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Abstract: Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications
in diabetes. Previous studies have shown that chronic neuroinflammation was associated with
DPN. However, further research is needed to investigate the exact immune molecular mechanism
underlying the pathogenesis of DPN. Expression profiles were downloaded from the Gene Expression
Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by R software. After
functional enrichment analysis of DEGs, a protein–protein interaction (PPI) network analysis was
performed. The CIBERSORT algorithm was used to evaluate the infiltration of immune cells in DPN.
Next, the least absolute shrinkage and selection operator (LASSO) logistic regression and support
vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential
DPN diagnostic markers. Finally, the results were further validated by qRT-PCR. A total of 1308 DEGs
were screened in this study. Enrichment analysis identified that DEGs were significantly enriched in
immune-related biological functions and pathways. Immune cell infiltration analysis found that M1
and M2 macrophages, monocytes, resting mast cells, resting CD4 memory T cells and follicular helper
T cells were involved in the development of DPN. LTBP2 and GPNMB were identified as diagnostic
markers of DPN. qRT-PCR results showed that 15 mRNAs, including LTBP2 and GPNMB, were
differentially expressed, consistent with the microarray results. In conclusion, LTBP2 and GPNMB
can be used as novel candidate molecular diagnostic markers for DPN. Furthermore, the infiltration
of immune cells plays an important role in the progression of DPN.

Keywords: diabetic peripheral neuropathy; immune cells infiltration; biomarkers; bioinformatics analysis

1. Introduction

According to the tenth edition of IDF Diabetes Atlas 2021, 537 million people are
suffering from diabetes, and this number is projected to be 783 million by 2045 [1]. DPN
is one of the most prevalent chronic complications and the cause of limb amputations
in diabetes mellitus (DM) [2]. Pain and numbness are typical and serious symptoms of
patients with diabetic peripheral neuropathy (DPN). However, it shows no obvious clinical
symptoms or manifestations in the inchoate stages. At present, the gold standard methods
for diagnosing DPN are usually based on the electroneuromyography examination [3]. In
practice, these diagnostic methods are difficult and impractical to implement as they are
time-consuming and labor-intensive. Thus, there is still a lack of precise early diagnostic
indicators of DPN. To improve the quality of life of patients with DPN, prevention by tight
glucose control and lifestyle intervention is the best current treatment for DPN. Therefore,
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the biomarkers for early diagnosis are critical in improving the early diagnosis of DPN
patients, which may also improve the prognosis of DPN.

Previous investigations have demonstrated that both ischemic and metabolic factors
play a key role in DPN [4]. Among those mechanisms in DPN, oxidative stress and chronic
neuroinflammation have been highlighted by multiple reviews and research articles [5–7].
However, the multifactorial and complex pathogenetic mechanisms in DPN have not yet
been fully elucidated. To further explore the specific molecular mechanism, transcriptomics
analyses have been performed in several studies, most of them utilizing the gene microar-
ray [8]. Microarrays are commonly used in performing gene expression studies to clarify
the relationship between multiple different genes and the disease. In a recent study, a
microarray was performed on the sciatic nerve tissues from control rats and DPN rats. The
results identified a pool of candidate biomarkers involved in the early phase of experi-
mental DPN [9]. Another study found that the neurotrophin-MAPK signaling pathway
was a key signaling pathway in the development of DPN [10]. Based on these previous
studies, differentially expressed genes (DEGs) were identified in our study using published
datasets in the GEO database which contains DPN and normal sciatic nerve samples.

Biomarkers can provide accurate early diagnosis and guidance in clinical decision-
making. Additionally, they have contributed to the objective evaluation of pathogenic
processes. The neurophysiological methods found that some electrophysiological indicators
are expected to be widely used as diagnostic and predictive biomarkers [11]. However,
traditional biomarkers have shortcomings and limitations, and few have been used clin-
ically [12]. Recently, molecules involved in several metabolic and signaling pathways
associated with DPN have been suggested as predictive biomarkers [13].

A growing number of studies have revealed that neuroinflammation serves an im-
portant function in the occurrence and development of DPN [14]. For example, dorsal
root ganglia are infiltrated by T-cells and neutrophils in chronic DPN [15]. Therefore,
from the perspective of the immune system, evaluating the infiltration of immune cells in
peripheral nerves and determining the differences in immune cell infiltrate composition
would be valuable for elucidating the molecular mechanisms of DPN and developing
new immunotherapeutic targets. CIBERSORT is an algorithm used to evaluate gene ex-
pression data from microarrays and analyze various immune cell proportions inside the
samples [16]. It has been extensively used in the immune cell infiltration analysis in many
diseases such as rheumatoid arthritis, lupus nephritis, idiopathic pulmonary fibrosis and
human cancers [17–19]. To date, no prior studies have yet analyzed immune cell infiltration
using CIBERSORT in DPN.

In the present study, we obtained gene expression microarray data of DPN from the
GEO database. Then, freely available and open-source bioinformatic tools were used to
identify differentially expressed genes in DPN samples and normal samples. Functional
and pathway enrichment analysis and protein–protein interaction (PPI) network analyses
were conducted. We aimed to unravel the specific molecular mechanisms by which these
DEGs contribute to the development and progression of DPN. Next, the CIBERSORT
algorithm was applied to analyze the difference in immune infiltration between DPN and
normal nerve tissues for the first time. Subsequently, machine learning algorithms were
used to further screen and determine the potential biomarkers of DPN. Finally, to further
understand the immune mechanisms during DPN development, the relationship between
the biomarkers and the infiltrating immune cells was studied. In addition, 15 mRNAs were
confirmed as differentially expressed by qRT-PCR. The complete workflow is shown in
Figure S1.

2. Materials and Methods
2.1. Data Preprocessing and DEGs Identification

We searched microarray gene expression profiling of diabetic peripheral neuropathy
from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed
on 10 November 2022) database. Dataset GSE70852 [20] and GSE27382 [21] were selected
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for further analysis. GSE70852 contains microarray measurements of dorsal root ganglia
(DRG) and sciatic nerve (SCN) tissue from 26-week-old ob/+ and ob/ob mice (n = 5 in each
group). The GSE27382 dataset contains 6 samples from 24-week-old BKS db/db mouse
sciatic nerve and 7 samples from db/+ mouse sciatic nerves. We chose SCN samples in
two datasets (n = 23) for further analysis. Then, GSE70852 and GSE27382 gene expression
matrices were merged, and the batch effect was removed using the “sva” package of R
software [22] (version 4.1.2, http://r-project.org/, accessed on 10 March 2022). The effect
of removing batch effects was demonstrated using a box plot and a two-dimensional PCA
cluster plot was used to evaluate the effect of inter-sample correction.

2.2. Differential Expressed Genes Screening and Analysis

The R package “limma” was applied to the normalized and merged gene expression
matrix to identify significantly DEGs [23]. DEGs with p < 0.05 and |Foldchange| > 1.5
were considered statistically significant [24]. The R package “pheatmap” (https://CRAN.
R-project.org/package=pheatmap, accessed on 10 March 2022) was used to construct
the heatmap plot. A volcano plot was constructed using the OmicStudio tool at https:
//www.omicstudio.cn/tool (accessed on 10 November 2022).

2.3. Differential Expressed Genes Screening and Analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analyses and gene set enrichment analysis (GSEA) were conducted based on the
DEGs using the R package “clusterProfiler” [25]. The R package “GOplot” and “enrichplot”
were used to visualize the results of enrichment analysis [26]. Disease Ontology (DO)
enrichment analysis was performed on DEGs through the DisGeNET database [27]. A false
discovery rate (FDR) < 0.05 and a p < 0.05 were considered significant enrichments.

2.4. Construction of the PPI Network of Differential Expressed Genes and Hub Genes Analysis

To explore the relationship of DEGs, a PPI network was constructed using the STRING
online database (version 11.5, https://www.string-db.org, accessed on 10 March 2022) [28],
with interactions with a combined score > 0.9 being used for network construction. Cy-
toscape v3.8.1 was used to visualize the PPI network. The cytoHubba plugin in Cytoscape
was employed to identify hub genes based upon eight algorithms, including stress, radial-
ity, MNC (maximum neighborhood component), MCC (maximal clique centrality), EPC
(edge percolated component), EcCentricity, DMNC (density of maximum neighborhood
component), degree, closeness, BottleNeck and betweenness [29]. We selected the top
70 node genes scored by each algorithm to screen hub genes in DPN. An UpSet plot was
generated using the R package “UpSetR” [30].

2.5. Evaluation of Immune Cell Subtype Infiltration

The abundance of 22 types of infiltrating immune cells of each sample with DPN
or normal was estimated by translating the gene expression matrix data into the relative
proportion of immune cells [16]. The 22 types of immune cells include naive B cells, memory
B cells, plasma cells, CD4+ T cells, CD8+ T cells, resting and activated NK cells, monocytes,
M0/M1/M2 macrophages, dendritic cells, mast cells, eosinophils, etc. This was achieved
with the CIBERSORT algorithm based on deconvolution using the R package “CIBERSORT”
(http://cibersort.stanford.edu/, accessed on 20 March 2022). Analysis was performed by
using the default signature matrix at 1000 permutations [31]. Then, PCA clustering analysis
was performed and a correlation heatmap was drawn by the OmicStudio tool. R packages
“ggplot2” and “ggpubr” were applied to visualize the results from CIBERSORT [32]. Here,
only the data with p < 0.05 were used for subsequent analysis. The least absolute shrinkage
and selection operator (LASSO) logistic regression model was conducted to analyze the
different infiltrates of immune cells in DPN and normal samples with the R package
“glmnet” [33].

http://r-project.org/
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://www.omicstudio.cn/tool
https://www.omicstudio.cn/tool
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http://cibersort.stanford.edu/
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2.6. Identification and Verification of Biomarkers

LASSO logistic regression and the support vector machine-recursive feature elimina-
tion (SVM-RFE) machine learning method were applied to identify the potential biomarkers
associated with DPN [34,35]. RFE-SVM was implemented with the R package “e1071”
(https://cran.r-project.org/web/packages/e1071/index.html, accessed on 11 April 2022).
The RNA-Seq dataset GSE159059, which contains 10 non-diabetic db/+ mice and 10 DPN
mice, was used as the validation dataset [36]. The gene expression matrix of the validation
RNA-Seq dataset was downloaded from the GEO database. After combining the DEGs
selected by the LASSO and SVM-RFE algorithms, potential biomarkers were identified by
the two algorithms simultaneously. The receiver operating characteristic (ROC) curve was
applied to evaluate the diagnostic value of biomarkers.

2.7. Correlation Analysis between Diagnostic Markers and Immune Cells

Spearman correlation analyses were performed to assess the correlation between the
diagnostic markers and infiltrating immune cells [37]. The results were visualized by R
package “ggplot2”.

2.8. Animals

Male, 12-week-old, nondiabetic C57BL/ksJ-leprdb/lepr+ mice (db/+) and diabetic
C57BL/ksJ-leprdb (db/db) mice (n = 5 per group) were purchased from Huafukang Com-
pany (Beijing, China). The animals were housed under standard conditions of a 12 h
light/dark cycle and given unrestricted access to water and food. Mice were handled
in accordance with the National Institutes of Health Guidelines and Regulations, and all
experiments were approved by the Animal Ethics Committee of Huazhong University of
Science and Technology.

2.9. Tissue Harvest and Quantitative Real-Time PCR

At 26 weeks of age, all the animals were killed by sodium pentobarbital overdose after
random blood glucose level monitoring and behavioral tests were conducted [38]. Then,
sciatic nerves from two groups were dissected and used for RNA extraction. Total RNAs
were extracted using a QIAGEN RNeasy Mini Kit. qRT-PCR was performed to validate
the expression level of DEGs based on the instruction of ChamQ SYBR qPCRMaster Mix
(Vazyme, Nanjing, China). The RNA data were normalized to β-actin as the endogenous
reference. Gene expression levels were calculated with relative expression levels by using
delta–delta Ct method (2−44Ct). The primer sequences were listed in Table S1.

2.10. Statistical Analysis

Data were expressed as the mean ± SEM. p < 0.05 was considered statistically signifi-
cant. The unpaired Student’s t-test and one-way analysis of variance with Bonferroni post
hoc test were performed for comparisons between two groups. Statistical analysis was
calculated with the GraphPad Prism v 9.3.1 software.

3. Results
3.1. Data Preprocessing and DEGs Identification

The microarray data of the GSE70852 and GSE27382 datasets were merged, containing
12 DPN sciatic nerve samples and 11 normal sciatic nerve samples. The box plot shows that
the batch effects between two gene expression profile datasets were removed (Figure 1a,b).
After normalization and batch effect removal, principal component analysis was used to
characterize the merged dataset (Figure 1c,d). |Foldchange| > 1.5 and p < 0.05 were used
as the thresholds to screen differentially expressed genes in DPN after data preprocessing.
A total of 1308 DEGs were obtained from the gene expression matrix using the R package
“limma”, including 628 upregulated and 680 downregulated genes (Table S2). A heatmap
and volcano map are shown in Figure 2.

https://cran.r-project.org/web/packages/e1071/index.html
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the batch correction of merged datasets including GSE70852 and GSE27382. The box plots before and
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3.2. Functional Enrichment and Pathway Analyses

To determine functions associated with DEGs in DPN, GO analysis was performed
based on the 628 upregulated DEGs and 680 downregulated DEGs. A GO circle plot
highlights the top 10 GO biological process (BP) terms that are strong candidates for DPN
(Figure 3a,b). The inner ring of the circle plot represents a bar plot, where the bar height
indicates the negative log p value of the BP term described. The outer ring shows a scatter
plot of the expression levels of DPN associated DEGs in each enriched GO term [39]. GO
analysis results showed that upregulated DEGs were mainly related to the biological activity
of inflammatory cells, such as leukocyte migration and neutrophil migration (Figure 3a).
Downregulated DEGs were mainly related to neural functions (Figure 3b). The above results
suggested that the immune response plays an important role in DPN. KEGG pathway
analysis and GSEA analysis were also used to reveal the changed biological pathways in
DPN (Figure 3c,d,f). Overlapping the KEGG pathways analysis with the GSEA results
produced three pathways, one of them was the IL-17 signaling pathway, which is also a
key pathway in regulating immunity [40]. DisGeNET is a discovery platform integrating
information on gene-disease associations from public data sources and the literature [27].
Furthermore, the diseases associated with DEGs were mapped to the DisGeNET database
and the results are shown in Figure 3e.
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in red and blue, respectively.

3.3. PPI Network Analysis of DEGs

In order to identify potential links between DEGs, a PPI network with 381 nodes
and 776 edges was generated using the STRING database. The confidence interaction
score was set to 0.9 in Figure S2 for the network construction. Then, eight algorithms in
the cytoHubba plugin were used to calculate the score of DEGs. As a result, seven hub
genes were screened by the R package “UpSetR” (Figure 4a). The expression levels of the
seven hub genes in the merged dataset are shown by a heatmap (Figure 4b). These results
suggested that these hub genes may play important roles in the development of DPN.
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Figure 3. Enrichment analyses of gene ontology (GO), KEGG pathway, disease ontology (DO), and
gene set enrichment analysis (GSEA). (a) The upregulated biological processes and (b) the downregu-
lated biological processes in the DPN group. The top 10 are listed. The nodes in the concentric circle
represent the DEGs clustered in the GO annotations. The red and blue colors represent upregulated
DEGs and downregulated DEGs, respectively. (c,d) KEGG pathway enrichment analysis of upregu-
lated and downregulated DEGs of the DPN group. (e) The enrichment analysis of disease ontology.
(f) Gene set enrichment analysis (GSEA). The IL-17 signaling pathway, P53 signaling pathway and
PPAR signaling pathway were significantly enriched.
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the merged microarray data.

3.4. Immune Cell Infiltration in DPN and Normal Tissues

PCA cluster analysis results of immune cell infiltration showed that there was a
significant difference in immune cell infiltration between the DPN samples and the control
samples (Figure 5a). The correlation analysis results between different types of immune
cells are represented by a correlation heatmap. It showed that monocytes had a significant
positive correlation with M2 macrophages. Resting dendritic cells and M1 macrophages
also had a positive correlation. On the other hand, resting dendritic cells had a significant
negative correlation with monocytes and M2 macrophages (Figure 5b). The infiltrating
levels of 22 immune cell types in each sample are presented in a histogram using the
function of R package “RColorBrewer” (Figure 5c). The box plot of the immune cell
infiltration difference shows eight types of immune cells with p < 0.05 (Figure 6a). Seven
types of immune cells were selected by LASSO and the results are displayed in Figure 6b,c.
Taking the intersection of the two methods, six types of immune cells were considered to
be differentially expressed. Specifically, compared with the normal control sample, M1
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macrophages and resting CD4 memory T cells infiltrated more in DPN samples, while M2
macrophages, resting mast cells, monocytes and follicular helper T cells infiltrated less.
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Figure 5. Evaluation and visualization of immune cell infiltration in DPN and normal samples.
(a) The correlation of immune cells in DPN samples was evaluated. Different shades of squares
represent the degree of negative or positive correlation. (b) Principal component analysis (PCA)
cluster plot of immune cell infiltration between DPN and normal samples. (c) A histogram plot shows
the composition of immune cells in each sample.
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Figure 6. Identifying the infiltration levels of immune cell populations in DPN. (a) Box plots showing
the infiltrating immune cells in DPN samples compared to normal samples. (b,c) The least absolute
shrinkage and selection operator (LASSO) logistic regression algorithm was conducted to analyze
the different infiltrates of immune cells in DPN and control samples. Different colors represent
different types of immune cells. Trajectories of the independent variables of LASSO regression, the
horizontal coordinates indicate the logarithm of the independent variable Lambda, and the vertical
coordinates indicate the coefficients of the independent variables. LASSO regression under each
Lambda confidence interval.

3.5. Screening and Verification of Biomarkers Markers

The LASSO logistic regression algorithm and SVM-RFE algorithm were used to screen
out novel diagnostic biomarkers most associated with DPN from DEGs. Ten and eight candi-
date genes were identified by LASSO and SVM-RFE algorithms, respectively (Figure 7a,b).
Finally, two diagnostic related genes (LTBP2 and GPNMB) were obtained by taking the
intersection of the two algorithms (Figure 7c). To make the validation more credible, fur-
ther validation of the diagnostic efficacy of LTBP2 and GPNMB was performed in the
validation dataset GSE159059. The expression levels of LTBP2 and GPNMB in the dataset
GSE159059 are shown in Figure 7d,e. The ROC curve showed the diagnostic performance
of LTBP2 and GPNMB in the verification dataset and the area under the ROC curve (AUC),
which can summarize the overall diagnostic accuracy of the potential biomarkers, was
0.896 (Figure 7f), indicating that LTBP2 and GPNMB had high diagnostic value.
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Figure 7. Screening and verification of biomarkers. (a) The LASSO logistic regression algorithm was used
to screen biomarkers. Different colors represent different genes. (b) The Support vector machine-recursive
feature elimination (SVM-RFE) algorithm was used to screen biomarkers. (c) Venn diagram for selecting
identical potential biomarkers obtained by the two algorithms. (d,e) Detailed expression of two biomarkers
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performance of selected biomarkers (AUC refers to the area under the ROC curve). (g) The correlation
between differential immune infiltrating cells and LTBP2. (h) The correlation between differential immune
infiltrating cells and GPNMB. The color of the dots represents the p-value and the size of the dots
represents the strength of the correlation between genes and immune cells. A p value < 0.05 was considered
statistically significant.

3.6. Correlation Analysis between LTBP2 and GPNMB, and Infiltrating Immune Cells

The correlation analysis showed that LTBP2 was positively correlated with M1 Macrophages
and resting CD4 memory T cells, and it was negatively correlated with M2 macrophages, mono-
cytes and follicular helper T cells (Figure 7g). GPNMB was positively correlated with resting
CD4 memory T cells, and it was negatively correlated with M2 macrophages, monocytes,
follicular helper T cells and resting mast cells (Figure 7h).

3.7. Validation of DEGs by qRT-PCR

To further validate the above outcomes obtained from microarray analysis, qRT-PCR
was carried out. We selected 20 DEGs with high fold changes or high weight in the
network to validate the analysis results. The total RNA from individual mouse sciatic
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nerves (n = 5 per group) was extracted and then evaluated for these genes. As a result,
15 DEGs have been verified. The gene expression levels of UBD, UCP1, LTBP2, CCL2,
S100A8, HSPB7 and GPNMB were increased in the DPN groups compared with the control
groups. Furthermore, MMP9, PON1, CYP2F2, CDH1, TUBB3, MYT1L, CACNB4 and MGL2
were significantly downregulated in the DPN groups (Figure 8). Among these DEGs is
the inflammatory response-related gene CCL2, which is reported to be associated with
diabetic neuropathic pain [41]. A study has found that S100A8 expression levels increased in
neurodegenerative disorders and inflammatory and autoimmune diseases [42]. Uncoupling
protein 1 (UCP1) is a 32-kDa protein located in the inner membrane of mitochondria. It
regulates the dissipation of excess energy via uncoupling oxidative phosphorylation from
ATP synthesis [43]. Recent investigations have suggested that differential regulation of
UCPs may be associated with diabetes and DPN [44]. Paraoxonase 1 (PON1) has been
extensively evaluated as a genetic candidate for diabetic microvascular complications [45].
TUBB3 is primarily expressed in neurons and may be involved in neurogenesis and axon
guidance and maintenance. More importantly, there was a significant difference in the
expression levels of two biomarkers, LTBP2 and GPNMB, between two groups.
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**** p < 0.0001).

4. Discussion

DPN is a common, serious and troublesome chronic complication of DM [46]. Chronic
hyperglycemia and oxidative stress lead to major structural and functional abnormalities
of the peripheral nerves. In addition, neuroinflammation plays an important role in the
development of DPN. Currently, large numbers of DPN patients complain of pain, fatigue,
reduced quality of life and disability. Unfortunately, early diagnosis is difficult due to the
lack of specific diagnostic indicators. Therefore, finding novel diagnostic biomarkers and
analyzing the pattern of DPN immune cell infiltration is useful for improving the outcomes
of patients with DPN. Previously, multiple studies have found that the signaling pathways
comprised of some genes may play an important role in the development of DPN. However,
few systematic analyses and comparisons of the transcriptome data have been made. More
importantly, the exact mechanism underlying the progression of DPN driven by key genes
remains to be fully elucidated.

In this study, bioinformatics techniques were used to analyze microarray data acquired
from the GEO database isolated from sciatic nerves of T2DM mouse models to identify
potential biomarkers. A total of 628 upregulated and 680 downregulated DPN-related DEGs
were identified in the GSE70852 dataset and GSE27382 dataset. GO enrichment analysis
showed that upregulated DEGs were mainly enriched in leukocyte migration (GO:0050900),
leukocyte chemotaxis (GO:0030595), cell chemotaxis (GO:0060326), neutrophil migration
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(GO:1990266) and granulocyte migration (GO:0097530). Additionally, downregulated
DEGs were mainly enriched in neurotransmitter transport (GO:0006836), regulation of
membrane potential (GO:0042391) and axonogenesis (GO:0007409). From the above results,
it was revealed that a DPN upregulated immune response and was significantly associated
with the impairment of neurological function. Furthermore, DO enrichment analysis
showed that immune-mediated diseases such as inflammation, fibrosis and arthritis were
enriched. The IL-17 signaling pathway, p53 signaling pathway and Toll-like receptor
signaling pathway were identified to be associated with DEGs by pathway enrichment
analysis. Several investigators have suggested that upregulated IL-17 possesses a crucial
role in the inflammatory process and the development of DM [47]. Ben Y et al. found that
astragaloside IV could reduce the occurrence of mitochondrial-dependent apoptosis by
regulating the SIRT1/p53 pathway in DPN rats [48]. Other studies have found that Toll-like
receptor4 could be a potentially sensitive diagnostic biomarker for DPN in type 2 diabetic
patients [49]. Our analysis data were also consistent with the findings above.

Through PPI network construction, genes that have high scores in eight algorithms
were considered as key hub genes, such as CCL2, TGFB1, MMP9 and CD68. It is of note
that abnormal expression of some genes has been reported to be related to DM or DPN
in the past few years. As an example, C-C chemokine ligand 2 (CCL2) and its receptor
are key players in the attraction of monocytes to sites of injury and inflammation and it
was proposed to be a major cause of diabetic neuropathic pain [41,50]. Previous studies
have demonstrated that Triphala churna acted as a neuroprotective agent in DPN via the
downregulation of inflammatory cytokines such as TGFB1 [51]. Moreover, downregulation
of MMP9 could improve peripheral nerve function via promoting Schwann cell autophagy
in DPN [52]. A previous study found that CD68, a macrophage marker, was higher in the
DRGs of patients with DPN, demonstrating that the upregulated inflammatory markers
may contribute to the inflammatory response, potentially stemming from diabetes related
neuronal pathology [53]. Overall, inflammation can be an important factor following
peripheral nerve injury, as activated macrophages are needed to engulf myelin debris and
apoptotic cells. However, sustained and low-grade inflammation is generally known to be
linked to diabetes [54]. This impairs the cell viability in the peripheral nerve.

In order to explore the role of immune cell infiltration in DPN, CIBERSORT analysis
was applied to estimate the fractions of immune cells in sciatic nerves. We found that an
increased infiltration of M1 macrophages and resting CD4 memory T cells, and a decreased
infiltration of M2 macrophages, resting mast cells, monocytes and follicular helper T cells
may be related to the development of DPN. Macrophages are professional phagocytes
belonging to the innate immune system that can be activated by a variety of external stimuli.
Based on their function, macrophages can be differentiated into two phenotypes: M1 (pro-
inflammatory) and M2 (anti-inflammatory) macrophages [55]. M1 macrophages are able
to secrete a broad range of inflammatory factors, such as IL-6, IL-1β and TNF-α. Previous
studies have shown that M1 macrophages increased significantly in DPN patients [56].
This means that M1 macrophages might play a pivotal role in the onset and development
of DPN [57]. Moreover, it was found that increased expression of TLR4 in monocytes could
be related to systemic inflammation in peripheral neuropathy in T2DM [58]. These findings
further support the important role of immune cell infiltration and inflammation in the
development of DPN.

LASSO logistic regression is a reliable method for selecting diagnostic features of DPN
based on regression trees. It provides a statistically rigorous method to identify the variable
λ when the predicted outcomes are best. Furthermore, SVM-RFE is a classic machine
learning method based on a recursive feature elimination strategy to select important
genes by training a support vector machine model. To further select feature variables
and build an accurate classification model, we applied these two algorithms in this study.
The overlap of the LASSO logistic regression model and the SVM-RFE algorithm was
obtained. Consequently, LTBP2 and GPNMB were recognized as potential diagnostic
markers for DPN.
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Latent transforming growth factor beta binding protein 2 (LTBP2) is a member of
the fibrillin/LTBP extracellular matrix glycoprotein family [59]. It plays a critical role in
regulating the extracellular matrix glycoprotein. A growing number of studies have found
that LTBP2 was associated with cardiac fibrosis, acute heart failure, glomerular filtration
rate and pre-eclampsia [59]. Recent investigations have suggested that overexpression of
LTBP2 facilitated inflammation in endometriosis [60]. It is regretful that the role of LTBP2
in DPN development has not been studied. Therefore, this needs further experimental
verification. GPNMB is an endogenous type 1 transmembrane glycoprotein. A study has
shown that GPNMB is closely related to neuroinflammation [61]. Interestingly, neuroin-
flammation happens to be one of the most important mechanisms in the development of
DPN. It would be reasonable to speculate that GPNMB may play an important role in the
disease progression of DPN. In conclusion, evidence from previous studies indicates that
LTBP2 and GPNMB may play an important role in the development and progression of
DPN. However, validated experiments and clinical studies are still needed to assess the di-
agnostic value of LTBP2 and GPNMB. A comprehensive analysis was performed including
LTBP2, GPNMB and immune cells. LTBP2 was significantly positively correlated with M1
macrophages and GPNMB was significantly negatively correlated with M2 macrophages.
We speculate that LTBP2 and GPNMB affect immune cells to participate in the occurrence
and progression of DPN. Further experimentation is needed to validate these hypotheses,
including experiments regarding the interactions between genes and immune cells.

5. Conclusions

In this study, DEGs associated with DPN were identified by analyzing previously
published datasets containing DPN and normal sciatic nerve samples. Then, functional
enrichment and PPI network analyses were conducted for DEGs, elucidating the detailed
mechanisms and the pathogenesis of DPN. What is more, by using novel bioinformatics
methods such as LASSO logistic regression algorithms and the SVM-RFE algorithm, we
have identified potential DPN diagnostic markers, LTBP2 and GPNMB. This is the first
time that CIBERSORT was used to analyze immune cell infiltration in peripheral nerve
tissues. Nevertheless, we recognize that there were important limitations in our study
which cannot be ignored. First, the current study is limited by a small sample size due to
the small number of gene microarrays in DPN. Furthermore, CIBERSORT analysis is based
on limited genetic data that may deviate from heterotypic interactions of cells, disease-
induced disorders or phenotypic plasticity. In addition, our research needs to be further
experimentally validated. In conclusion, our results present the promising potential for
several diagnostic biomarkers of DPN and provide a novel strategy for DPN diagnosis
and treatment.
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