat-3f/f; Stat-3d/d) [73,74] and Wnt7a-positive (Wnt7a cre/+ Stat-3f/f; SWd/d) [75] cells have
been published. Lee et al. reported a similar number of retrieved oocytes in Stat-3d/d and
Stat-3f/f mice after superovulation treatment [73]. However, Sun et al. reported a relatively
smaller number of blastocysts in the uteri of Stat-3d/d mice than in the uteri of Stat-3f/f

mice on day 4 p.c. [74]. Additionally, all the mice showed implantation failure owing to
the lack of blastocyst attachment and impaired decidualization. During implantation, a
strong expression of phosphor-Stat-3 is observed in the luminal and glandular epithelium
as well as in the decidual stromal cells at the implantation site [73]. In SWd/d mice, Stat-3
gene is conditionally inactivated in the uterine epithelium; however, it is retained in the
stromal cells [75]. However, SWd/d mice showed drastically reduced decidual responses
with suppressed stromal cell proliferation and differentiation [75]. As previously described,
plasmid DNA (pcDNA3) gene transfected with HVJ-E vector system was distributed mainly
in the luminal and glandular epithelium [22]. On the other hand, ODNs gene transfected
with the HVJ-E vector system was distributed not only in the endometrial epithelium
but also in the stromal cells layer, and a few myometrial cells [22]. The distributions of
the transfected pcDNA3-Stat-3-Y705F and Stat-3 decoy #2 in the uterus were different.
Although Stat-3 decoy #2 worked in the whole uterus, the transfection of pcDNA3-Stat-3-
Y705F can only suppress Stat-3 activity in the luminal and glandular epithelium. However,
these two groups showed comparable suppression rates of implantation. These results
suggest that epithelial Stat-3 controls stromal function via paracrine mechanisms. LIF,
a downstream estrogen target, is essential for implantation in mice [9,42,70]. LIF signal
is transduced via gp130, a transmembrane protein, to either STAT-1/3 or Src homology
region 2 domain-containing phosphatase 2 (SHP2)/extracellular signal-regulated kinase
(ERK) pathways. Constitutive inactivation of gp130 induced embryonic lethality in mice.
Transgenic knock-in mice with defective gp130-mediated STAT-1/3 signaling showed
implantation failure [76]. Conditional knockout mice with gp130 gene only in the PR-
positive (PRcre/+ Gp130-3f/f; Gp130-3d/d) cells were infertile because of implantation failure,
although a similar number of blastocysts was observed in mice with both Gp130-3f/f and
Gp130-3d/d genes [74].

8. Interaction between Ovarian Hormones (E2 and P4) and Stat-3 Activity

Stat-3 is not a direct target of P4 regulation. However, it is an important collaborator of
P4 signaling during the early stage of pregnancy [77]. The transient and local suppression
of Stat-3 activity in the uterus during implantation showed no significant change in serum
levels of P4 and PR mRNA expression in the uterus on day 5.0 p.c. [34]. Sun et al. reported
that serum levels and expression pattern of E2 and P4; and the intensity of ER and PR in
Stat-3 d/d mice were similar to those in Stat-3f/f mice on day 4 [74]. In contrast, Lee et al.
reported a significant suppression of PR-expressing stromal cells on day 3.5 and 4.5 p.c in
Stat-3f/f mice [73].

Homeobox A10 (Hoxa10) is a P4-responsive gene. The expression level of Hoxa10 mRNA
in the uterus on day 4 of pregnancy was lower in Gp130-3d/d than in Gp130-3f/f mice [74].
In Stat-3d/d mice, the expression level of Hoxa10 mRNA in the uterus was almost unde-
tectable [74]. Additionally, mRNA expression levels in other PR target genes, such as
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Indian hedgehog (Ihh) and amphiregulin (Areg), in the uterus on day 4 of pregnancy in
Gp130-3d/d and Stat-3d/d mice were lower than those in Gp130-3f/f and Stat-3f/f mice [74]. The
mRNA expression of PR target genes, such as cytochrome P450, family 26, subfamily A,
polypeptide 1 (Cyp26a1), follistatin (Fst), Areg, lipoprotein receptor-related protein 2 (Lrp2),
and IL-13 receptor, α2 (Il13ra2), was significantly downregulated after administration of
P4 (1 mg) in ovariectomized Stat-3 d/d mice than in Stat-3f/f mice [73]. However, in one of
the P4-responsive genes, histidine decarboxylase (Hdc), mRNA expression in the uterus on
day 4 of pregnancy was similar in Gp130-3d/d, Stat-3d/d, Gp130-3f/f, and Stat-3f/f mice [74]. In
contrast, lactoferrin (Ltf ) and mucin 1 (MUC1), which are E2-responsive genes, were upreg-
ulated in Gp130-3d/d and Stat-3d/d mice [74]. High expression of Ltf mRNA was observed in
the luminal and glandular epithelium of Gp130-3d/d and Stat-3d/d mice. However, Ltf mRNA
was not detected in Gp130-3f/f and Stat-3f/f mice [74]. It is considered that MUC1 works
as a barrier to blastocyst attachment to the luminal epithelium because it is significantly
expressed in the uterine epithelium on day 1 of pregnancy, and it decreases on day 4 of
pregnancy. MUC1 immunostaining showed a strong expression in the apical membrane of
the luminal epithelium, both in Gp130-3d/d and Stat-3d/d mice; however, this was not seen in
Gp130-3f/f and Stat-3f/f mice [74]. The implantation failure occurred because suppression of
uterine gp130 or Stat-3 is associated with downregulation of some specific P4-responsive
genes and a higher uterine estrogenic response under normal ovarian hormone levels. A
functional gp130-Stat3 signaling pathway is essential for appropriate uterine E2 and P4
responsiveness for the preparation of the uterus for implantation.

P4 has been administered for multiple clinical purposes, including infertility treatment
and contraception. Excessive P4 (4 mg/mouse twice on day 2.5 and 3.5 p.c. [78], 10 mg
daily on day 0.5 to 3.5 p.c. [79]) or progestogen (levonorgestrel, 300 µg/kg daily on day
0.5 to 3.5 p.c. [79]) has been administered in mice with inhibited embryo attachment and
decidualization through the downregulation of uterine LIF-STAT3 signaling [78,79]. A
single dose of excessive P4 (4 mg/mouse twice on day 2.5 p.c.) can suppress Lif mRNA
expression and phospho-Stat-3 immunostaining [79].

9. Discussion

Approximately 17% of women experience spontaneous pregnancies after successful
ART treatment, while around 24% of women have spontaneous pregnancies after failed ART
treatment [80–84]. This suggests that at least some women with a history of implantation
failure may not have an irreversible defect. The uterine endometrium of fertile women
may not be ready for conception in every menstrual cycle, as the maximum efficiency
of human natural conception is approximately 30% every menstrual cycle. The uterine
receptivity may vary with each menstrual cycle. The HVJ-E vector system may be valuable
for understanding the pathophysiology of implantation failure in women because gene
suppression using this system does not result into complete knockdown of genes. A
limitation of this system is that the efficiency of gene transfection is approximately 75%,
even though the same procedure is performed with steady hands.

Local and transient uterine gene transfection of Stat3 decoy or a dominant negative
mutant Stat-3 on day 1.5 p.c. suppressed approximately 50% of Stat-3 activity in the
uterus on day 5.0 p.c., resulting in <30% implantation with normal serum progesterone
levels. Women with unexplained infertility also have normal serum progesterone levels.
Implantation failure is a significant cause of infertility in women with unexplained in-
fertility. The Phosphorylated Stat-3 immunostaining is significantly lower in the uterine
endometrium during the mid-luteal phase in women with recurrent/repeated implantation
failures [85,86] and in women with repeated implantation failure and dormant genital
tuberculosis [87] than in fertile control groups, whereas LIF staining intensity did not
differ [85]. This suggests that Stat-3 may be an effective diagnostic and therapeutic target
for human implantation failure.

The HVJ-E vector system is one of the most efficient gene delivery systems for in vivo
murine uteri. Recently, the HVJ-E vector showed intrinsic anticancer activity and has been
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studied in a clinical trial for the treatment of patients with melanoma [23]. It would be
difficult to apply the HVJ-E vector system for infertility treatment because the safety of the
HVJ-E vector for the next generation is unclear. However, the HVJ-E vector system using
mouse models is a very powerful tool for investigating the pathophysiology of implantation
failure in women.
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