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Abstract: Avian influenza A virus H5N1 is a highly pathogenic and persistently a major threat
to global health. Vaccines and antibodies targeting hemagglutinin (HA) protein are the primary
management strategies for the epidemic virus. Although camelids possess unique immunological
features, the immune response induced by specific antigens has not yet been thoroughly investi-
gated. Herein, we immunized an alpaca with the HA antigen of the H5N1 virus and performed
single-cell transcriptome profiling for analysis of longitudinal peripheral blood mononuclear cell
(PBMCs) behavior using single-cell sequencing technology (scRNA-seq). We revealed multiple cellu-
lar immunities during the immunization. The monocytes continued to expand after immunization,
while the plasma cells reached their peak three days after the second antigen stimulation. Both
monocytes and B cells were stimulated by the HA antigen and produced cell-type-specific cytokines
to participated in the immune response. To our knowledge, this is the first study to examine the
HA-specific immunological dynamics of alpaca PBMCs at the single-cell level, which is beneficial
for understanding the anti-viral immune system and facilitating the development of more potent
vaccines and antibodies in camelid animals.
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1. Introduction

The highly pathogenic avian influenza virus (HPAIv) has caused worldwide epidemics
in poultry and humans [1]. The H5N1 influenza virus first affected humans in 1997; in 2021,
it spread at an unprecedented rate throughout the east coasts of Canada and the United
States. Since late 2003, H5N1 has become the most contagious and deadly pathogen in
domestic fowl and wild birds, as well as in human populations in Asia, the Middle East,
Eastern Europe, and Africa. Over 800 human cases have been recorded, with a fatality
rate of more than 50% [1,2]. Hemagglutinin (HA) is a major envelope glycoprotein on
the surface of the influenza virus. By mediating the fusion of the endosomal membrane
through interaction with the sialic acid receptors on target cells, the HA trimer initiates the
viral infection [3–6]. Therefore, HA proteins have been utilized as primary targets for the
influenza vaccine and antibody development to neutralize the influenza virus. Therapeutic
approaches that interfere with the HA protein on the influenza virus have demonstrated
excellent anti-viral activity in clinical trials [3,7,8].

Camelids as domesticated animals are significant for the economy in many regions
of the world and can adapt to a wide range of extreme ecosystems [9]. Recent research on
camelid B cells has shown that all individuals of this species possess a special immunolog-
ical trait that is uncommon in other species [10]. A ‘nanobody’ is a novel single-domain
antibody derived from the variable domain of the heavy chain, from heavy-chain-only anti-
bodies (VHH) in camelids. Due to the unique biochemical characteristics, including small
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size, high affinity, low cytotoxicity, as well as deep tissue penetration [11], nanobodies have
been considered the “next generation” antibodies [12]. Recently, there has been an increased
interest in camelid immunology. Considerable research has been devoted to studying im-
munoglobulin and nanobody development [13–15]. However, the immune system consists
of a complex network of immune cells and related cytokines that contribute to efficient
immune responses against infections. Studies on the immune response to antigen-specific
immunization are important to understand the immune system of camelid animals.

To date, only a few studies have investigated the cellular components of the camelid
immune system. Several studies have described the diversity of peripheral blood mononu-
clear cells (PBMCs) and revealed the relative proportions of the primary leukocyte sub-
populations in camelid animals using flow cytometry [9,16]. Due to the small number
of identified cell subgroups and the inconsistent phenotypic and functional definition of
leukocyte composition, it is challenging to accurately compare the immunophenotype of
leukocytes obtained in different studies [17–19]. Single-cell RNA sequencing (scRNA-seq)
technology offers unprecedented precision for describing novel cell types, cell states vary-
ing from healthy to pathological, or immune cell responses to antigen stimulation [20].
Sophisticated scRNA-seq technology has been used to analyze the kinetics of the immune
response during pathogen infections and to reveal the immune regulation mechanism at
the single-cell level [21].

In this study, we collected PBMCs from an alpaca and described the transcriptome
landscape and longitudinal alterations in response to H1N1-HA protein immunization
at the single-cell level. A total of 35,853 cells were obtained during the pre- and post-
immunization stages. Based on transcriptome data, we defined the immunophenotype of
leukocytes and discovered that HA antigen boosting triggered both innate and adaptive
immune responses in the alpaca. Characterization of important lymphocyte subpopu-
lations and dynamics of the immune response to antigen-specific immunization offer
valuable information for the development of potent nanobodies and influenza vaccines in
camelid animals.

2. Materials and Methods
2.1. Alpaca Immunization

A young, healthy adult female alpaca raised in the China National Gene Bank was
immunized twice over a period of 14 days. For immunization, the animal was injected with
250 µg of influenza A hemagglutinin protein (HA1-V5229-1mg, ACROBiosystems, Newark,
DE, USA) mixed 1:1 with complete/incomplete Freund’s adjuvant. Whole blood samples
were collected before immunization (day 0, HA-0), and at day 17 (HA-1) and day 19 (HA-2)
after the second immunization (Figure 1A).

2.2. Serum Titer Assay

An HA-specific enzyme-linked immunosorbent assay (ELISA) binding assay was
performed to determine the antibody titer in the alpaca serum. Maxisorp ELISA plates
(Invitrogen) were coated with 100 ng of HA protein in a coating buffer (100 nM NaHCO3 in
phosphate-buffered saline (PBS), pH 8.3) and incubated overnight at 4 ◦C, with correspond-
ing blank (non-antigen containing) control and negative (irrelevant antigen containing)
control sets. Next, 200 µL of blocking buffer (2% skimmed milk in PBS) was added for
1 h at 25 ◦C. The alpaca serum collected at HA-0, HA-1, and HA-2 was serially diluted
from 101- to 108-fold with phosphate-buffered saline (PBS) and incubated in the plate at
25 ◦C for 1 h. Next, the plates were washed five times with PBST (0.05% Tween-20 in PBS)
before adding the secondary antibody. HRP-conjugated mouse anti-alpaca IgG-antibody
(Abcam) was added at a 1:2000 dilution and incubated for 1 h at 25 ◦C. After adding 100 µL
TMB substrate (Abcam, Cambridge, UK), the absorbance at 450 nm was read within 15 min
using Synergy™ H1 (BioTek, Winowski, VT, USA).
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Figure 1. Study design and single-cell dynamic landscape of HA-stimulated PBMCs in the alpaca. (A) The alpaca received 
HA stimulations two times, and blood samples were taken from the alpaca at three time points before and after stimula-
tions. Then, scRNA-seq dynamic analyses were conducted. (B) Line plots display the result of the ELISA binding assay 
testing the titer of the HA-specific antibody in alpaca serum. (C) Top: UMAP plot shows HA-0, HA-1, and HA-2 in three 
colors indicating no batch effects; Bottom: UMAP plot shows seven major cell types of 35,853 immune cells by unsuper-
vised clustering. Cells are colored by clusters. (D) Histogram shows the cell proportion of PBMC at different time points. 
(E) Heatmap shows representative marker expression patterns, which annotate clusters to related cell types. 

Figure 1. Study design and single-cell dynamic landscape of HA-stimulated PBMCs in the alpaca.
(A) The alpaca received HA stimulations two times, and blood samples were taken from the alpaca at
three time points before and after stimulations. Then, scRNA-seq dynamic analyses were conducted.
(B) Line plots display the result of the ELISA binding assay testing the titer of the HA-specific
antibody in alpaca serum. (C) Top: UMAP plot shows HA-0, HA-1, and HA-2 in three colors
indicating no batch effects; Bottom: UMAP plot shows seven major cell types of 35,853 immune cells
by unsupervised clustering. Cells are colored by clusters. (D) Histogram shows the cell proportion of
PBMC at different time points. (E) Heatmap shows representative marker expression patterns, which
annotate clusters to related cell types.



Biomolecules 2023, 13, 60 4 of 14

2.3. Peripheral Blood Mononuclear Cell (PBMC) Isolation

Whole blood samples were collected, and peripheral blood mononuclear cells (PBMCs)
from each sample were isolated using Ficoll-Paque™ PLUS Media (GE Healthcare, Chicago,
IL, USA) within 2 h, according to the manufacturer’s instructions. Briefly, 10 mL of whole
blood was transferred from the collection vessel to a 50 mL EP tube; an equal volume of
PBS solution was added to the EP tube to dilute the blood. Then, the diluted blood was
added to 15 mL of Ficoll and centrifuged at 500× g for 20 min (accelerate 3, decelerate 0);
next, the buffy coat was carefully transferred to a new tube and diluted with PBS to a total
volume of 20 mL. The samples were centrifuged again at 600× g for 6 min, after which the
buffer was discarded, and the cell pellet was resuspended in 3 mL PBS.

2.4. Single-Cell Library Construction and Sequencing

The DNBelab C Kit (MGI, #1000021082) was used to construct the library. Isolated
PBMCs were resuspended as single cells at a density of 5000 cells/mL. Cells were wrapped
in droplets with a negative pressure chip, and mRNA was transcribed to cDNA to generate
a sequencing library according to the manufacturer’s instructions. Sequencing libraries
were quantified using a Qubit™ ssDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA). The cDNA libraries were then subjected to DIPSEQ T1 sequencing (MGI).

2.5. scRNA-Seq Data Processing

High-quality scRNA-seq data with valid barcodes were aligned to the genome of
VicPac3.1 through the STAR software, and a unique molecular identifier (UMI) count
matrix was generated using PISA (version 1.10.2) (https://github.com/shiquan/PISA
(accessed on 8 August 2021)). The raw transcript count matrix was loaded into the R (v4.0)
software using the Seurat (v3.1.5) package [22].

2.6. Data Integrating and Cell Clustering

We used the R package Seurat 3.1.5 to integrate and analyze datasets from the three
samples (HA-0, HA-1, and HA-2). The integrated mRNA expression matrix was first filtered
following the Seurat recommendation and a total of 35,853 cells with unique UMI were
obtained [23]. Unsupervised clustering was conducted using Seurat with the parameter
res = 0.5, which revealed a total of 18 clusters. We used mRNA biomarkers obtained from
recently published articles to classify these clusters into seven major groups (Supplemental
Table S1) [24].

2.7. Differentially Expressed Gene (DEG) Analysis

DEGs were calculated using the function FindMarkers built in Seurat with the default
parameters. The resulting DEGs were filtered with p_val_adj < 0.05 and then sorted
according to the average log2 fold change (avg_log2FC).

2.8. Gene Ontology Analysis

We used the clusterProfiler to annotate the functions of the cell subsets. We filtered the
enriched pathways with an FDR q-val of ≤0.05 [25]. The pathways that normalized the
enrichment score in the top 20 are shown in the results.

3. Results
3.1. Overview of the Transcriptome Landscape of Alpaca PBMCs

To determine how immunization with the HA protein affected the transcriptome
landscape of the alpaca immune system, we administered an adult alpaca twice with the
purified HA protein of the H5N1 virus on day 0 and day 14. Using a DIPSEQ T1 sequencer,
we sequenced and analyzed the PBMCs isolated on day 0 (HA-0) prior inoculation and
days 17 (HA-1) and 19 (HA-2) after the second inoculation (Figure 1A). The serum titer
assay revealed that after the second immunization, humoral immunity was boosted by
HA-specific antibodies in the alpaca (Figure 1B).

https://github.com/shiquan/PISA
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Following strict quality control (with > 350 genes per cell), PBMCs at HA-0, HA-1, and
HA-2 generated 13,284, 10,792, and 11,769 single cells, respectively. The average numbers
of genes per cell for the three samples were 825, 1163, and 1355, respectively (Supplemental
Figure S1). The integrated 35,853 cells were analyzed and plotted using uniform mani-
fold approximation and projection (UMAP) (Figure 1C). Unsupervised clustering of the
integrated PBMCs yielded seven major clusters (Figure 1C,E) according to the canonical
markers listed in Supplemental Table S1, including CD4+ T cells (CD3+, CD4+, CD8−), CD8+

T cells (CD3+, CD4−, CD8+), double naive T cells (DNT, CD3+, CD4−, CD8−), monocytes
(CD3−, CD14+, ITGAM+, CD86+, KLRF4+), B cells (CD19+, MS4A1+, CD79A+, CD79B+),
natural killer cells (NK, CD3−, NKG7+, KLRB1+), and dendritic cells (DC, MZB1+, LAMP3+,
VASH1+, IRF8+, IL3RA+, CD86+, KLF4+). Additionally, we compared the leukocyte composi-
tion between HA-0, HA-1, and HA-2 (Figure 1D, Supplemental Table S2). The immune cell
compositions of alpacas underwent a significant alteration upon HA antigen inoculation.
Particularly, the percentage of monocytes dramatically increased from 22.31% at baseline
(HA-0) to 56.60% on day 19 (HA-2), which implies that innate immunity is involved in
antigen-specific immunity.

3.2. Monocyte Response to HA Immunization

Monocytes are crucial immunological components that play important roles in in-
fection resistance. They participate in innate immune reactions and serve as a bridge
to adaptive immune reactions [26]. Based on the relative expression levels of CD14 and
CCR2 (CD16 was not found in the current study), we divided the alpaca monocytes into
three subsets (Mono1, Mono2, and Mono3) to describe their functional characteristics. We
identified the CCR2 gene in the Mono1 and Mono2 subsets (CCR2+), but not in the Mono3
subset (CCR2−). The Mono2 subset was differentiated from Mono1 by a higher expression
level of CD14 (Figure 2A,B, Supplemental Figure S2). According to the heatmap, alpaca
monocytes constituted heterogeneous populations with distinct transcriptional profiles
(Figure 2C).

Mono1 is the majority subset of monocytes, accounting for over 50% of the total mono-
cytes (Supplemental Table S3). Mono1 shows CD14+, SELL+, IL4R+, ITGAL+, ITGAM−,
AIF1+, PTPRC+, CD44+, MSR1+, F13A1+, CARD9+, PDXK+, CSF1R+, and BLVRB+. The
Mono2 subset shows CD14+, SELL+, IL4R+, ITGAL+, ITGAM+, AIF1+, PTPRC+, CD44+,
MSR1+, F13A1+, CARD9+, PDXK+, CSF1R+, and BLVRB+. Compared with Mono2 and
Mono3 subsets, Mono1 cells highly expressed the MHC class II antigen-related gene CD74
and chemotaxis-related gene CCL14 and RGS1. Mono2 cells highly expressed genes re-
lated to cell activation and differentiation (such as SLC11A1 and MAPK13) [27,28], cell
trafficking (TREM1 and SELL) [29], cytokine production LTF [30], and chemokine lig-
and CXCL8, which indicate the pro-inflammatory state of monocytes. Intriguingly, we
discovered that Mono2 cells had high levels of expression of S100 protein-coding genes,
including S100A8, S100A9, and S100A12 (Figure 2D), which are associated with inflam-
matory processes [31–33]. Mono3 cells show CD14+, SELL+, IL4R−, ITGAL+, ITGAM−,
AIF1+, PTPRC−, CD44−, MSR1−, F13A1+/−, CARD9−, PDXK−, CSF1R−, and BLVRB−. The
Mono3 subset highly expressed the reactive oxygen species (ROS) production modulation
gene MICAL1 [34], cell tracking and/or differentiation-related gene NOTCH1 [35–37] and
SIRT7 [38], and the inflammation markers GSDMD and SQSTM1 [39,40].

Next, we conducted a gene ontology (GO) analysis of the upregulated genes for each
of the three monocyte subsets. Significant enrichments in the pathways of the positive
regulation of cytokine production, positive regulation of response to external stimulus,
cell chemotaxis, phagocytosis, myeloid leukocyte migration, cellular response to biotic
stimulus, and leukocyte chemotaxis were identified in Mono2 cells (Figure 2E). These
findings indicate that the Mono2 subset of alpaca is similar to classical human monocytes
and participates in the pro-inflammatory process by activating and priming phagocytosis,
innate sensing/immune responses, and migration [41]. Genes highly expressed in Mono3
cells were significantly enriched in mononuclear cell differentiation, Ras protein signal
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transduction, myeloid cell activation involved in immune response, interleukin-12 pro-
duction, and regulation of interleukin-12 production (Figure 2E), suggesting that these
processes were triggered by HA immunization, resulting in the production of IL-12.
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Figure 2. Examination of subclusters of monocyte cells in HA-stimulated PBMCs. (A) UMAP plot
shows the results of sub-clustering involving monocyte cells. (B) The classic marker gene was
identified in three clusters. (C) Heatmap shows differential gene expression patterns in various
monocyte cell types. (D) Dotplot shows the marker gene expressions pattern in various clusters.
(E) Representative GO terms and pathways enriched in DEGs of various monocyte cell subsets of
PBMCs. Left, CD14+ Mono1; middle, CD14+ Mono2; right, CD14+ Mono3.

3.3. B Cell Response to H5N1-HA Stimulation

Humoral immunity mediated by the B cell response is known to protect the host during
different pathogen infections [42]. We identified four subsets of B cells from alpaca PBMCs,
including naive B cells (CD19+, SELL+), SELL− B cells (SELL−, MS4A1+, LAMP3+), CD19low

B cells (CD19low, MS4A1+), and plasma B cells (MZB1+, GZMA+, AQP3+) (Figure 3A,B).
The composition and changes of the four subsets at HA-0, HA-1, and HA-2 are shown
in Figure 3C. The plasma B cell composition of total B cells changed from 4.65% at HA-0
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to 32.96% at HA-1 and then back to 4.65% at HA-2 (Supplemental Table S4). Given the
production of HA-specific antibodies in the serum (Figure 1B), we assumed that plasma
B cells were involved in the enhancement of immunity during immunization with the
HA antigen.
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Figure 3. Dynamic changes in functional status among B cell subsets. (A) UMAP plot shows the
results of sub-clustering of B cells. (B) Heatmap shows representative marker expression patterns,
annotating clusters to related B cell types. (C) Dynamic changes of B cell proportions were iden-
tified two times after immunization. (D) Heatmap shows differential gene expression patterns in
various B cell types. (E) Dotplot shows the marker gene expressions pattern in various clusters.
(F) Representative GO terms and pathways enriched in DEGs of plasma B cell subsets of PBMC.
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Using the FindAllMarkers function, we profiled the transcriptome characteristics of
naive B, SELL− B, CD19low B, and plasma B cell subsets and identified differentially
expressed genes (DEGs) (Supplemental Table S5). The heatmap of the top 10 DEGs revealed
that the four B-cell clusters were distinctly differentiated from each other (Figure 3E).

DEG analysis revealed that the naive B cells highly expressed genes involved in
homeostasis, such as HVCN1, TSC22D3 (GILZ), UBALD2 gene, transcription factor ID3
molecule, and the chemokine receptor CXCR4, indicating a relative resting state [43–45]
(Figure 3F). SELL− B cells highly expressed a series of genes related to memory B (LY86,
FGD2, and S100A10) [46,47]. However, some genes related to the atypical memory B cell
phenotype, such as the Fc family receptor genes FCRL4 and FCRLA, CRLF2 [48], SPIB [49],
and ZBTB32 [50], were found in the SELL− B cells (Figure 3F). These results indicated
that the SELL− B cells are dysfunctional atypical memory B cells. CD19low B cells highly
expressed genes related to cell motility, such as the encoding type III intermediate filament
protein (VIM) [51] and S100 calcium-binding proteins (S100A6, S100A13) [52,53], indicating
their activation state (Figure 3F). Plasma B cells highly expressed genes related to cell
activation (AQP3, GZMA) [54], differentiation (TXNDC5, BHLHA15) [55,56], and antibody
production (JCHAIN, MZB1, and HSP90B1) (Figure 3F) [57–61]. GO analysis demonstrated
the significant enrichment of genes associated with Golgi vesicle transport, protein folding,
endoplasmic reticulum to Golgi vesicle-mediated transport, protein localization to endo-
plasmic reticulum, and establishment of protein localization to endoplasmic pathways in
plasma B cells (Figure 3G). These results suggest that repeated HA immunization could
activate alpaca B cells, which produce antibodies to induce a humoral immune response
against the infection.

3.4. The Transcriptome Landscape of T Cells in the Alpaca

T cells play a key role in the immune response against avian IAV infections [62,63].
To investigate the transcriptome characteristics of T cells, we further classified the T cell
subsets with canonical markers into seven clusters. These included three CD4+ T cell
subsets: CD4+ naive T cells (CD4+, CCR7+), CD4+ activated T1 cells (CD4+, KLRB1+), and
CD4+ activated T2 cells (STMN1+, MKI67+, PDCD1+); two CD8+ T cell subsets: CD8+ naive
T cells (CD8A+, LEF1+, CCR7+) and CD8+ activated T cells (CD8A+, GZMK+); and two
double negative T (CD4−CD8− T, DNT) cell subsets: naive DNT (CD27+) and activated
DNT (PDCD1+) (Figure 4A,B, and Supplemental Figure S3).

The compositions of the seven T cell subsets revealed that CD4+ T cells were the domi-
nant T cell subset (Figure 4C and Supplemental Table S6). Analysis of T cell composition
at the sample level revealed a significant decline in naive CD4+ T cells and an increase
in activated CD8+ T cells following the second immunization. This finding suggests that
antigen immunization may stimulate the proliferation of activated CD8+ T cells (Figure 4D).
To identify cell-subtype-specific gene signatures associated with antigen stimulation, we
performed an integrated comparative analysis of DEGs from T cell subgroups and found
that alpaca T cells exhibited heterogeneous transcriptional changes (Figure 4E). Naive CD4+

T cells highly expressed CCR7 and LEF1, and activated CD4+ T cells expressed S100A4 and
S100A8, while GZMK, GNLY, and GZMA genes were enriched in activated CD8+ T cells.
GO analysis revealed that the up-regulated expression genes in activated CD8+ T cells were
mostly involved in T cell activation, cell killing, and the regulation of the immune effector
process. Upregulated genes in other T cell subsets were enriched in different pathways and
were associated with various function (Figure 4F).
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Figure 4. T cell immunity in response to H5N1-HA stimulation. (A) UMAP plot shows the results of
sub-clustering of T cells. (B) Heatmap shows representative marker expression patterns, annotating
clusters to related T cell types. (C) Histogram shows PBMC cell proportions in various T cell types.
(D) Dynamic changes in T cell proportions were identified two times after immunization. (E) Heatmap
shows differential gene expression patterns in various T cell types. (F) Representative GO terms and
pathways enriched in DEGs of CD8+ activated T subsets of PBMCs.

4. Discussion

Studies on camelid immunity have mainly focused on the generation of nanobodies,
which have been widely used in therapeutics and diagnostics [64,65]. Few studies have
examined the characteristics of alpaca immune cell composition in response to antigen
immunization. In this study, we constructed a comprehensive single-cell landscape of
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peripheral immune cells from an alpaca with HA antigen stimulation. Using single-cell
RNA sequencing, we profiled 35,853 immune cells sampled before and after immunizations.
Immune cells were classified into seven major clusters, including CD4+ T cells, naive T
cells, monocytes, natural killer cells, and dendritic cells. The immune responses of PBMC
clusters were analyzed in detail separately. It is crucial to systematically identify the
characteristics of immune cells in response to antigen-specific immunization, and this
dataset will undoubtedly further elucidate the underlying molecular mechanisms of the
unique immune system of camelid animals.

Antigen-mediated induction of antigen-specific B and T-cell responses requires the
activation of the innate immune system, particularly with respect to antigen-presenting
cells [66]. Following HA immunization, we found that the proportion of CD14+ monocytes
steadily increased to >50%. Two subsets of CD14+ monocytes were activated and displayed
pro-inflammatory characteristics by upregulating the expression of genes related to cell
activation and differentiation, cell trafficking, and cytokine production. DEG analysis
revealed that monocytes were mostly enriched in activities of antigen presentation and
granulocyte chemotaxis pathways, which indicates that the innate and adaptive immune
cells were activated in response to HA stimulation in the alpaca. However, the activation
of the innate immune system can be both protective and detrimental during infections [67].
HPAIv infections can induce a cytokine storm and exaggerate innate immune response,
which results in severe pneumonia or death [26,62,68,69]. The substantial increase in
monocyte percentage and cytokine production seen in response to HA immunization may
indicate an excessive infiltration of pro-inflammatory monocytes, which may result in
immunopathology [26,70]. This discovery offers a different perspective to illustrate the
generation of cytokine storms.

In addition to the monocytes, the proportion of CD8+ activated T cells also increased.
GO analysis revealed that the T cell activation pathway and expression levels of cytotoxicity-
related genes were upregulated in CD8+ activated T cells. These results demonstrated
that HA-immunization activated the innate immune system, which could assist T cell
activation against the infection. We have also noticed that part of the CCR7+SELL+ CD4+

naive T cell cluster identified in this study simultaneously expressed T cell activating
genes such as CTLA4 and LTB. This phenomenon emphasizes that naive T cells are much
more heterogeneous than previously understood [71–75]. These CCR7+CTLA4+ T cells
were evenly distributed among the HA-0, HA-1, and HA-2 samples (data not shown),
indicating that the expression of CTLA4 CD4+ in naive T cells was not induced by HA
immunization. We speculate that the co-expression of CCR7 and CTLA4 in these CD4+

naive T cells might be a result of continuous stimulation by other antigens several months
prior to HA immunization. Further studies on the immune landscape of camelid animals
are needed to reveal the occurrence of these naive T cells.

Four B cell subclusters, including naïve B cells, CD19low B cells, SELL− B cells, and
plasma B cells were identified in the alpaca PBMCs. This study revealed that SELL− B cells
highly express the FCRL4 gene, which may inhibit memory B cells from differentiating
into plasma cells by reducing the proliferation and differentiation potential [76]. SELL−

B cells were assumed to have an atypical memory B cell phenotype following specific
antigen stimulation [77]. A high proportion of plasma B cells highly expressed antibody
secretion-related genes, such as TNFRSF17 (BCMA), FKBP11, and MZB1, which can be
utilized to develop antibodies targeting alpaca plasma B cells. This is helpful for alpaca
plasma cell enrichment during nanobody development. The proportion of plasma B cells
during antigen immunization determines the effectiveness of antigen-specific antibody
generation [78–80]. In this study, we found that the proportions of plasma B cells dramati-
cally increased by day 17 but were significantly reduced by day 19 (day 5 after the second
HA immunization), suggesting that the proportion of plasma B cells would reach a peak at
three days after the second immunization. Plasma cell dynamics during the specific antigen
immunization should offer valuable references for nanobody discovery in immunized
camelids [79,80]. However, the sampling periods between the first and second immuniza-
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tions were not studied here. A larger and more thorough cohort of camelid animals should
be constructed in the future to accurately identify the molecular mechanisms underlying
the immune response.

5. Conclusions

In summary, we demonstrated the dynamic characteristics of the immune response in
an alpaca following immunization with the H5N1 virus HA protein. To our knowledge,
this is the first study to examine the immune cell population in camelids at the single-cell
level. Our study revealed that both innate and adaptive immune cells were activated after
HA antigen stimulation in the alpaca. This work may offer new insights for understanding
the unique camelid immune system and provide benefits for research focused on potent
vaccine development and antigen-specific nanobodies.
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