
Citation: Liu, F.; Dong, Y.; Zhong, F.;

Guo, H.; Dong, P. CISD1 Is a Breast

Cancer Prognostic Biomarker

Associated with Diabetes Mellitus.

Biomolecules 2023, 13, 37. https://

doi.org/10.3390/biom13010037

Academic Editor: Jose R. Bayascas

Received: 19 November 2022

Revised: 19 December 2022

Accepted: 22 December 2022

Published: 25 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

CISD1 Is a Breast Cancer Prognostic Biomarker Associated with
Diabetes Mellitus
Fangfang Liu 1, Yifeng Dong 2, Fuyu Zhong 2, Haodan Guo 2 and Pengzhi Dong 2,*

1 Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute
and Hospital, Tianjin 300060, China

2 State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese
Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China

* Correspondence: pengzhiryn@gmail.com

Abstract: Women with diabetes mellitus are believed to have increased risk of developing breast
cancer and lower life expectancies. This study aims to depict the association between the CISD1,
the co-expressed genes, and diabetes mellitus to offer potential therapeutic targets for further me-
chanical research. The TCGA-BRCA RNAseq data is acquired. All the data and analyzed using
R packages and web-based bioinformatics tools. CISD1 gene expression was evaluated between
tumor bulk and adjacent tissue. Immune cell infiltration evaluation was performed. CISD1 expressed
significantly higher in tumor tissue than that of the normal tissue, indicating poor overall survival
rates. High expression level of CISD1 in tumor shows less pDC and NK cells penetration. There
are 138 genes shared between CISD1 co-expressed gene pool in BRCA and diabetes mellitus related
genes using “diabetes” as the term for text mining. These shared genes enrich in “cell cycle” and other
pathways. MCODE analysis demonstrates that p53-independent G1/S DNA damage checkpoint,
p53-independent DNA damage response, and ubiquitin mediated degradation of phosphorylated
cdc25A are top-ranked than other terms. CISD1 and co-expressed genes, especially shared ones with
diabetes mellitus, can be the focused genes considered when addressing clinical problems in breast
cancer with a diabetes mellitus background.
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1. Introduction

The most prevalent cancer among women worldwide is breast cancer, with the highest
rates found in the most industrialized countries, such as Europe, North America, and
Australia [1]. Several mechanisms that enable its progression, including evading apoptosis,
dividing indefinitely, enhancing angiogenesis, resisting anti-growth signals, and producing
its own growth signals. With a refined understanding of the molecular mechanism, there
are many therapeutics in use and in clinical trials [2–4]. However, those patients with
chronic conditions, such as diabetes, may face increased risk of suffering breast cancer or
worse outcomes with breast cancer [5]. Mechanically, the development of breast cancer
might be caused by dyslipidemia [6], hyperinsulinemia [7], and hyperglycemia induced by
diabetes mellitus. Thus, metformin [8], thiazolidinediones [9] and other PPARγ agonists
are thought have a potential for cancer prevention, although there are inconsistent results
among studies [10–12].

Cancer cells accumulate iron and reactive oxygen species (ROS) to promote their
metabolic activity and proliferation rate. In contrast, high levels of iron and ROS can
also lead to increased oxidative stress and the activation of cell death pathways such as
ferroptosis. As a result, different drugs that target iron and/or ROS metabolism have been
proposed as anticancer medications. However, diabetes mellitus make it more complicated
for the selection of the therapeutic treatments given the sustained hyperglycemia, hyper-
insulinemia, insulin resistance (IR), and insulin-like growth factor-1 (IGF-1) play a role in
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cancer progression and promotion. Thus, personalized medicine and patient treatment
based on precise molecular understanding is urgently needed.

Ferroptosis is an iron-dependent regulated form of cell death caused by accumulation
of lipid-based ROS [13]. In addition to mitochondrial shrinkage and increased membrane
density, mitochondrial cristae were reduced [14]. In the past few years, NEET proteins,
a newly found iron-sulfur proteins (2Fe-2S), are pivotal players in iron regulation and
ROS homeostasis. Specifically, CISD1 (CDGSH iron sulfur domain 1, CISD1—also known
as mitoNEET) performs a key role in in promoting the proliferation of cancer cells and
tumor growth [15]. It ensures maximal electron transport and oxidative phosphorylation
capacity [16]. Knock-down CISD1 can significantly inhibit cancer cells proliferation and
reduce uncontrolled reactive oxygen and iron accumulation [17]. Since it was reported that
pioglitazone could stabilize CISD1, plenty of studies focused on the interaction between
mitochondrial function and glutathione reductase metabolism [18–20]. Mutant CISD1
can lower glucose level in a model for studying human diabetes-related diseases [21]. A
novel ligand for CISD1 named TT01001 improves diabetes [20]. All these achievements
demonstrated that CISD1 can be a promising target for both breast cancer and diabetes
mellitus cure. However, a more elaborated molecular mechanism is needed for clarifying
the interplay between breast cancer, CISD1, and diabetes mellitus.

In this study, the RNA-seq data from Cancer Genome Atlas (TCGA) database was used
to compare normal and tumor samples for CISD1 expression. Integrated bioinformatics
methods were performed to examine the correlation between CISD1, co-expressed genes
expression levels, and breast cancer clinical pathology features of breast cancer. Further-
more, diabetes mellitus related genes were added to identify the shared molecular pattern
with CISD1 related co-expressed genes for future drug design or treatment options. This
study aims to offer preliminary data for depicting the association between the CISD1, the
co-expressed genes related, and diabetes mellitus to demonstrate the potential therapeutic
targets for further mechanical research, even clinical practice when dealing with breast
cancer especially those patients with diabetes mellitus.

2. Materials and Methods
2.1. Data Acquisition

BRCA and other tumor data from The Cancer Genome Atlas (TCGA) database (ac-
cessed on 20 December 2022, https://genome-cancer.ucsc.edu/) was used. Data was
downloaded as level 3 HTSeq-fragments per kilobase per million (FPKM) before being
converted to transcripts per million (TPM). All procedures in this study followed the
Declaration of Helsinki.

2.2. Histological Verification of CISD1 Expression

CISD1 expression was verified in Human Protein Atlas, a tissue-based map of the
human proteome [22]. As shown in Figure 1E,F, CISD1 was stained, and the results were
deposited in this database. Images representing high or low level CISD1 expression used
in Figure 1E,F were obtained using the link, https://www.proteinatlas.org/ENSG00000
122873-CISD1/pathology/breast+cancer#img. Accessed on 20 December 2022. Patients’
information was listed on the website. The Protein Atlas version was 21.1.

2.3. Correlation Analysis of CISD1 Expression and Clinical Features

For the correlation of the characteristics of patients and the CISD1 expression, a Venn
Diagram was performed using R (v3.6.3) package ggplot 2 (v3.3.3).

2.4. Correlation Analysis of CISD1 Expression and Immune Infiltration

R package GSVA (v1.34.0) applying single-sample Gene Set Enrichment Analysis
(ssGSEA) method was used to evaluate the association between the infiltration of immune
cells and CISD1 gene expression [23,24].

https://genome-cancer.ucsc.edu/
https://www.proteinatlas.org/ENSG00000122873-CISD1/pathology/breast+cancer#img
https://www.proteinatlas.org/ENSG00000122873-CISD1/pathology/breast+cancer#img
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2.5. Protein-Protein, Chemical-Protein Interaction Analysis

Protein–protein interaction was conducted in STRING v11.5 (accessed on 20 December
2022, https://string-db.org/). Chemical–protein interaction analysis was performed in
STITCH v5.0 (accessed on 20 December 2022, http://stitch.embl.de/). Gene list of diabetes
mellitus were obtained from Genecards, the Human Gene Database (accessed on 20 Decem-
ber 2022, https://www.genecards.org/) using “diabetes” as the term for collecting more
genes related.

2.6. Gene Ontology (GO) Enrichment Analysis

Metascape (accessed on 20 December 2022, https://metascape.org) is a tool for gene
annotation and pathway analysis [25]. In this study, shared genes list between the co-
expression genes with CISD1 and diabetes mellitus were uploaded to Metascape, and
enrichment analysis was performed. Additionally, transcription factors prediction, Molecu-
lar Complex Detection (MCODE) algorithm analysis were conducted by Metascape.

2.7. Transcription Regulating Prediction

Transcription regulation analysis was performed using The Gene Transcription Regu-
lation Database (GTRD; accessed on 20 December 2022, http://gtrd.biouml.org/) [26].

2.8. Statistical Analysis

R (v.3.6.3) was used for all statistical analyses. p values less than 0.05 were considered
statistically significant.

3. Results
3.1. High Expression Level of CISD1 in BRCA Tumor Correlates with Poor Survival Probability

In order to identify the difference of CISD1 expression between tumors and normal
tissues, first, a pan-cancer analysis was performed to identify CISD1 expression level among
33 cancers data deposited in TCGA. As shown in Figure 1A, CISD1 protein contents were
higher than normal tissues in 20 cancer types. CISD1 was highly expressed in a breast
tumor, as shown in Figure 1B (non-paired samples). Further, comparison was conducted
between breast tumor tissues and the adjacent tissues either. The result demonstrated
that CISD1 was highly expressed in the breast tumor tissues, as shown in Figure 1C. Next,
survival probability analysis was conducted using Kaplan-Meier analysis. Overall survival
was calculated. The result indicated that there is a positive correlation between CISD1
expression and poor overall survival in patients with breast cancer (p = 0.013), as shown in
Figure 1D. CISD1 expression level in tumor was verified by using Human Protein Atlas,
and high and low expression levels of CISD1 are shown in Figure 1E,F, respectively.

3.2. Correlation between CISD1 Expression and Clinical Features

Based on the mean value of CISD1 gene expression, the patients with breast cancer
were divided into high expression level group (n = 542) and low expression level group
(n = 541). The correlation between the clinical characteristics and CISD1 expression were
evaluated and some associations were showed in Figure 2. CISD1 were significantly
associated with many clinicopathologic parameters. N stage (p = 0.012), M stage (p = 0.047),
Race (p < 0.001), Age (p = 0.022), Histological type (p < 0.001), PR status (p < 0.001), ER status
(p < 0.001), and PAM50 (p < 0.001) were significantly connected with CISD1 expression.
Detailed information is listed in Table 1.

https://string-db.org/
http://stitch.embl.de/
https://www.genecards.org/
https://metascape.org
http://gtrd.biouml.org/
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3.2. Correlation between CISD1 Expression and Clinical Features 
Based on the mean value of CISD1 gene expression, the patients with breast cancer 

were divided into high expression level group (n = 542) and low expression level group 
(n = 541). The correlation between the clinical characteristics and CISD1 expression were 
evaluated and some associations were showed in Figure 2. CISD1 were significantly asso-
ciated with many clinicopathologic parameters. N stage (p = 0.012), M stage (p = 0.047), 
Race (p < 0.001), Age (p = 0.022), Histological type (p < 0.001), PR status (p < 0.001), ER 
status (p < 0.001), and PAM50 (p < 0.001) were significantly connected with CISD1 expres-
sion. Detailed information is listed in Table 1. 

Figure 1. CISD1 expression correlated with life span. CISD1 expression varied in different cancers.
(A) CISD1 expression level in non-paired; and (B) paired breast cancer samples; (C) Association
between Overall Survival and CISD1 expression; (D) Verification of high-level; and (E) low-level;
(F) expression of CISD1 in Human Protein Atlas. “ns”, “*”, “**”, and “***” represented no significance,
p-values < 0.05, 0.01, and 0.001, respectively.

Biomolecules 2023, 13, x  5 of 15 
 

 
Figure 2. Correlation between the clinical features and CISD1 expression. Boxplots represented cor-
relation between the CISD1 expression and ER status (A), HER2 status (B), PR status (C), PAM50 
(D), pathologic stage (E), histological type (F), M stage (G), T stage (H), Menopause status (I). “ns”, 
“*”, “**”, and “***” represented no significance, p-values < 0.05, 0.01, and 0.001, respectively. 

Table 1. Breast cancer clinicopathological characteristics and CISD1 expression. 

Characteristic Low Expression of 
CISD1 

High Expression of 
CISD1 

p 

n 541 542  
T stage, n (%)   0.075 

T1 148 (13.7%) 129 (11.9%)  
T2 296 (27.4%) 333 (30.8%)  
T3 80 (7.4%) 59 (5.5%)  
T4 16 (1.5%) 19 (1.8%)  

N stage, n (%)   0.012 
N0 266 (25%) 248 (23.3%)  
N1 175 (16.4%) 183 (17.2%)  
N2 45 (4.2%) 71 (6.7%)  
N3 47 (4.4%) 29 (2.7%)  

M stage, n (%)   0.047 
M0 451 (48.9%) 451 (48.9%)  
M1 5 (0.5%) 15 (1.6%)  

Pathologic stage, n (%)   0.099 
Stage I 101 (9.5%) 80 (7.5%)  
Stage II 304 (28.7%) 315 (29.7%)  
Stage III 124 (11.7%) 118 (11.1%)  
Stage IV 5 (0.5%) 13 (1.2%)  

Figure 2. Correlation between the clinical features and CISD1 expression. Boxplots represented
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Table 1. Breast cancer clinicopathological characteristics and CISD1 expression.

Characteristic Low Expression
of CISD1

High Expression
of CISD1 p

n 541 542
T stage, n (%) 0.075

T1 148 (13.7%) 129 (11.9%)
T2 296 (27.4%) 333 (30.8%)
T3 80 (7.4%) 59 (5.5%)
T4 16 (1.5%) 19 (1.8%)

N stage, n (%) 0.012
N0 266 (25%) 248 (23.3%)
N1 175 (16.4%) 183 (17.2%)
N2 45 (4.2%) 71 (6.7%)
N3 47 (4.4%) 29 (2.7%)

M stage, n (%) 0.047
M0 451 (48.9%) 451 (48.9%)
M1 5 (0.5%) 15 (1.6%)

Pathologic stage, n (%) 0.099
Stage I 101 (9.5%) 80 (7.5%)
Stage II 304 (28.7%) 315 (29.7%)
Stage III 124 (11.7%) 118 (11.1%)
Stage IV 5 (0.5%) 13 (1.2%)

Race, n (%) <0.001
Asian 23 (2.3%) 37 (3.7%)

Black or African American 70 (7%) 111 (11.2%)
White 405 (40.7%) 348 (35%)

Age, n (%) 0.022
≤60 281 (25.9%) 320 (29.5%)
>60 260 (24%) 222 (20.5%)

Histological type, n (%) <0.001
Infiltrating Ductal

Carcinoma 346 (35.4%) 426 (43.6%)

Infiltrating Lobular
Carcinoma 139 (14.2%) 66 (6.8%)

PR status, n (%) <0.001
Negative 145 (14%) 197 (19.1%)

Indeterminate 3 (0.3%) 1 (0.1%)
Positive 371 (35.9%) 317 (30.7%)

ER status, n (%) <0.001
Negative 90 (8.7%) 150 (14.5%)

Indeterminate 0 (0%) 2 (0.2%)
Positive 430 (41.5%) 363 (35.1%)

HER2 status, n (%) 0.647
Negative 290 (39.9%) 268 (36.9%)

Indeterminate 6 (0.8%) 6 (0.8%)
Positive 75 (10.3%) 82 (11.3%)

PAM50, n (%) <0.001
Normal 23 (2.1%) 17 (1.6%)
LumA 338 (31.2%) 224 (20.7%)
LumB 84 (7.8%) 120 (11.1%)
Her2 33 (3%) 49 (4.5%)
Basal 63 (5.8%) 132 (12.2%)

Menopause status, n (%) 0.280
Pre 105 (10.8%) 124 (12.8%)
Peri 19 (2%) 21 (2.2%)
Post 364 (37.4%) 339 (34.9%)

Age, median (IQR) 60 (50, 68) 57 (48, 66) 0.013
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3.3. The Correlation of CISD1 and Immune Cell Infiltration

Next, the correlation between CISD1 expression and the immune infiltration was
evaluated. As shown in Figure 3A, CISD1 expression was negatively associated with
plasmacytoid dendritic cells (pDC) (p < 0.001), natural killer (NK) cells (p < 0.001), T helper
17 (Th 17) cells (p < 0.001), eosinophils (p < 0.001), NK CD56bright cells (p < 0.001), CD8 T
cells (p = 0.067), interstitial dendritic cells (iDC) (p = 0.161), and mast cells (p = 0.168), while
positively associated with T helper 2 (Th 2) cells (p < 0.001), T helper 1 (Th 1) cells (p < 0.001),
macrophages (p < 0.001), activated dendritic cell (aDC) (p < 0.001), gammadelta T (Tgd)
cells (p < 0.001), NK CD56dim cells (p < 0.001), regulatory T (Treg) cells (p = 0.001), T helper
cells (p = 0.005), effector memory T (Tem) cells (p = 0.008), B cells (p = 0.012), neutrophils
(p = 0.041), and T cells (p = 0.197). The pDC and NK cells enrichment were individually
plotted (Figure 3B–E).
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Table 2. CISD1 expression correlation with immune cells infiltration.

Cell Type Correlation
(Pearson)

p
(Pearson)

Correlation
(Spearman)

p
(Spearman)

aDC 0.169 <0.001 0.142 <0.001
B cells 0.079 0.009 0.075 0.012

CD8 T cells 0.066 0.027 −0.055 0.067
Cytotoxic cells 0.062 0.039 0.014 0.646

DC 0.078 0.010 0.018 0.552
Eosinophils −0.088 0.003 −0.118 <0.001

iDC 0.023 0.445 −0.042 0.161
Macrophages 0.175 <0.001 0.145 <0.001

Mast cells −0.003 0.910 −0.041 0.168
Neutrophils 0.118 <0.001 0.061 0.041

NK CD56bright cells −0.065 0.031 −0.109 <0.001
NK CD56dim cells 0.154 <0.001 0.122 <0.001

NK cells −0.087 0.004 −0.184 <0.001
pDC −0.201 <0.001 −0.231 <0.001

T cells 0.073 0.015 0.039 0.197
T helper cells 0.056 0.064 0.084 0.005

Tcm −0.041 0.168 0.016 0.585
Tem 0.065 0.030 0.079 0.008
TFH 0.037 0.215 −0.014 0.639
Tgd 0.134 <0.001 0.128 <0.001

Th1 cells 0.240 <0.001 0.216 <0.001
Th17 cells −0.141 <0.001 −0.177 <0.001
Th2 cells 0.282 <0.001 0.305 <0.001

TReg 0.111 <0.001 0.097 0.001

3.4. Co-Expression Genes, Protein-Protein Interaction, and Compound-Binding Analysis

As shown in Figure 4A, co-expressed genes with CISD1 were obtained and statistical
analysis had shown that there were 717 genes (704 genes were positively correlated, while
13 genes were negatively correlated, |cor| > 0.3 and p < 0.05. cor = cor_spearman). Next, all
these genes were conducted in an enrichment analysis, which the results showed that “Sys-
temic lupus erythematosus” and “Taste transduction” ranked higher (p < 0.01) than other
pathways. Next, first shell proteins interacted with CISD1 has been identified, as shown
in Figure 4B. Among them, FKBP prolyl isomerase 8 (FKBP8), B cell receptor associated
protein 31 (BCAP31), voltage dependent anion channel 3 (VDAC3), NADH ubiquinone
oxidoreductase complex assembly factor 2 (NDUF2), D subunit of mitochondrial ATP
synthase (ATP5H) had been experimentally testified that these genes interacted and co-
expressed with CISD1 and might contribute a shared function. CDGSH iron sulfur domain
3 (CISD3), cytokine induced apoptosis inhibitor 1 (CIAPIN1), NADPH dependent diflavin
oxidoreductase 1 (NDOR1), wolframin ER transmembrane glycoprotein (WFS1), and su-
peroxide dismutase 1 (SOD1) were predicted functional partners with CISD1, which needs
further improvement for the interaction between CISD1 and the genes mentioned above.
Additionally, chemical-protein interaction was analyzed. The confidence results showed
that pioglitazone, thiazolidi.ne, iron-sulfur cl., chloride, and Zn(II (equals to Zn (2+)) were
predicted as functional partners with CISD1. Stronger associations were represented by
thicker lines, as shown in Figure 4C.

3.5. Enrichment Analysis of Shared Genes between the Co-Expressed Genes with CISD1 and
Diabetes Mellitus

Given that pioglitazone was a drug used in the management of type 2 diabetes mellitus,
which was also identified an interaction between pioglitazone and CISD1 in this study, we
speculated that CISD1, a key role in ferroptosis, might be a significant target for treating
BRCA with diabetes mellitus. Thus, it was necessary to present the correlation between the
co-expressed genes with CISD1 in BRCA and diabetes mellitus. As shown in Figure 5A,
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there were 138 genes shared both in co-expressed genes with CISD1 and diabetes mellitus.
Next, protein–protein interaction analysis was performed for these shared genes (Figure 5B).
It was predicted that these genes were regulated by several pivotal transcription factors
(Figure 5C).
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Additionally, a transcription factor targets analysis was performed and 22 genes
containing one or more binding sites for HSD17B8, as shown in Table 3, were found.
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Table 3. Summary of enrichment analysis in transcription factor targets.

GO Description Count % Log10(P) Log10(q)

M30019 HSD17B8 TARGET GENES 22 16.00 −12.00 −9.20
M19064 E2F Q6 11 8.00 −7.90 −5.10
M10115 E2F Q4 11 8.00 −7.90 −5.10
M29943 DLX6 TARGET GENES 16 12.00 −7.80 −5.00
M12497 E2F Q3 10 7.20 −7.00 −4.40
M5768 E2F1DP1RB 01 10 7.20 −6.90 −4.30
M9279 E2F1 Q6 10 7.20 −6.80 −4.20
M12402 E2F1DP1 01 10 7.20 −6.80 −4.20
M12555 E2F1DP2 01 10 7.20 −6.80 −4.20
M17867 E2F 02 10 7.20 −6.80 −4.20
M19298 E2F4DP2 01 10 7.20 −6.80 −4.20
M10526 E2F4DP1 01 10 7.20 −6.70 −4.20
M1485 E2F1 Q3 10 7.20 −6.70 −4.10
M8998 E2F1 Q4 01 9 6.50 −5.90 −3.40
M17117 E2F Q3 01 9 6.50 −5.80 −3.40
M3037 E2F1 Q6 01 9 6.50 −5.70 −3.30
M29995 HES4 TARGET GENES 13 9.40 −5.40 −3.00
M40770 ATXN7L3 TARGET GENES 9 6.50 −5.20 −2.80
M1905 SGCGSSAAA E2F1DP2 01 7 5.10 −4.90 −2.60
M102 E2F Q4 01 8 5.80 −4.80 −2.60

These results suggested that certain cluster of genes might have similar mode of
transcription regulation. Furthermore, gene enrichment was performed, and the results
showed that cell cycle and mitotic cell cycle process ranked higher than other biological
processes (Figure 6A). To further capturing the relationships between the terms, subsets
of enriched terms had been selected and rendered as a network plot, in which terms
with a similarity > 0.3 were connected. Each node represented an enriched term and was
colored first by its cluster ID (Figure 6B), then by its p value (Figure 6C). For identifying
densely connected networks, the MCODE analysis had been applied. Figure 6D showed
the MCODE networks identified for the gene list.

Biological process and pathway enrichment analysis had been performed in MCODE
component; top three scored terms were listed in Table 4. The results showed p53-
Independent G1/S DNA damage checkpoint and other pathways might be the focus
for further intervention.

Table 4. Top 3 MCODE terms identified.

MCODE GO Description Log10(P)

MCODE_1 R−HSA−69613 p53−Independent G1/S DNA
damage checkpoint −32.6

MCODE_1 R−HSA−69610 p53−Independent DNA
Damage Response −32.6

MCODE_1 R−HSA−69601 Ubiquitin Mediated Degradation
of Phosphorylated Cdc25A −32.6

MCODE_2 M176 PID FOXM1 PATHWAY −14.5
MCODE_2 GO:0044772 mitotic cell cycle phase transition −12.9
MCODE_2 GO:0044770 cell cycle phase transition −12.7
MCODE_3 GO:0033365 protein localization to organelle −5.8
MCODE_3 GO:0048285 organelle fission −5.5
MCODE_3 GO:0000819 sister chromatid segregation −4.9
MCODE_4 hsa03008 Ribosome biogenesis in eukaryotes −9.9

MCODE_4 GO:0022613 ribonucleoprotein complex
biogenesis −8.5

MCODE_4 R−HSA−6790901 rRNA modification in the nucleus
and cytosol −8.5
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Table 4. Cont.

MCODE GO Description Log10(P)

MCODE_5 WP4016 DNA IR−damage and cellular
response via ATR −10.5

MCODE_5 WP4946 DNA repair pathways,
full network −7.3

MCODE_5 M258 PID BARD1 PATHWAY −7

MCODE_6 R−HSA−5358565 Mismatch repair (MMR) directed
by MSH2:MSH6 (MutSalpha) −12

MCODE_6 R−HSA−5358508 Mismatch Repair −11.9
MCODE_6 CORUM:286 PCNA−MSH2−MSH6 complex −11.1
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4. Discussion

Breast cancer has become a serious threat to women’s health. It is the most common
malignancy in women worldwide and is curable in 70–80% of cases if detected at an early
stage and without metastatic spread. Breast cancer is heterogeneous at the molecular
level, though there are different treatment strategies for different molecular subtypes. It is
considered that targeting at iron and/or ROS metabolism can be used as a new strategy
for developing anti-tumor drugs. However, due to the complex mechanism of ROS, most
results are mixed. It is still necessary to find new targets that can regulate iron and ROS
metabolisms, and perform an important role in tumor growth. In this work, an association
between breast cancer and diabetes mellitus has been depicted through identifying the role
of a ferroptosis related gene-CISD1.

The expression of CISD1in breast cancer and its correlation between the life span
had been analyzed. CISD1 was positively associated with Overall Survival (p = 0.013).
More importantly, detailed clinical information should be considered when grouping.
Additionally, a correlation was found between CISD1 expression and clinical features. N
stage (p = 0.012), M stage (p = 0.047), Race (p < 0.001), Age (p = 0.022), Histological type
(p < 0.001), PR status (p < 0.001), ER status (p < 0.001), HER2 status, PR status, and PAM50
(p < 0.001) (Figure 2, Table 1) were significantly connected with CISD1 expression. These
features are worthy to be concerned when making treatment plans for the patients. Next,
CISD1 expression level were evaluated and varied in different cancer types (Figure 1A).
It had been reported that loss of CISD1 could inhibit B-cell acute lymphoblastic leukemia
cells proliferation [27]. Additionally, deficient CISD1 played a role in aged mice with heart
failure [28]. Defected CISD1 mice showed a Parkinson’s Disease phenotype [29]. On the
other hand, over expressed CISD1 could attenuate atherosclerosis [30], helped to improve
hypoxic–ischemic injury [31]. These results showed that, CISD1 might play different role
among cell types in tissues or organ systems. Thus, immune infiltration analysis could
offer pivotal information for further interventions or mechanism studies. Our results
showed that pDC, NK and Th17 and other cells were negatively correlated, while Th2,
Th1 and macrophages and other cells were positively correlated with CISD1 expression in
breast cancer (Figure 3). These results indicate that there might be a link between the high
expression level of CISD1 and the inhibited the biological function of pDC and NK cells
while might promote the Th2, Th1, and other cell physiological function.

As demonstrated above, CISD1 played significant roles in different types of symptoms
or diseases, and its correlated networks must be varied according to the associated normal
physiological or morbid pathological state. Therefore, co-expression genes of CISD1 in
breast cancer were studied. Enrichment analysis results showed that these co-expressed
genes with CISD1 contributed mostly to systemic lupus erythematosus, taste transduction,
and other pathways, which in turn improved that CISD1 was related to immune system
function from another perspective (Figure 4). Additionally, chemical-protein analysis
had shown that a tested association between CISD1 and pioglitazone [21,32,33], which
indicated that CISD1 might be a critical player both in breast cancer and diabetes mellitus.
Thus, it was necessary to find out those shared genes between breast cancer and diabetes
mellitus relating to CISD1 for further studies. As shown in Figure 5A, 138 shared genes
were identified between the co-expressed genes with CISD1 and diabetes. Although there
was complicated protein–protein interaction between these genes (Figure 5B), some of the
shared 138 genes had similar trans-factors or regulatory mode (Figure 5C, Table 3). These
shared genes were conducted gene enrichment analysis and the result showed that cell cycle
and the mitotic cell cycle process obtained higher scores (Figure 6A). Targeting at cell cycle
helped to inhibit cancer cell division [34]. In the progression of diabetes, changes in β cell
mass and decreased beta cell proliferation or growth have been underappreciated. Changes
in cell cycle progression enforce regulatory checks and balances on beta cells, similar to all
other cells in our body [35]. Recently, there was a newly discovered mechanism that might
be a key route for β cell proliferation regulation. In this work, amino acid availability and
ROS levels were believed to be able to regulate postnatal β cell proliferation [36].
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Although CISD1 had been indicated that it contributed to human breast cancer pro-
liferation by inducing tumor growth, more detailed protein–protein, protein–nucleic acid
interaction information was needed [17]. It had been reported that diabetes could be a
risk factor for breast cancer [34]. Studies had demonstrated there were common pathways
shared between diabetes and breast cancer [37]. Recently, studies targeting ferroptosis have
identified a new strategy to treat breast cancer. Preliminary data supports that targeting
CISD proteins could be considered as an effective way to improve hyperglycemia [38].
However, chronic diseases, such as diabetes, made it more complex to elaborate therapeutic
protocols. Deeper understanding of the molecular mechanism correlated diabetes with
breast cancer is imperative.

5. Conclusions

In summary, an integrated analysis was performed to demonstrate the possible link
between breast cancer and diabetes via regulating CISD1 and related genes. This work pro-
vided a broader perspective to treat breast cancer and offered preliminary data for further
research. However, more experimental evidence is needed to verify whether CISD1 could
decrease pDC and NK cells or increase Th2, Th1, and macrophages infiltration. In line with
this, the exact molecular mechanism for regulating CISD1 in different pathophysiological
conditions could be completed.
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