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Abstract: The drug development pipeline involves several stages including in vitro assays, in vivo assays,
and clinical trials. For candidate selection, it is important to consider that a compound will successfully
pass through these stages. Using graph neural networks, we developed three subdivisional models to
individually predict the capacity of a compound to enter in vivo testing, clinical trials, and market ap-
proval stages. Furthermore, we proposed a strategy combing both active learning and ensemble learning
to improve the quality of the models. The models achieved satisfactory performance in the internal
test datasets and four self-collected external test datasets. We also employed the models as a general
index to make an evaluation on a widely known benchmark dataset DEKOIS 2.0, and surprisingly found
a powerful ability on virtual screening tasks. Our model system (termed as miDruglikeness) provides
a comprehensive drug-likeness prediction tool for drug discovery and development.

Keywords: subdivisional drug-likeness prediction; active learning; ensemble learning; graph
neural network

1. Introduction

Computational drug-likeness prediction aims to assess the chance for a compound to
become a marketed drug and is one of the essential metrics for screening drug candidates.
Early drug-likeness predictions were made by extracting rules based on physicochemical
properties. Lipinski et al. proposed ‘the Rule of 5’ (Ro5) to exclude compounds with poor
absorption or permeation, which are unbeneficial for drug-likeness [1]. The Ro5 states
that a compound is likely to have poor absorption or permeation when it has more than
5 hydrogen-bond donors, more than 10 hydrogen-bond acceptors, a molecular weight greater
than 500 Da, and a calculated octanol–water partition coefficient greater than 5. Ghose et al.
proposed an additional physicochemical property, molar refractivity, to complete the Ro5 [2].
Similarly, Veber et al. included the number of rotatable bonds and the polar surface area
to account for molecular flexibility [3]. Although rule-based methods are convenient to
implement, they are not applicable to all drug molecules, because they are based on simple
criteria. According to a previous study, 16% of 771 oral drugs from the ChEMBL database
of bioactive molecules with drug-like properties violate at least one component of the Ro5,
and 6% violate more than two [4]. For a more quantitative estimation of drug-likeness,
Bickerton et al. introduced the Quantitative Estimation of Drug-Likeness (QED) score [4]
based on desirability functions fitted to the distributions of eight physicochemical properties,
including properties used by Veber filters [3], the number of aromatic rings, and the number
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of structural alerts. QED not only outperforms the Ro5 and other rules but also can modulate
thresholds according to specific requirements, providing more flexibility for screening drug
candidates. Besides physicochemical properties, drug-likeness is also related to chemical
absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Recently,
Guan et al. developed the ADMET-score to evaluate the drug-likeness of compounds
based on 18 weighted ADMET properties [5]. The ADMET-score was able to distinguish
withdrawn drugs from approved drugs with statistically significant accuracy.

Accurate prediction of drug-likeness is more complex than a simple counting of
molecular properties. To improve the accuracy of drug-likeness prediction, researchers have
adopted machine learning algorithms based on various molecular descriptors that enable
more concrete representations of molecular information than basic chemical properties.
Examples of these molecular descriptors include extended atom types [6], Ghose–Crippen
fragment descriptors [7], molecular operating environment physicochemical descriptors [7],
topological pharmacophore descriptors [7], ECFP4 fingerprints [8], LCFP6 fingerprints [9],
and their combinations [7]. These descriptors, combined with various machine learning
methods including support-vector machines [7,8,10], artificial neural networks [7], decision
trees [6], naïve Bayesian classifiers [11], and recursive partitioning [11], have increased the
accuracy of methods to discriminate drug-like and non-drug-like compounds to about 90%.
In recent years, deep learning as a powerful machine learning method has been applied
for drug-likeness prediction. Hu et al. proposed a deep autoencoder model to classify
drug-like and non-drug-like compounds based on the synthetic minority oversampling
technique (SMOTE), which achieved 96% accuracy [12]. Seyed et al. proposed a deep belief
model based on a combination of fingerprints including MACCS, PubChem fingerprints,
and ECFP4 [13], which yielded similar accuracy. Beker et al. combined different deep
learning models using a Bayesian neural network and then chose the predictions of drug-
like molecules with the lowest variance. According to their findings, the combination of
graph convolution neural network (GCNN) and autoencoder yielded the highest accuracy
of 93% [14]. Lee et al. generated a drug-likeness score function using unsupervised learning,
which can predict drug-likeness with a continuous value rather than a rigid cut-off [15].
Their model also obtained over 90% accuracy in classifying drugs and non-drug molecules.

The aforementioned drug-likeness prediction models are typically trained using ap-
proved drugs (or a combination of approved drugs and candidate drugs in clinical trials)
as positive samples and purchasable compounds as negative samples. However, there are
situations where we are interested in determining the likelihood that a compound that is
initially identified as being drug-like will be successful in the in vivo testing stage (referred
to here as ‘in vivo ability’). Similarly, we may wish to forecast whether a compound in the
in vivo testing stage will become an investigational new drug (referred to here as ‘IND
ability’), or whether an investigational new drug will ultimately be approved to become
a marketed drug (referred to here as ‘market approvability’). Failure in drug development
can occur in various stages. For example, the clinical failure rate from phase I clinical trials
to the successful launching of a drug on the market is over 90% [16]. The subdivisional
drug-likeness prediction including market approvability prediction can therefore be useful
for boosting success rates in clinical trials and other stages.

In this study, we developed a miDruglikeness system including three subdivisional
drug-likeness prediction models to deal with the abovementioned problems (Figure 1).
The in vivo ability, IND ability, and market approvability models were respectively built
using graph neural networks (GNNs). To enhance the predictive ability of these models,
we combined active learning with ensemble learning. The miDruglikeness system showed
satisfying performance in internal test datasets and self-collected external test datasets. The
performance of miDruglikeness in the virtual screening test was significantly better than
QED and state-of-the-art protein-ligand scoring-based methods. Besides, we also employed
Shapley Additive exPlanation (SHAP) [17] to interpret these models and built a webserver
of miDruglikeness for public usage.
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2. Materials and Methods
2.1. Data Collection

All training datasets were obtained from the ZINC15 subsets, including the “world”
subset, the “investigational only” subset, the “in trials” subset, the “in-vivo-only” subset,
the “in-vivo” subset, and the “in-stock” subset [18]. Detailed information about these
datasets is listed in Table 1. Due to the difficulty in gathering the negative samples in our
tasks, we assumed that the compounds not entering the next stages in the time of data
collection as negative samples because of the high failure rate in the drug development
pipeline. For the in vivo ability models, the positive dataset was extracted from the “in-
vivo” subset, and the negative dataset was extracted from the “in-stock” subset. For the
IND ability models, the positive and negative datasets were constructed from the “in-trials”
subset and the “in-vivo-only” subset, respectively. For the market approvability models,
the positive dataset was extracted from the “world” subset and the negative dataset was
extracted from the “investigational-only” subset. Compounds that appeared in both the
positive dataset and the negative dataset were removed from the negative dataset. All
datasets were “cleaned” in preprocessing steps using KNIME, an open-source platform
that provides functionality and tools for data processing and analysis (see the preprocess
workflow in Table 2). The market approvability dataset had the least amount of data, and
all datasets were imbalanced (minor class samples/major class samples ratio). Detailed
information on the final used datasets is shown in Table 3. Each dataset was randomly split
into a 9(training):1(internal test) proportion. The training sets were randomly split five
times into training sets and validation sets in 4:1 proportion for 5-fold cross-validation. The
histograms of basic physicochemical properties of training sets are shown in Figures S1–S3.
It is challenging to make a classification in the above three tasks based on physicochemi-
cal properties.
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Table 1. Descriptions of the ZINC 15 subsets used in this work.

Dataset Name Description

world Approved drugs in major jurisdictions, including the FDA.

investigational-only Compounds in clinical trials, not approved or used as drugs.

in-trials Compounds that have been investigated, including drugs.

in-vivo-only Substances tested in animals but not in humans.

in-vivo Substances tested in animals including humans.

in-stock Compounds purchased directly from a manufacturer, already
made, sitting on a shelf, ready to ship.

Table 2. The data “cleaning” preprocess workflow.

Step Action

Organic filter Inorganic molecules are removed.

Element filter Molecules containing elements other than C, H, O, N, P, S, Cl, Br, I, and F
are removed.

Connectivity Fragments except for the biggest from unconnected molecules are removed.

Standardizer Directly bonded zwitterions are converted to the neutral representation. The
charges on a molecule are set to a standard form.

Aromatizer The molecules are converted into an aromatic form.

Canonicalize The molecules are represented in canonical SMILES format.

Duplicate filter Duplicate molecules are removed.

Table 3. Dataset information after data “cleaning”.

Task Data Subset in ZINC15
(Positive or Negative in Datasets)

Compound
Number

Imbalance
Ratio

In vivo ability
in-vivo (+) 27329

3.65
in-stock (−) 99812

IND ability
in-trials (+) 9386

1.91
in-vivo-only (−) 17943

Market approvability
world (+) 5706

1.55
investigational-only (−) 3680

To further evaluate the models’ reliability, we also construct the external test sets from
reports and the public database. For in vivo ability prediction task, we combined self-
collected compounds entering in vivo testing stage in recent years and the investigational
group, the approved group in the DrugBank database [19] as the external test set, named
in vivo compounds set. For the IND ability prediction task, we combined self-collected com-
pounds entering clinical trials in recent years and the investigational group, the approved
group in the DrugBank database [19] as the external test set, named the investigational
compounds set. For the market approvability prediction task, we collected FDA-approved
drugs in recent years and approved group data in DrugBank, named approved drugs
set. It is harder for collecting negative samples than positive samples because the failure
information usually was not reported. We only collected dozens of compounds terminated
in clinical trials from reports and drugs that failed in clinical trials for toxicity reasons
from the ClinTox database [20], named clinical terminated compounds set, which can serve
as the negative test set for market approvability prediction task. All external sets were
cleaned by removing duplicate data (also without duplication with training data). The
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details of the four datasets are shown in Table 4. We also used the DEKOIS 2.0 dataset [21]
to test the virtual screening ability of the in vivo ability model. DEKOIS 2.0 library contains
81 benchmark sets for a wide variety of different target classes. The duplicate data in the
DEKOIS 2.0 dataset with the training set were removed in the external testing. Detailed
information on the DEKOIS2.0 dataset is shown in Supplementary Table S1.

Table 4. The summary of the external test sets.

Name Description Source Size Total Size (after
Removing Duplicates)

In vivo compounds set
Compounds successfully entering into

in vivo test stages.

Self-collect 112
1369

DrugBank 1269

Investigational
compounds set

Compounds successfully entering into
in clinical trials.

Self-collect 103
1326

DrugBank 1270

Approved drugs set Compounds successfully being
market-approved.

Self-collect 70
408

DrugBank 395

Clinical terminated
compounds set

Compounds terminated in clinical trials.
Self-collect 21

24
ClinTox 14

2.2. Graph Neural Network

We constructed Direct Message Passing Neural Networks (D-MPNNs) for miDrug-
likeness model construction. DMPNNs have been used successfully for molecular pre-
diction [22]. The DMPNN has two phases, a message phase, and a readout phase. In the
message phase, information is transmitted through the graph architecture to the hidden
states. The message update equation is:

mt+1
vw = ∑

k∈{N(v)\w}
Mt
(
xv, xk, ht

kv
)

(1)

ht+1
vw = Ut

(
ht

vw, mt+1
vw

)
(2)

where mt
vw is the message associated with a bond (from atom v to atom w) in step t, and

ht
vw is the hidden state of bonds (from atom v to atom w) in step t. Mt and Ut are defined

as follows:
Mt
(
xv, xw, ht

vw
)
= ht

vw (3)

Ut

(
ht

vw, mt+1
vw

)
= τ

(
h0

vw, Wm, mt+1
vw

)
(4)

where Wm ∈ Rh×h is a learned matrix with hidden size h.
In the readout phase, the representation of all hidden states is aggerated into a final

representation for prediction tasks. All final hidden states hv of atom can be obtained by

mv = ∑
w∈N(v)

hT
vw (5)

hv = τ(Wacat(xv, mv)) (6)

Then we can get the prediction ŷ through a feed-forward neural network f as follows

h = ∑
v∈G

hv (7)

ŷ = f (h) (8)
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The D-MPNN network was implemented using a Python package, ChemProp. The
hyperparameters were optimized by grid search. The three models adopted the same
network architecture but different learning rates including 1e-3, 1e-3, and 5e-4, respectively.
The depth of MPN (message passing neural network) layers and feedforward neural
network layer was 2. The hidden size was 300 and the batch size was 500. During the
training process, early stopping was used to avoid overfitting. Besides, we calculated the
200 molecular features through RDkit to enhance model performance. The architecture of
miDruglikeness models is shown in Figure 2.
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2.3. Active Ensemble Learning

Active learning is a machine learning strategy for situations where unlabeled data are
abundant or easily obtained but data labeling is difficult, time-consuming, or expensive [23],
which makes it well suited for drug discovery. During the process of active learning, the
model can select the most informative samples from an unlabeled dataset, and the selected
data can be labeled by experiments. By using iterative selection with an active learning
query strategy, the model can get satisfactory performance with a relatively small amount
of training data, which can save downstream labeling and experimental costs.

We constructed a pool-based active learning trainer based on ALiPy [24], an open-
source active learning framework. Labels of the entire sample pool are stored in a cache and
can be queried by the trainer using a query function. Figure 3 depicts the active learning
training process. First, a small percentage of training samples (5% in our task) are labeled
to initialize the model. Then, the remaining unlabeled samples are predicted by the trained
model and checked with the query function to get the score for selection. According to
the selection score, the trainer selects a batch of samples and adds them to the training
dataset with their corresponding labels. The model is then retrained using the new training
dataset. After the model has been trained, the next iteration begins. To reduce the number
of iterations and speed up the training, the batch size of the query for each iteration is not
the same but rather is denser at the beginning and sparser at the end.

We adopted uncertainty sampling for selection [23] because the most uncertain sam-
ples are considered to have the most information. For the classification tasks, we wanted
to focus on the most uncertain samples at the margin. The score function calculates the
uncertainty of the samples and is defined as:

xuncertainty = 1− P(ŷ|x) (9)
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ŷ = argmax P(yi|x) (10)

where x is the specific sample, xuncertainty is the uncertainty of the sample, and P(yi|x) is
the predicted probability of i-th class for the sample.
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Ensemble learning is a popular machine learning technique that combines several
base learners to produce one optimal predictive model. It is generally believed that base
learners used for ensemble learning should have some diversity [25]. The diversity can be
developed at the data level (boosting or bagging) as well as at the algorithm level (stacking).
Because the training dataset in each iteration of active learning is expanded by new data
that are ambiguous for the model in the last iteration, the models in each iteration of active
learning are actually trained by different data. Thus, the models in the active learning
process are used as base learners for ensemble learning in our study. The workflow of the
active learning strategy is shown in Figure 4. The final output is as follows:

y =
1
N

N

∑
n=1

yn (11)

where y is the final output, and yn is the prediction of base learners.Biomolecules 2022, 12, x FOR PEER REVIEW 8 of 17 
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For baseline control, we trained a D-MPNN iteratively with random picking (passive
learning) and combined the passive learning models in the same way as the active learning
models, called passive ensemble learning.
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2.4. Model Evaluation Metrics

Our models were evaluated by three metrics: accuracy (ACC), Matthews correlation
coefficient (MCC), and F1-score. Because ACC is sometimes not a good metric for imbal-
anced datasets, we further adopted both MCC and F1-score, which are better suited for
imbalanced data. For virtual screening testing, the AUC (area under curve) of receiver
operating characteristic (ROC) and enrichment factor (EFγ) were used.

ACC =
TP + TN

TP + TN + FP + FN
(12)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 score = 2× Precision× Recall
Precision + Recall

(16)

EFγ =
NTBγ

NTBtotal × γ
(17)

where TP is the number of true positive samples, TN is the number of true negative samples,
FP is the number of false positive samples, and FN is the number of false negative samples.
NTBγ is the number of the true active samples among the top predictions with cutoff γ
setting. NTBtotal is the number of true active samples in the total prediction list.

3. Results
3.1. Performance of miDruglikenss System on the Internal Tests

For active learning, we randomly selected 5% of the data in the training set as the
initial labeled data pool and left the remaining data to construct the unlabeled data pool.
After selection in each iteration of active learning, the selected data of the unlabeled
data pool were directly added to the labeled data pool. We used passive learning, in
which the data selection criteria are random, as a baseline control. For in vivo ability
prediction, the active learning models quickly reached maximum performance, whereas the
passive learning models did not reach maximum performance until the end of the iteration
(Figure 5a). All of the metrics used to evaluate the performance of the models exhibited
similar tendencies. The active learning models were able to achieve maximum performance
with about 40% of the whole training dataset, but the passive learning models required
100% of the training data (the results of MCC and F1 are shown in Figures S4 and S5).
Similarly, for the models predicting IND ability and market approvability, active learning
models achieved maximum performance with about 50% and 60% of the whole training
datasets, respectively, whereas passive learning models required all of the training data
(Figure 5b,c). These results showed that the models had sufficient predictive capacity in
the plateau of the active learning process to generate meaningful predictions for effective
drug development.

To further improve performance, we combined these models using ensemble learning.
We integrated the models of the final few iterations in the performance plateau of Figure 5
using an averaging sum method (Equation (11)). We did not include the models in the early
iterations because of their inferior prediction accuracy, which may hurt the performance of
ensemble learning. For all three prediction tasks, we experimented with different ensemble
sizes and chose the size that gave the best overall performance in the validation set. The
three models obtained the best results when using the last five models in the active learning
iterations for ensemble learning (Figure 6).
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We compared the results of the active ensemble learning strategy with a powerful
traditional machine learning method, XGBoost [26], and other ensemble strategies (Table 5).
The XGBoost was trained with 200 molecular features (including physical properties and
fragments descriptors, etc.) through RDkit and the hyperparameters were optimized
by grid-based random search. The normal learning model was a D-MPNN trained on
the whole training dataset, which showed better performance than XGBoost in in vivo
ability prediction task and market approvability prediction task. Active ensemble learning
further improved the D-MPNN model performances across all metrics. MCC values
grew by an average of 3% with active ensemble learning compared with normal learning,
while the other performance metrics increased by 1–2%. We also contrasted the active
ensemble learning strategy with another two ensemble strategies. The normal ensemble
learning strategy integrated models trained by normal learning (without active learning)
on whole training datasets, whereas the passive ensemble learning strategy integrated
models trained by passive learning. The ensemble sizes for normal ensemble learning and
passive ensemble learning were the same as those used for active ensemble learning. Active
ensemble learning models achieved the best or comparable performance among all the
strategies (Table 5). Besides, active ensemble strategies also obtained the best performance
in a balanced test (Figure S6). Finally, we adopted active ensemble learning models for the
miDruglikeness system. The in vivo ability prediction model in miDruglikeness showed
the highest performance in all three models, which attained state-of-the-art accuracy (above
94%) and MCC value (84.7%). The IND ability prediction model and market approvability
prediction model also achieved satisfactory accuracy above 80% with smaller training
datasets (Table 6).

To further assess the efficacy of active ensemble learning, we evaluated our active
ensemble learning strategy on tasks using some ChEMBL data [27] and found that ac-
tive ensemble learning still achieved the best performance in all strategies used (see
Supplementary Table S3), which implies that our active ensemble learning strategy is a gen-
eral performance-enhancing strategy other than the drug-likeness task.

Table 5. The performance of active learning methods and other different methods on internal test sets.

Task Methods ACC MCC F1

In vivo ability
prediction

XGBoost 0.932 ± 0.001 0.799 ± 0.003 0.842 ± 0.002

Normal learning 0.941 ± 0.003 0.824 ± 0.010 0.860 ± 0.000

Passive ensemble 0.945 ± 0.003 0.838 ± 0.010 0.873 ± 0.000

Normal ensemble 0.945 ± 0.003 0.838 ± 0.009 0.872 ± 0.000

Active ensemble 0.948 ± 0.001 0.847 ± 0.005 0.880 ± 0.000

IND ability
prediction

XGBoost 0.849 ± 0.003 0.661 ± 0.008 0.771 ± 0.005

Normal learning 0.832 ± 0.015 0.640 ± 0.019 0.770 ± 0.001

Passive ensemble 0.846 ± 0.004 0.657 ± 0.007 0.771 ± 0.002

Normal ensemble 0.851 ± 0.003 0.670 ± 0.005 0.784 ± 0.002

Active ensemble 0.852 ± 0.003 0.672 ± 0.008 0.783 ± 0.002

Market
approvability

prediction

XGBoost 0.809 ± 0.004 0.599 ± 0.009 0.847 ± 0.003

Normal learning 0.811 ± 0.008 0.606 ± 0.016 0.844 ± 0.005

Passive ensemble 0.808 ± 0.007 0.597 ± 0.015 0.843 ± 0.004

Normal ensemble 0.819 ± 0.004 0.621 ± 0.009 0.854 ± 0.003

Active ensemble 0.822 ± 0.006 0.627 ± 0.014 0.855 ± 0.003
The bold numbers are the best results, the standard deviations are from the five-fold training/test.
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Table 6. The performance of miDruglikeness models on the validation sets and internal test sets.

ACC MCC F1

In vivo ability
model

Validation 0.949 ± 0.002 0.846 ± 0.004 0.878 ± 0.004

Test 0.948 ± 0.001 0.847 ± 0.005 0.880 ± 0.004

IND ability model
Validation 0.856 ± 0.002 0.675 ± 0.006 0.782 ± 0.007

Test 0.852 ± 0.003 0.672 ± 0.008 0.783 ± 0.008

Market
approvability model

Validation 0.827 ± 0.011 0.633 ± 0.023 0.860 ± 0.010

Test 0.822 ± 0.006 0.627 ± 0.014 0.855 ± 0.005
The standard deviations are from the five-fold training/test.

Because drugs have some analogs of previous drugs. To evaluate the performance
of miDruglikeness models on the dissimilar data, we excluded test set molecules with
similarity above 0.85 to the molecules in the training set to construct a stricter test set,
i.e., the low similarity test set. The similarity was calculated using Tanimoto coefficient
similarity on the ECFP4 fingerprints. As shown in Figure 7, the ACC value of the in vivo
ability model still had a high value of 94.6% and other metrics also with a high level of
approximately 80%. The ACC values of the IND ability model and the market approvability
model are above 70% but MCC and F1-score decreased more, which was mainly affected
by the data imbalance. The results illustrated that miDruglikeness models had good
generalizability for dissimilar compounds.Biomolecules 2022, 12, x FOR PEER REVIEW 12 of 17 
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3.2. The Performance of miDruglikenss System on the External Tests

We further tested miDruglikeness models with an evaluation of the external sets and
make a comparison to QED. Because all external sets only have one class, ACC is the only
evaluation metric. As indicated in Table 7, the performance of the miDruglikeness models
was significantly better than that of QED. The ACC of QED of all external sets was about
50%, close to random predictions. miDruglikeness demonstrated the best performance
in in vivo ability prediction task (in vivo compounds set), which is consistent with our
internal evaluation. Moreover, miDruglikeness obtained over 70% accuracy on the clinical
terminated compounds set, showing a good predictive ability for filtering failed compounds
in clinical trials, which is useful for saving costs in clinical trials. In the external test to
distinguish the investigational compounds and drugs from ChEMBL, miDruglikeness still
obtained a high accuracy of 72.8% (Table S5). By analyzing the QED distribution of training
datasets in miDruglikeness tasks (Figure 8), we discovered that QED is not discriminating
in subdivisional drug-likeness prediction tasks.

Table 7. The predicting ACC values of miDruglikeness models and QED on the external sets.

In Vivo
Compounds Set

Investigational
Compounds Set

Approved
Drugs Set

Clinical Terminated
Compounds Set

QED 0.515 0.494 0.529 0.500

miDruglikeness 0.773 0.620 0.662 0.708
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3.3. In Vivo Ability Model for Virtual Screening

Given that in vivo ability prediction task is closely related to the compound bioactivity,
we evaluated the in vivo ability prediction model on DEKOIS 2.0 data set. Because the
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in vivo ability model was a ligand-based model, we employed a widely used docking
program Autodock Vina (Vina) [17] as a baseline of comparison, which also did not use
a target-specific training set. In addition, we also compared our results with a recently
published target-based scoring function, DyScore [28]. For enrich factor (EF) calculation,
we utilized the predicted probability of in vivo ability as the ranking score. The in vivo
ability prediction model showed very good performance in virtual screening tasks and
significantly performed better than Vina and DyScore, though no protein targets informa-
tion nor interaction information is considered in our model (Table 8). The detailed virtual
screening test results for each target are included in Supplementary Table S6.

Table 8. The virtual screening performance of the in vivo ability model, DyScore and Vina on the
DEKOIS 2.0 dataset *.

AUC EF1% EF2% EF5% EF10%

Vina 0.631 4.8 4.0 2.8 2.3

DyScore 0.702 7.5 6.2 4.3 3.3

miDruglikeness 0.860 9.2 9.1 7.3 5.6
* Data for Vina and DyScore are from ref [28]. As 4 targets (A2A, HDAC2, PPAR-1, and PPARA) were not tested
by DyScore, all the data are calculated without these 4 targets.

3.4. Model Interpretation

We analyzed the importance of D-MPNN features and RDkit descriptors we adopted
using SHAP (see details in Supplementary). SHAP is a game theory method used to explain
the output of a machine learning model with Shapley values. The importance of features of
the miDruglikeness models can be used to determine how features affect the prediction of
models. D-MPNN features are the hidden vectors of molecules through message-passing
neural network layers in the D-MPNN model. They represent the features extracted by the
molecular graph with D-MPNN. Since the D-MPNN features are latent and information-
rich vectors, they are difficult to further interpret. But we observed that D-MPNN features
played a major role in decision making, while RDkit descriptors played an auxiliary role.
The better the model was trained, the more D-MPNN features were prominent. The in vivo
ability prediction model only had one RDkit feature in the top 20 important features, while
the market approvability model had 6 RDkit features (Figure 9). The description of these
important RDkit features is shown in Table 9.

Table 9. Description of the RDkit features in the top 20 important features of miDruglikeness.

Tasks Feature Description

In vivo ability Chi2n Similar to Hall–Kier Chi2v, but uses nVal instead
of valence.

IND ability

NumAliphaticRings The number of aliphatic (containing at least one
non-aromatic bond) rings for a molecule.

MolLogP Wildman–Crippen LogP value.

FractionCSP3 The fraction of C atoms that are sp3 hybridized.

Market
approvability

Kappa2 Hall–Kier Kappa2 value.

NumAromaticRings The number of aromatic rings for a molecule.

SlogP_VSA10 MOE logP VSA Descriptor 10 (0.40 ≤ x < 0.50).

NumSaturartedRings The number of saturated rings for a molecule.

fr_bicyclic Bicyclic.

fr_AI_OH Number of aliphatic hydroxyl groups.
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3.5. The miDruglikeness Webserver

We developed the miDruglikeness webserver for convenient use of our tool. The users
can simply submit compounds in SMILES (simplified molecular input line entry system)
format or submit a text file containing compounds in SMILES strings to obtain miDrug-
likeness predictions. A CSV file containing the predicted labels as well as the predicted
probability of three models will be returned to the users. The webserver is freely available
at http://www.pkumdl.cn:8000/midruglikeness/ (accessed on 1 November 2022).

4. Discussion

In this work, we first proposed and implemented three subdivisional models to
individually predict the possibility of a compound entering the in vivo testing, clinical
trials, and market approval stages. By making drug-likeness predictions in this subtle
manner, we can predict the probability of a compound entering the next stage of drug
discovery and development. Our testing results demonstrated the robustness and the
generalization ability of miDruglikeness models. Although docking approaches based
on target information are popular for virtual screening, their performance is inadequate.
Our in vivo ability model showed a very good performance for virtual screening. Since
in vivo ability model is target independent, it would serve as an orthogonal complementary
to target-based virtual screening methods and is anticipated to considerably increase the
success rate of virtual screening. Many researchers utilize QED as a filter in virtual screening.
However, we discovered that our in vivo ability model worked far better than QED. Thus,
we highly recommend that users can employ in vivo ability as a strong filter in their virtual
screening campaigns.

The miDruglikeness models are mainly based on the structural information of com-
pounds. Nevertheless, drug approval is a complicated process that is also affected by
biological and commercial factors. Thus, the IND ability prediction task and market ap-
provability prediction are more challenging than in vivo ability prediction task. To further
improve the predictive performance of the IND ability model and the market approvability

http://www.pkumdl.cn:8000/midruglikeness/
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model, additional information such as biological data from in vivo assays and clinical trials
should also be considered.

We developed the active ensemble learning method for miDruglikeness models in this
study. Additionally, active ensemble learning is a general strategy for machine learning
models with uncertainty and can be used for a variety of different tasks, such as the
prediction of bioactivities. Active ensemble learning can combinedly be used with other
methods such as XGBoost and DNN. From Figure S7, we also discovered that active
learning could maintain data balance at a certain range in the data selection. It could be
applied for scenarios when sampling imbalanced data.

5. Conclusions

We have developed a miDruglikeness system consisting of three models to predict
in vivo ability, IND ability, and market approvability to deal with scenarios corresponding
to the different stages of drug development. Active ensemble learning as a general strategy
was developed and applied to further enhance the miDruglikeness models. These models
are demonstrated to have satisfactory performance on internal test datasets, four external
test datasets, and the virtual screening tests. We believe the miDruglikeness models offer
better indexes than QED for rapid evaluation of a large amount of molecular data such
as molecules generated by deep generative networks. We also built the miDruglikeness
webserver to facilitate usage.
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properties of market approvability training sets; Figure S4: The MCC of models in the active learning
process on test sets versus the percentage of training data used; Figure S5: The F1 of models in
the active learning process on test sets versus the percentage of training data used; Figure S6: The
performance of different methods on balanced test sets; Figure S7: The balance ratio of training set in
the active learning iterations; Table S1: Detailed information of DEKOIS2.0; Table S2: The detailed
information balance test data; Table S3: The performance of different strategies on ChEMBL data;
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