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Abstract: Epidemiological studies and clinical observations show evidence of sexual dimorphism
in brain responses to several neurological conditions. It is suggested that sex-related differences
between men and women may have profound effects on disease susceptibility, pathophysiology, and
progression. Sexual differences of the brain are achieved through the complex interplay of several
factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic
differences. Despite recent advances, the precise link between these factors and brain disorders is
incompletely understood. This review aims to briefly outline the most relevant aspects that differ
between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM).
Recognition of disparities between both sexes could aid the development of individual approaches to
ameliorate or slow the progression of intractable disorders.
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1. Introduction

Brain dimorphism is a complex process, with multiple contributing mechanisms and
pathways resulting in differences. Sex-based differences with regard to clinical features
have been identified in a range of neurological diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis
(ALS), multiple sclerosis (MS), and ischemic injury [1–6]. The difference in response to
brain pathology plays a role in the prevalence and natural course of several disorders. The
responsible mechanism of dimorphism may vary in species and involve several factors,
including epigenetic and genetic differences, hormonal effects, sex-specific environmental
factors, and gene–environment interactions (Figure 1). A strong connection between sex
hormones and the development of sex differences in the brain has been noted. However,
other unidentified factors may also play an important role [7]. Despite recent advances, the
precise link between the considered factors and brain disorders is incompletely understood.
We provide up-to-date data on sex-related differences in ischemia and neurodegenerative
disorders and highlight the most relevant aspects that differ between men and women.
Increased recognition of such differences may facilitate the introduction of potential per-
sonalized therapy to ameliorate intractable disorders.
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Figure 1. Mechanisms regulating sex specific responses to neurodegenerative diseases and
cerebral ischemia.

2. Neurodegenerative Diseases

Neurodegenerative diseases constitute a heterogeneous group of disorders that in-
crease in incidence as the population ages. These disorders are characterized by a pro-
gressive decline in cognitive ability and memory formation, which are correlated with
reduced neurogenesis and deficits in LTP maintenance in elderly people [8]. Increasing
brain and spinal cord damage gradually impairs the function of the central and peripheral
nervous systems. This increasing damage finally leads to mental retardation and motor and
behavioral problems. The most common neurodegenerative diseases include Parkinson’s
disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral
sclerosis (ALS), and multiple sclerosis (MS). Detailed systematic studies of brain pathology
have detected the role of sex-dependent effects in the course of diseases. Since then, new
research has emerged, providing an unprecedented view into the differences between the
sexes related to the severity of disease symptoms, progression, and different treatment
responses. In the following pages, we present the current data on this subject.

2.1. Parkinson’s Disease

Parkinson’s disease (PD) is a common age-related neurodegenerative disorder of the
CNS, affecting 1–2% of the population over the age of 65 [9]. The main features of this
pathology are progressive motor dysfunction, such as hypokinesia, resting tremors, rigidity,
and postural instability. Moreover, nonmotor symptoms, such as olfactory deficits, consti-
pation, sleep behavior disorders, mood disturbances, and dementia are also observed in PD
patients [10,11]. The neuropathological hallmarks of PD are intracellular protein aggregates
called Lewy bodies, in which α-synuclein is the principal component, and the degenerative
processes of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which
cause depletion of dopamine in striatal projections [12,13]. Although the mechanism that
triggers brain degeneration in PD is unknown, several genetic and epigenetic factors are
involved in contributing to the disease. A comparative clinical and experimental study
showed that males have a greater susceptibility to PD than females, with a 1.5–2.0-fold
higher prevalence [14,15]. The differences between the two sexes are related to the clinical
course of the disease, severity of symptoms, progression, and treatment responses [1,16,17].
For instance, men need higher doses of L-dopa than women to achieve optimal therapeutic
control [18].

Another set of supporting information came from studies of animal models, which
recapitulated the striatal dopaminergic neuron loss by administration of toxins (MPTP,
methamphetamine, 6OHDA). The results have revealed the higher susceptibility of males
(rodents and nonhuman primates) in vivo and in vitro [19,20]. Of note, sex differences
have been detected only when partial lesions of the nigrostriatal dopaminergic pathway
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do not exceed 70–80% damage [21,22]. Finally, the majority of data implied that sex is an
important factor in PD development.

Further systemic studies in the field of PD showed that sex hormones played a neu-
roprotective role in multiple aspects of PD as well as in other brain disorders (Figure 2).
Administration of hormones to postmenopausal women reduced the risk for disease, as
was already noted in other neurodegenerative impairments [23–25]. Thus, the action of
estragon and 17β-estradiol (E2) have received considerable attention, spurring justified
hope as therapeutic strategies against the development of PD [1,22].

Figure 2. Neuroprotective effects of steroid hormones in brain disorders.

One of the most important actions of estrogens is related to a defense of neurons
in the nigrostriatal dopaminergic pathway from potentially harmful toxic stimuli [26].
Furthermore, estrogen is postulated to prevent Levy body formation and aggregation
of α-synuclein [27]. One further notable advance is the recognition that sex hormones,
in addition to direct action on DA neurons, may also influence input circuitry in a sex-
dependent manner. To date, evidence has shown that circulating estradiol upregulates
the expression of TH (the rate-limiting enzyme for noradrenaline as well as DA synthesis)
in females. In males, circulating testosterone downregulates TH after its conversion to
estradiol [28].

The effective protection of dopaminergic neurons by estrogen is mediated by both
nongenomic actions, such as the activation of specific signaling pathways, and genomic
effects involving gene transcription. For excellent reviews, please refer to Jurado-Coronel
et al. and Gillies et al. [1,29]. In brief, the model of actions is associated with decreasing ox-
idative stress, reduced production of ROS, stabilization, and preservation of mitochondrial
function, and anti-inflammatory effects [30,31]. The detailed analysis of the intracellular
pathway associated with 17β-estradiol showed that stimulation of the MAPK/ERK and
PI3/AKT cascades is linked to cell survival by inhibition of proapoptotic proteins. In
addition, the possible linkage of the neuroprotective 17β-estradiol with the expression
level of neurotrophic factor GDNF in the SN and striatum has also been postulated [32].
Although the entire spectrum of molecular events resulting from hormone treatment has
been described, to date, there is no information on whether the intracellular signaling
pathway is sexually differentiated due to the differential expression of molecules associated
with the cell survival pathways.

Despite these promising results regarding the neuroprotective effect of in neurotoxic
animal models [33–35], to speculate that hormones would be able to ameliorate patho-
logical reactions in human PD would be rather premature. Indeed, some clinical studies
have reported no evidence of the neuroprotective effects of estrogen [36,37]. In addition,
the disparity in reported findings does not allow us to make precise conclusions [26,35].
Therefore, more work is needed to fully decipher the mechanism of hormonal sex action in
PD patients.
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In the line of gathering data, sex hormones alone do not entirely explain sex differences.
Lee et al. [38] highlighted the important role of sex chromosome genes. According to Gillies
et al. [1], SRY, which is present only in males, contributes to sex differences. Of note, it might
directly influence the nigrostriatal dopaminergic system. Moreover, it was upregulated
in an animal model of PD [39]. Importantly, silencing of the SRY gene in the SNc of male
rodents reduced the DA neuron number compared with that of females and induced motor
deficits [1]. These data suggest that lowering nigral SRY expression would represent an
important event in future sex-specific strategies to slow or prevent DA cell loss in PD
males [38]. Another important aspect of genetic studies performed in PD has shown that
genetic variations in ERβ are associated with an early age (between 20 and 50 years) of PD
onset [40–42].

In summary, the common interplay of chromosomal factors and gonadal hormone
factors may contribute to sex differences.

2.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders
and the leading cause of death for individuals aged 65 or older. AD accounts for ap-
proximately 80% of all cases of dementia, due to progressive cognitive impairment and
decreased memory formation associated with neuronal dysfunction [8]. The two patholog-
ical hallmarks of AD are extracellular senile neuritic plaques, of which amyloid-β is the
principal component [43], and intraneuronal accumulation of hyperphosphorylated micro-
tubules associated with the protein tau, which are known as neurofibrillary tangles. The
aggregation of amyloid-β fragments (peptides 40–42) that accumulate to form oligomers
induces neurotoxic effects that lead to the neural synaptic and cognitive degradation seen
in AD [44]. Intracellular neurofibrillary tangles, as the second hallmark of AD pathology,
are involved in the dispersion of microtubules and contribute to the progression of the
disease [45].

Clinical data has shown that women have a greater risk of developing AD than
men. The datasets present a higher incidence of Alzheimer’s disease, at a ratio of ap-
proximately two to one [46,47], and women experience more progressive cognitive and
physical decline [48–51]. It must be also noted that although women have a longer lifes-
pan, they showed a significantly faster decline and greater deterioration of cognition than
elderly males.

Evidence of a higher prevalence and higher level of AD pathology in women was
found by a number of detailed postmortem analyses of brain AD patients [52]. This in-
vestigation revealed a heightened tau tangle density, higher amyloid-β load, and greater
magnitude of brain atrophy in women than in men. In addition, positron emission to-
mography (PET) was used to detect amyloid-β load and tau deposits, which appeared
earlier in women than in men in individuals at risk of developing AD [53]. Furthermore,
sex differences were also identified in an animal model of triple transgenic mice (3xTg-AD
mice) [54]. It is worth pointing out that other transgenic mouse models have been also used
to study the cognitive and behavioral deficits associated with AD pathology. These include
APP/PS1 [55–57] 5xFAD, Tg2576 [58,59], and APP23 mice [60]. Therefore, based on the
above findings, deposits of amyloid-β were more striking in females than in age-matched
males. This observation corroborates previously published reports showing more senile
plaques [61,62].

Clinical studies strongly argue in favor of a prominent role of the apolipoprotein E
(epsilon-4 allele (APOE4) being a greater risk for developing AD in women in contrast
to age-matched men [63–65]. The research data indicate that the risk of AD is even more
pronounced in women who are carriers of the e4 allele of APOEthan it is in e-4 carrying
men [64,65]. In contrast, a limited number of studies did not find an interaction between sex
and APOE epsilon-4 [52,66]. According to this data, women with the APOE genotype do not
present a more severe phenotype than men, and higher pathological changes were thus not
related to the APOE status. However, this is yet to be determined in future investigations.
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Accumulating evidence shows that the age-related drastic loss of sex hormones, re-
sulting in the depletion of estrogen post-menopause, leads to the higher prevalence of
AD in women [67,68]. Evidence from animal models has shown the neuroprotection of
steroid hormones in AD [69]. An important point for supporting this suggestion is that
ovariectomized mice present early and accelerated AD pathology and impaired learning,
while 17β-estradiol prevents the accelerated decline [70,71]. Importantly, estradiol de-
creases amyloid-β levels and its aggregation into plaques in female mice expressing APP
compared with wild-type mice [72]. A limited number of studies have aimed to decipher
the molecular pathway underlying beneficial estrogen action. One of the postulated mecha-
nisms is linked to the enhancement of α secretase activity and consequently directs APP
processing towards a nonamyloidogenic pathway [73,74]. The other mechanism involved
a reduction in amyloid-β levels through increased inhibition of BACE1 and increased
amyloid-β clearance [75]. Notably, the protective action of hormones has also been shown
in other systems. There are data showing that estradiol induced dephosphorylation of tau
and protected against tau hyperphosphorylation in female neuroblastoma cell lines and
cortical neurons [76].

There is some evidence that a high serum level of follicle-stimulating hormone (FSH)
is strongly associated with the onset of AD. FSH acts directly on hippocampal and cortical
neurons to accelerate amyloid-β and Tau deposition and impair cognition in 3xTg AD mice.
Blocking FSH action in these mice abrogates the Alzheimer’s disease-like phenotype by
inhibiting the neuronal C/EBPβ–δ-secretase pathway [77]

Although the reported preclinical data seem to suggest a protective role for estrogen
in AD pathogenesis, clinical trials have resulted in inconclusive data, with some showing
decreased cognitive function with early estrogen therapies [78–82]. In addition, long-term
therapy resulted in negative effects and increased the risk for breast cancer, pulmonary
embolism, and stroke.

In men, the loss of steroid hormones is less drastic. The level of circulating testosterone,
the main male sex hormone, presents a gradual reduction with time, but its decreased levels
with ageing may also increase AD in men. This is supported by gonadectomized males
showing increased amyloid-β accumulation and memory-related behavioral deficits, which
were attenuated by treatment with testosterone or its metabolite dihydrosterone [83–85].
Another study indicated that increased testosterone in aged male 3xTg-AD mice was
correlated with reduced amyloid-β plaque pathology [86].

Apart from hormones, genes are likely to explain more AD pathology in women.
As a result, ubiquitin-specific peptidase 9 has highly significantly different expression in
women compared with men and is associated with the expression and phosphorylation of
tau [87]. In addition, three genes were identified in a sex-stratified genome-wide association
study that was associated with tau (osteocrine and claudin-16) and amyloid-β (serpin
family B member 1) only in the brain of women [88]. Furthermore, several other genes
have been identified recently such as Kdm6a [89], MGMT variants [90], ubiquitin-specific
peptidase 11 [91], and St2 [92]. A full understanding of the role these genes in AD requires
further study.

A body of evidence implies that the differences in immune system activation may be a
causative factor in AD differences, as females present a stronger immune response than men
with increased inflammatory cytokines, chemokines and gliosis [51,93,94]. This may include
changes in gene transcription in microglia. However, the mechanism of action remains
unclear. In addition to the effect discussed above, several molecular pathways, associated
primarily with sex hormones reduction, may play a role in the determination of female
AD vulnerability. The study clearly demonstrates that oxidative stress is one of the major
pathogenic factors of AD, which is closely associated with other key events such as a decline
in mitochondrial function, protein misfolding, widespread neuronal/synaptic dysfunction,
altered neuronal ionic homeostasis, impaired kinase/phosphatase activities, selective
neuronal loss with attendant neurotransmitter deficits and impaired autophagy [95,96].
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Future studies will need to address the complexity to achieve an understanding of the
complex mechanism.

2.3. Multiple Sclerosis

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the CNS
with a variable pathology and phenotypic presentation. MS has many characteristics in
common with classical neurodegenerative diseases. The disease is characterized by recur-
rent episodes of inflammatory demyelination with a relapsing-remitting course, significant
synapse loss, and CNS atrophy [97–99]. Due to epidemiological data, MS is more prevalent
in women than in men, with a ratio of 3:1 [100], and mainly affects young and post-pubertal
women. Interestingly, an alleviation of disease activity observed during the late state of
pregnancy might be associated with suppressing the mother immune system to prevent
rejection of the fetus [5,101,102].

Sex-related differences between males and females, seen in humans and animal models,
are characterized by the incidence of disease, its activity, and its progression. Subsequent
research discovered that the disease onset, disease severity, and faster accumulation of
disability appear to be greater in males, although they have a lower risk of developing MS
than females [5,100,103–106]. Other datasets indicate that the neurodegenerative compo-
nent is most pronounced in male patients, whereas females present higher inflammatory
activity [107]. Male mice bearing the XY genetic background demonstrated greater EAE
(MS model) disease severity and more pronounced neurodegeneration than mice with XX
chromosomes. In summary, sex-related factors may be responsible for a higher susceptibil-
ity to immunity in females vs. males, and may play a crucial role in the etiopathogenesis of
MS [3,108]. The notable advance is the clinical findings consistent with observation that
male sex confers an increased risk for worse disease progression [109]. The voxel-based
morphometry analysis, showed worse grey matter atrophy and cortical thinning in MS
men but not in MS women. It was associated with worse upper extremity of function, as
shown by significantly worse performance. It is concluded that grey matter atrophy is a
sensitive putative biomarker for clinical disability progression. Considerable attention has
been particularly directed, as in other neurological diseases, to the role of sex hormones
and their effects on immune function.

Increasing clinical data show that sex hormones (estrogen and testosterone) are thera-
peutically effective in animal models of MS. A detailed study indicated that both steroids
derived from the peripheral system and neurosteroids (steroids synthesized in neural cells)
likely exert variable and complex inflammatory and neuroprotective effects in the course of
MS. Notable advances have shown that steroids are not only involved in the immunological
response in MS but also interact with intrinsic brain cell species. The specific action on CNS
cells, like in the peripheral system, is principally mediated by respective receptors (ERα,
-β, and G-protein coupled receptor 1), which coordinate multiple signaling mechanisms
that may protect the brain from neurodegenerative factors [110]. For instance, estrogen
receptor α signaling in peripheral immune cells has been shown to be the main pathway
for the protective effect of estrogen in experimental EAE [111].

CNS inflammation and axonal loss are closely connected with the expression of the
receptor ERα in astrocytes but not neurons [112]. Subsequent research showed that the ERβ
receptor present in oligodendrocytes enhanced endogenous remyelination and increased
mature oligodendrocytes in animal models (EAE and cuprizone models) [113–115]. More
recently, a direct effect on the immune system mediated by ERβ stimulation has also
been described [111]. Selective ERβ modifiers transcriptionally inhibit the propagation
of inflammatory signals in microglia [116,117]. Notably, estrogen signaling, in addition
to classical receptors, contributes to protective immunomodulatory effects mediated by
G-protein coupled receptor 30 (GPR30) [118].

Further systematic studies showed that not only estrogen but also other hormones
(testosterone, progesterone, and allopregnanolone) can potentially exert beneficial therapeu-
tic potential in MS. Important results in these datasets are the finding that testosterone and
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its synthetic analogue may result in increased myelin formation and promote repopulation
of oligodendrocytes [119,120] in EAE. Likewise, progesterone promotes myelin repair and
reduces neuroinflammation [121]. As noted in other reports, progesterone and its analogue
also improve clinical scores and decrease neuronal pathology [119,122].

There are no detailed data on the downstream signals stimulated by hormones in MS;
however, the response outside of MS was described by Ramien et al. [3]. Nevertheless, it is
obvious that the downstream signaling pathway may be specific to the disease model of
neurodegeneration. Therefore, it cannot be fully accepted as a specific effect on MS.

Despite the established fact that numerous in vivo and in vitro studies provide grow-
ing evidence that sex hormones show promising neuroprotective effects in MS, they may
play even opposing roles in the course of disease. One example is testosterone. Although it
ameliorated the immune response in the early stage of EAE, it was detrimental to neurons
during the chronic phase, with neurodegeneration being more pronounced in male pa-
tients [108,123]. Similar biphasic action presents endogenous ER agonist 17β-estradiol. This
factor demonstrates anti-inflammatory action associated with higher physiological levels
of estrogen, while lower levels promote the production of proinflammatory mediators.
Interestingly, clinical phase trials have been conducted for testosterone in male patients
and estrogens in female patients with MS [108]. The authors report a significant effect
on a measure of cognition and during a treatment case: slowing global brain atrophy
and altered immunological profiles [124]. However, until now, there has been insufficient
knowledge about the role of sex with regard to treatment response. The treatment for MS
may require different therapeutic approaches in males and females due to disparities in the
course of disease.

Currently, we know that sex hormones exert complex and indirect effects on immune
function, which likely contributes to the sex bias in the incidence of autoimmune diseases
in the CNS. Sex hormones are likely implicated in complex interactions with environ-
mental (sunlight and vitamin D) genetic and epigenetic factors to influence MS risk and
progression. They can also indirectly affect immune function by altering the composition
of the microbiome, as sex-specific differences in the microbiome are present in several
mouse strains and affected by hormone treatment [125]. In addition, some data suggest
that sex differences in immune responses may also be influenced by direct genetic effects
independent of sex hormones [126]. Future studies investigating the potential role of the
factors driving disease disparities between males and females are needed.

2.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated
with progressive degeneration of upper and lower motor neurons. Damage to motor
neurons and denervation of neuromuscular synapses in the peripheral nervous system
result in the loss of control of voluntary muscle movements, spasticity respiratory failure,
and ultimately paralysis and death within 2–5 years of diagnosis [127,128]. Although the
exact mechanism precipitating motor neuronal death is not precisely defined, subsequent
analyses of animal models and human patients identified a plethora of pathological events
in the course of ALS, including synaptic terminal degeneration, glial cell activation and
sustained upregulated immune responses, accompanying the pathology of ALS [129–131].
However, the primary process leading to ALS pathology remains a matter of discussion.

Current evidence found that some aspects of ALS onset and progression are dependent
on sex in patient and animal models of the disease. The results of an epidemiological study
indicated that women are less susceptible to developing ALS and exhibit less severe
disease progression [79,132–135]. Furthermore, females usually live longer than males,
despite having a similar symptomatic stage duration. The general data from humans are
mirrored in a mouse model of ALS and confirmed that the development and progression
of disease are sex-dependent [136,137]. One notable advance of a subsequent study was
the observation that sex-dependent differences became less significant as patients aged.
After data-based inspection showing the age-dependent course of disease between men
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and women and the fact that postmenopausal women are just as likely to develop ALS as
men, it was assumed that sex hormones contribute significantly to the regulation of these
processes [138].

A further study suggested a protective effect of female sex hormones, primarily
estrogen and progesterone, in the course of disease. For instance, exposure to endogenous
estrogen significantly increases survival time in postmenopausal women with ALS [139].
In addition, supplementation of ovariectomized females with a high dose of 17βestradiol
(E2) resulted in an extended lifespan [140,141]. Subsequently, deficiency of endogenous
estrogen has been demonstrated to have a deleterious effect in female transgenic SOD1
mice exacerbated by acceleration of the disease, making disease progression and lifespan
comparable with those of male mice [140–142]. Understanding the role of sex hormones
in ALS has proven more difficult. Unfortunately, limited research has examined the effect
of exogenous hormones on disease onset and progression in females. The analysis of a
small cohort of ALS patients yielded contrasting results [143,144]. However, despite several
inconsistencies, the results indicate the involvement of sex hormones in ALS [145].

Surprisingly, van der Berg et al. [146] and Murdock et al. [147] described sex as an
important variable in the most recent ALS clinical trial. Sex-specific factors in the immune
system were hypothesized to contribute to the observed pathological and clinical differ-
ences between males and females in neurodegenerative diseases [148]. Considering the
recent interest in ALS immune factors and the increased number of clinical trials targeting
the immune system, this observation appeared to be important. It is also known that
autoimmune diseases, such as systemic lupus erythematosus and MS, disproportionately
affect females [94].

Growing data indicate that sex differences may also be influenced by direct genetic
effects. The recent report of Santiago et al. [149] identified a set of switch genes exhibiting
sex-specific gene expression patterns in the blood of ALS patients. The detailed functional
analyses found that disruption of male switch genes of subsequent biological pathways
in ALS was associated with alteration of metabolic and energetic pathways. In contrast,
pathways related to infection, inflammation, and apoptosis were more prominent in females.
Future studies aimed at determining the role of these genes in sex differences are needed.

Finally, based on the important role of miRNAs and their abnormal expression in
various muscle disorders, only a few studies have focused on their action in ALS mus-
cles [150]. One piece of research focused on the investigation of miRNA-206 expression,
the key regulator of signaling between muscle fibers and neurons [151–153]. Despite the
differential miRNA expression in ALS muscle from male patients compared to females,
further studies provided discordant results.

In summary, despite key findings, the sex-dependent mechanism remains unclear, and
much uncertainty remains regarding the roles of other factors.

2.5. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease
(recently reported peripheral tissue involvement) caused by genetic mutation in the hunt-
ingtin gene (HTT) that leads to tandem CAG repeats. The expansion of CAG repeats is
recognized as the main risk factor for developing HD and presenting clinical symptoms,
including a variable combination of movement disorders, cognitive impairment and be-
havioral symptoms, progressing to worsening function [154,155]. Notably, in addition
to CAG repeat length, other genetic factors may contribute to HD phenotype expression
and determine the age at onset of HD. For instance, there is evidence demonstrating that
the apolipoprotein E epsilon 2/epsilon3 genotype is associated with an earlier age of HD
onset in male than female patients [156,157]. In addition, a coding variant in PPARGCIA is
associated with earlier motor onset in male HD gene carriers [158]. The described diver-
gent role of these genetic factors emphasizes sex differences, which were, in contrast to
other neurodegenerative diseases, almost not highlighted in HD. Scientists have largely
thought that HD is sex independent due to an autosomal inheritance pattern [159]. A sex
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bias emerged from epidemiological analysis of HD patients as well as from HD animal
models only in past decades [51,160–164]. Since then, a significantly higher prevalence of
HD in women has been detected [165]. In addition, women suffer a more severe disease
phenotype and faster progression, particularly in the motor and functional domains, than
men [166]. Motor symptoms have a stronger impact on functional ability in women than in
men with HD [159]. Notably, other studies did not disclose any sex-related effect of HD
progression or clinical phenotype [167]. Finally, in contrast to human studies, the results
of animal model investigation indicate a more severe picture in males. Males exhibited
stronger motor deficits and more prominent neuropathology.

The field of HD research has recently focused on the relative contribution of sex to
depression. Depression is part of early onset and the most common effective symptom in
Huntington’s disease [168,169]. Clinical data showed a higher prevalence of depression in
women than in men [159,170], although symptom progression over the years was similar
between the sexes. Nevertheless, female sex was postulated to be a predictor of increased
severity of symptoms [171]. In contrast, other experimental evidence postulated that
disease stage, rather than sex, is related to depressive symptoms in HD [172,173]. This is
consistent with the observation of no connection between sex differences and depression in
other neurodegenerative conditions, such as PD [174] and MS [175].

Surprisingly, the next series of experiments found sexually dimorphic depressive-like
behaviors at a premotor symptomatic age in R6/1 transgenic mice but only in a female
mouse model of HD [176–178]. The increased rate of depression in female patients might
be associated with the reduction of testosterone in animal serum [162,179] as well as in
HD patients [180–182]. In some studies, supplementation with E2 had a beneficial effect
on postmenopausal depression [183,184]. However, data showing a proper correlation
between clinical symptoms and lifetime estrogen exposure in women with HD are limited
due to the young age of onset of the disease. Nevertheless, the protective effect of sex
hormones in females on neurodegeneration related to HD progression was further reported
by several authors [161,162,164], but the results are inconsistent and incomplete. The
published controversies did not allow us to make conclusions. Further investigation
is necessary.

3. Sexual Dimorphism following Brain Ischemia

Stroke is defined as a clinical syndrome characterized by the rapid onset of focal (or
global, in the case of subarachnoid hemorrhage) cerebral deficit lasting more than 24 h
or leading to death due to a vascular cause [185]. Among the different stroke subtypes,
approximately 80% of strokes occur following occlusion of the cerebral artery. Stroke is a
leading cause of morbidity and mortality and a major cause of public health burden world-
wide. Human clinical and epidemiological data indicate that ischemic injury is sexually
dimorphic. Elucidating the origins, mechanism and impact of sexual differentiation of
the ischemic brain has been a topic of investigation for many years, and many important
principles have been established. Males have been found to have a higher incidence of
stroke and poorer outcome afterwards [186]. Additionally, numerous in vivo experimental
studies in models of forebrain or focal ischemia provide growing evidence that young adult
female rodents sustain smaller infarct sizes than males in the same types of stroke [187–190].
However, with advancing age, the incidence of stroke becomes higher in women and
is correlated with a decline in estrogen levels after menopause, which puts females at a
higher risk [191–193]. To further address the beneficial role of estrogen, treatment with this
hormone was found to reduce brain damage after MCAO. Therefore, the noticeable effect
of sex and age on the incidence and outcomes from ischemic stroke points to sex hormones
as factors that determine sex-specific responses to the injury [194].

Ischemic injury initiates a number of pathological processes that are each responsible
for brain damage. There is full agreement that a critical role in the pathophysiology
of ischemia-induced brain damage is neuroinflammation driven primarily by activated
microglial cells [195,196]. The specific contribution of microglia to brain inflammation as
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well as soluble mediators of the inflammatory response to ischemia continue to be a focus
of many valuable publications [197–199].

Upon activation by ischemic stress, microglia become polarized and exhibit different
expression patterns and morphology in males compared to females and demonstrate a
specific immunological response [200]. Thus, the concept of sexual dimorphism came from
recent advances that classified the functional and morphological phenotypes of microglia
and provided new insight into sexual dimorphism after ischemia. Since then, specific
microglial phenotypes have been believed to have a significant impact on the evolution of
ischemic injury.

The microglial phenotypes were classified as either proinflammatory M1 (the so-called
“sick”) or M2 (called “healthy”) [201], however, transcriptome studies have shown that
in vivo microglia activation is varied, meaning that M1 and M2 represent a spectrum of
activation patterns rather than separate cell subtypes [202], and there is a continuum of
different intermediate phenotypes in microglia [203]. Although the binary concept of
microglial M1/M2 classification has recently been debated, classifying microglia function
as either neurotoxic (M1) or neuroprotective (M2) is useful for explaining the pathobiology
of inflammatory and degenerative CNS disorders [204,205]. After ischemic injury, M1
microglia produce proinflammatory mediators and neurotoxic molecules (cytokines IL-1β,
TNFα, chemokines, ROS, and NO). In contrast to M1 action, M2 displays both immunosup-
pressive and neuroprotective properties due to the release of anti-inflammatory as well as
neurotrophic factors (IGF, transforming growth factor (TGFβ), GDNF, IL-4, and IL-10) that
promote brain repair and regeneration [206]. Therefore, both microglial phenotypes play a
role in the inflammatory response after CNS injury, but the extent to which each phenotype
is involved is not yet fully understood.

When comparing the two sexes, the number of M2 phenotypes (determined by ex-
pressing polarization markers Ym1 or Arg1) was higher in female individuals and most
likely contributed to the lower risk for ischemia [207]. The finding that microglia from
female mice possess neuroprotective ability was next confirmed by Villa et al. [198]. They
found that the M2 phenotype retains this functional ability when transferred into the brains
of male mice.

Another set of informative data came from analyzing the effect of ischemia on mi-
tochondria. The findings from these studies implied that mitochondria are a key point
of sexual dimorphism [100,208]. Detailed investigation of the mitochondrial response to
ischemia showed that males are more sensitive to oxidative stress with greater production
of ROS, increased mitochondrial permeability and greater release of mitochondrial proteins.
Surprisingly, females present increased activity in antioxidant enzymes [209]. However,
there is still insufficient information regarding the mitochondrial contribution, and this
subject requires further investigation.

Finally, emerging definitive evidence from genomic data show that candidate genes
and short coding microRNAs regulate gene expression and are also involved in the patho-
physiology of ischemia/reperfusion injury. Investigation of epigenetic regulatory mecha-
nisms and posttranslational modulation of gene expression has gained increasing attention
and led to the suggestion that these processes may account, at least partially, for differences
between sexes [210–213].

A few reports have addressed the role of short noncoding microRNAs. Indeed, the
investigation showed differential expression of poststroke circulating miRNAs between
male and female rats, suggesting that miRNAs modulate sex-dependent changes in cerebral
ischemia [214]. However, only miR-375 has been examined in an in vivo stroke model,
and only in male animals. However, the augmentation of estrogen signaling pathways
associated with miR-375 treatment suggests that this miRNA may play a contributory role
in sexually dichotomous outcomes following stroke [215].

An elegant investigation has revealed that sex-specific differences characterize cellular
signaling and death pathways [216]. Evidence from various studies points subsequently
to cell death, dependent mainly on caspase activation in females, while the polyADP
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polymerase-1 (PARP) pathway predominates in males [217]. Different cell death pathways
after hypoxia-ischemia determine the differences in sex-dependent responses to pharma-
cological intervention. For instance, treatment with 2-imminobiotin as well as a caspase
inhibitor provided neuroprotection in females only [218–220]. In contrast, nitric oxide
inhalation improved the outcome in males only [221]. Moreover, minocycline, a drug that
works in part as a PARP inhibitor, was found to be effective in protecting male animals
after stroke [222]. Considering these data, individual therapy is needed.

An increasing body of evidence emphasizes the importance of estrogen as a neuropro-
tective agent. Surprisingly, only a few studies have assessed whether sex-specific signaling
pathways are hormone dependent. Preclinical estrogen or β-estradiol acts as a neuropro-
tective factor in experimental stroke by reducing inflammation and oxidative stress and
sustaining neurogenesis [223–226]. Females have been found to be more protected from
brain injury pre-menopause, with high levels of circulating estrogen. Recent evidence
suggests that chronic estrogen deficiency in postmenopausal women allows increased
activation of immune-related genes [227] and thus an exaggerated response to ischemic
injury, while an increased risk of stroke is noted when estrogen levels decrease. However,
clinical studies of hormone replacement have potential harmful effects in humans, includ-
ing breast and endometrial cancers as well as thrombosis [227]. The relationship between
sex hormone exposure and ischemic stroke risk still appears complex. The use of hormones
requires a careful timing dosage, and the age of the recipient should be considered, as
it could modify the effect of sex hormones on stroke outcomes [119,194,210,228,229]. In
conclusion, hormonal manipulation alone has proven to be ineffective in improving stroke
outcomes in human trials, reflecting the sexually dichotomous cell death and regeneration
pathways induced following cerebral ischemia.

4. Conclusions

The presented data showed sex differences in response to neurodegenerative diseases
and brain ischemia. The disparities between males and females are commonly observed in
patients and pre-clinical models. Through complex correlations and interactions of several
factors, this phenomenon influences the natural course of the diseases by influencing multi-
ple facets, including pathogenesis, clinical features, and overall management. However,
the precise link between contributing factors and brain disorders is not clear. Elucidating
sex differences in disease phenotypes will be very instrumental in the development of
sex-specific strategies for prevention, detection, and treatment. The methods are constantly
improving with the potential to identify factors driving disease differences between males
and females. According to this review, much research needs to be done in the near future.
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