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Abstract: Type 2 diabetes (T2D) and Alzheimer’s diseases (AD) represent major health issues that
have reached alarming levels in the last decades. Although growing evidence demonstrates that
AD is a significant comorbidity of T2D, and there is a ~1.4–2-fold increase in the risk of developing
AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these
two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity
could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity,
which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both
pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress,
ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy,
which are shared biological events in the pathogenesis of T2D and AD. In the current review, we
try to provide a critical and comprehensive view of the common molecular pathways activated
by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future
research and open the way to new therapeutic perspectives.
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1. Introduction

Diabetes is a major health issue that has reached alarming levels. According to the
International Diabetes Federation, today, approximately 537 million people (aged 20–79) are
living with diabetes worldwide (more than one in 10 adults) [1]. This number is predicted to
rise to 643 million by 2030 and 783 million by 2045. Diabetes was responsible for 6.7 million
deaths in 2021 and caused at least USD 966 billion in health expenditure (a 316% increase
over the last 15 years) [1]. Type 2 diabetes (T2D) is the most common type of diabetes,
accounting for over 90% of all diabetes worldwide [1].

The causes of T2D are not entirely understood, but a strong link with obesity has long
been recognised [1]. The World Health Organization defines obesity as an excessive fat
accumulation that presents a risk to health [2]. Indeed, when the dietary fat surfeit exceeds
the storage ability of the adipose tissue, it accumulates in ectopic sites (i.e., heart, skeletal
muscle, liver, and pancreas), thus contributing to enlarging visceral deposits and resulting
in free fatty acids (FFAs)-induced toxicity, also known as lipotoxicity [3]. Specifically,
lipotoxicity is associated with a reduction in pancreatic beta-cell functional mass [3,4] and
whole-body insulin sensitivity [5], as well as an increased risk of cardiovascular and renal
disturbances [6–8]. These features may represent the mechanistic link between obesity,
T2D, and its complications.
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Alzheimer’s disease (AD) has long been recognized as a critical comorbidity of T2D [9].
AD is a neurodegenerative disease involving cognitive impairment, neuronal dysfunction,
and memory loss, and it is considered the most common cause of dementia. Currently,
40–50 million people live with dementia, of which 26 million have AD [10,11]. Notably,
numerous studies [12–16], including recent meta-analyses [17,18], confirmed that there is a
~1.4–2-fold increase in the risk of developing AD among T2D patients.

It is well known that impaired glucose metabolism, insulin resistance, inflammation,
oxidative stress, amyloid accumulation, advanced glycosylation end products accrual, and
mitochondrial dysfunction are biological events that occur in both T2D and AD (reviewed
in [9,19]), such that AD has been recently designated as “type 3 diabetes” [20] or “diabetes of
the brain” [21]. Nevertheless, the existence of common molecular mechanisms underlying
these events and the involvement of possible common triggers remain largely unknown. Of
note, as for T2D, obesity has been recognized as a significant risk factor also for cognitive
decline and AD [22–25]. More specifically, recent mechanistic insights provided by animal
models and in vitro experiments suggest that lipotoxicity could contribute to neurological
dysfunction and neurodegeneration [26–28], possibly representing the missing ring in the
pathogenetic mechanisms linking T2D to AD.

In the current review, we try to provide a critical and comprehensive view of the
common molecular pathways activated by lipotoxicity in T2D and AD, attempting to
summarize how these mechanisms can drive future research and open the way to new
therapeutic perspectives.

2. Lipotoxicity Common Mechanism in Type 2 Diabetes and Alzheimer’s Disease
2.1. Inflammation

Low-grade chronic systemic inflammation is an established hallmark of lipotoxicity [29–31].
During obesity, the expanded adipose tissue secretes proinflammatory factors and the
FFAs, which reach the bloodstream and lead to tonic activation of the innate immune
system and to maladaptive responses, such as fibrosis, necrosis, and altered secretion of
local proinflammatory factors, which cause significant tissue damage in multiple organs,
including pancreas, liver, skeletal muscle, heart, and brain [32–36]. Different lipid species
that are elevated due to diet or obesity may also directly contribute to tissue inflammation,
triggering the proinflammatory cascade initiated by toll-like receptors (TLRs), such as TLR4,
and altering the release of chemokines and cytokines by several tissues [37].

Much evidence supports an association between lipotoxicity-induced inflammation
and the pathogenesis and progression of T2D. Indeed, hormones, cytokines, and fatty
acids secreted by the inflamed adipose tissue can drive beta-cell failure in the transition
from obesity to diabetes [3]. For example, saturated FAs (SFAs), whose concentrations are
increased in obesity or following a high-fat diet (HFD), can induce beta-cell production
of interleukin 1 (IL-1) [38–40], a cytokine able to increase the local expression of proin-
flammatory molecules, leading to local inflammation, apoptosis, and impaired insulin
secretion [41].

In insulin-sensitive tissues (e.g., adipose tissue, liver, and muscle), FFAs can promote
tissue inflammation by binding TLR2 and -4, resulting in nuclear factor (NF)-κB and c-Jun
N-terminal kinase (JNK) activation. Once activated, these pathways can increase the local
synthesis and secretion of proinflammatory cytokines and chemokines, leading to the
infiltration of proinflammatory macrophages, impairment of intracellular signaling, and
disruptions of metabolic physiology [42].

As for T2D, much evidence suggests that inflammation induced by lipotoxicity (in
particular, the local neuroinflammation) is a key mechanism contributing to the patho-
genesis and progression of AD [43–46], and markers of neuroinflammation have been
observed in the brain of AD models [47]. Of note, multiple lines of evidence highlight the
link between lipotoxicity-induced peripheral inflammation and neuroinflammation [48,49].
Indeed, during obesity, adipose tissue-derived proinflammatory cytokines [3] can pass
through the blood-brain barrier (BBB) and induce local cytokine production, disrupting
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neural circuits involved in cognition and memory [50,51]. Studies on murine models have
shown that HFD feeding is associated with astrocyte deformation, microglial activation,
and higher levels of IL-1β, IL-6, tumor necrosis factor-α (TNF-α), and interferon-γ in
the hippocampus, which directly impaired cognitive function, including learning and
memory activities [52]. In animal models, diet-induced obesity increases inflammatory
responses also in other brain regions, such as the cerebral cortex [53] and hypothalamus [54].
Central inflammation is also likely to be exacerbated by lipotoxicity-induced damage to
the BBB [25,55,56]. Indeed, high circulating levels of SFAs can induce the expression of
inflammatory mediators and decrease the expression of tight junction proteins in brain
microvascular endothelial cells, thus compromising the integrity of the BBB. This event
causes the entry of inflammatory signals, FFAs, and immune cells into the brain, and the
consequent activation of microglia [57], which, in turn, can act on vascular endothelial cells,
leading to a vicious cycle [58].

Regardless of the induction of peripheral inflammation and the effects on BBB, dietary
FAs can directly influence the inflammatory phenotype in the central nervous system [59]:
SFAs and mono-unsaturated FAs affect the NF-κB pathway, activate TLR-4 receptors,
induce proinflammatory cytokines (IL-1β, IL-6, and TNF-α) [60,61], and increase oxidative
stress and endoplasmic reticulum (ER) stress, which are all risk factors for AD [62–65],
leading to excessive glial and microglia activation and to pathological phosphorylation of
tau, a microtubule-associated protein involved in the assembly of neurofibrillary tangles, all
of which are hallmarks of AD [66]. It has been demonstrated that conditioned media from
palmitate-stimulated astrocytes induce AD-like hyperphosphorylation of tau in primary
rat cortical neurons [67,68]. Of note, in primary astrocytes, palmitate activates the IL-1β-
releasing NLR family CARD domain containing 4 (NLRC4) inflammasome, whose levels
are upregulated in the brains of AD patients, thus suggesting a possible role also of the
NLRC4 inflammasome in AD pathogenesis [69].

In conclusion, lipotoxicity is associated with both peripheral and neural inflammation,
which represents a key mechanism contributing to the onset and progression of T2D and
AD [70].

2.2. Insulin Resistance

Insulin resistance is a condition characterized by a relative inability of target tissues to
respond to insulin action due to the downregulation of insulin receptor (IR) expression, its
inability to bind insulin, or faulty activation of the insulin signalling cascade [71]. When
accompanied by the dysfunction of pancreatic beta-cells, insulin resistance results in the
failure to control blood glucose levels, thus representing a hallmark in the pathogenesis
of T2D [72]. Obesity has long been recognized as the primary trigger of insulin resistance:
during obesity, the increased release of FFAs, hormones, and proinflammatory cytokines by
the adipose tissue promotes the induction of peripheral insulin resistance through several
molecular mechanisms, among which inflammation and oxidative stress [73,74]. In periph-
eral insulin-sensitive tissues, high levels of FFAs can result in an increased intracellular
content of FAs metabolites, such as diacylglycerol (DAG), fatty acyl-coenzyme A (fatty
acyl-CoA), and ceramides, which, in turn, inhibit insulin signaling [75]. For instance, in
hepatocytes, DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits
the IR, resulting in reduced insulin receptor substrate 2 (IRS-2) tyrosine phosphorylation
and in the inability of insulin to activate hepatic glycogen synthesis and suppress hepatic
glucose production [76]. Likewise, the accumulation of intracellular FAs in muscular tissue
positively correlates with the decrease in muscular tissue sensitivity to insulin since DAG
and ceramides can activate PKC, which is able to phosphorylate IRS-1 on serine residues,
thus impairing the activation of PI3K and insulin signalling [77]. It should be noted that
lipotoxicity-induced insulin resistance, typically recognized in insulin-sensitive tissues, has
recently been demonstrated also in pancreatic beta-cells, thus representing a new mecha-
nism of lipotoxic damage contributing to the reduction of beta-cell functional mass and the
pathogenesis of T2D [78].
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As described for T2D, insulin resistance, mainly caused by lipotoxicity, is known to be
actively involved in the pathophysiology of AD. In mouse models of AD, an HFD-inducing
peripheral and central insulin resistance increases amyloidosis in the brains [79,80]. Other
human studies have suggested the presence of brain insulin resistance in obesity [81,82].
Accordingly, it has been shown that melatonin alleviates cognitive impairments by reducing
brain insulin resistance in elderly rats on a HFD [83] and that intranasal insulin administra-
tion improves memory and other cognitive functions in healthy adults with obesity [84].
Under lipotoxic conditions, FFAs can cross the BBB, infiltrate into the cerebrospinal fluid, in
concentration depending on plasma fatty acid levels [27,85], and accumulate in the brain as
long chain-acyl CoA esters, DAG, and ceramides, causing central lipotoxicity and insulin
resistance, as observed in peripheral insulin-sensitive tissues [86,87]. In particular, it has
been demonstrated that the hypothalamic de novo ceramide synthesis plays a crucial role in
central insulin resistance development and glucose homeostasis dysregulation associated
with obesity [87]. In addition, also in the brain, impaired insulin signaling induced by
lipotoxicity can also be associated with dysfunctional mitochondria and increased reactive
oxygen species (ROS) production [88].

2.3. Oxidative Stress

Oxidative stress is defined as an imbalance in antioxidants and pro-oxidants in favour
of the latter, associated with a transient or long-term increase in ROS and reactive nitrogen
species (RNS) levels, disruption of redox circuits, alteration of metabolic and signaling
pathways, and macromolecular damage, which culminate in cellular dysfunction and
death [89,90]. Prolonged overnutrition (particularly the excess of FAs) leads to chronic
ROS and RNS production, which promotes oxidative stress in cells, tissues, and organs.
Lipotoxicity-induced oxidative stress results in damage to cell membranes, DNA, and
proteins, as well as modulation of the activity of transcriptional factors through redox
chemistry, including NF-κB, leading to chronic inflammation, insulin resistance, and cell
apoptosis [91].

Because of the high content of lipids, the high oxygen consumption rate, and the
scarcity of antioxidant defence mechanisms, the human brain is highly susceptible to ROS
insults and oxidative stress [92], which can play a major role in the neurodegenerative
process in the AD brain [93,94].

It has been demonstrated that HFD exacerbates AD-related pathology through mecha-
nisms involving oxidative stress. Indeed, in animal models of AD, HFD-induced oxidative
stress in cerebral microvasculature induces the dysfunction of pericytes which alters BBB
functionality, thus leading to amyloid accumulation in the brain [95].

As mentioned above, during obesity, FFAs cross the BBB and infiltrate into the
brain [56], thus activating microglial inflammatory pathways and increasing the production
of proinflammatory cytokines and ROS [63–65,96]. Interestingly, altered intracerebral levels
of specific SFAs and/or unsaturated FAs, as well as changes in their ratio, may contribute
differently to the oxidative stress-mediated pathogenesis of AD [97].

Like neurons, pancreatic beta-cells are also characterised by a low expression of antiox-
idant enzymes [98], thus being more vulnerable to oxidative stress. Several studies demon-
strate that lipotoxicity induces beta-cell oxidative stress, thus impairing beta-cell function
and survival [99–101] and promoting the onset and progression of T2D [102]. As observed
in the brain, chain length and degree of saturation of FAs are crucial factors for lipotoxi-
city. For instance, very long-chain FAs increased hydrogen peroxide (H2O2) generation
more potently than long-chain FAs in both beta-cells peroxisomes and mitochondria [103].
We have previously demonstrated that, in pancreatic beta-cells, high levels of long-chain
SFAs (i.e., palmitate) increase the expression and activation of the p66Shc protein, a redox
adaptor protein acting as both a sensor and a producer of ROS, thus inducing beta-cell
apoptosis [104].

Oxidative stress can be considered both a cause and a consequence of lipotoxicity-
induced mitochondrial dysfunction, which is an important pathological mechanism in
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both T2D and AD [105]. Lipotoxicity-induced mitochondria dysfunction can lead to in-
sulin resistance [106] and cell death in several tissues involved in the pathogenesis and
progression of both T2D and AD [107]. FAs can disrupt the normal proton gradient in the
mitochondria intermembrane space during electron transport, increasing mitochondrial
proton conductance. The subsequent dissipation of the proton gradient inhibits the ox-
idative phosphorylation of ADP by ATP synthetase, ultimately leading to the release of
Ca2+, energy crisis, and cell demise [108,109]. Moreover, FFAs can cause an exaggerated
activation of the inducible form of nitric oxide synthase (iNOS), resulting in the generation
of excessive nitric oxide (NO), subsequent mitochondrial DNA damage, and beta-cell
apoptosis [110].

Increased levels of heme-oxygenase-1 (HO-1) protein could represent another oxida-
tive stress mechanism induced by lipotoxicity, common to the pathogenesis of T2D and
AD [111,112]. Indeed, the activation of HO-1 results in high levels of carbon monoxide (CO)
and ferrous iron (Fe2+), which impact insulin secretion in beta-cells [113]. Similarly, CO
and Fe2+ can modulate hippocampal synaptic activity, being neurotoxic at high levels [114].
Moreover, increased levels of HO-1 have been correlated with both insulin resistance [115]
and increased levels of brain oxidative markers [113].

Finally, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs)
proteins could be a further possible common mediator of lipotoxicity-induced oxidative
stress in T2D and AD. Indeed, SFAs increase their expression and activation [116], leading to
beta-cell dysfunction and apoptosis [117–119]. Inappropriate activation of NOXs enzymes
may also damage the liver, adipose tissue, and other organs, playing an important role
in obesity-induced metabolic syndrome and diabetes [120–122]. Interestingly, lipotoxicity
also stimulates NOXs activation in micro- and macro-vascular tissues of animal models
and patients with diabetes and obesity, thus playing an important role in diabetic vascular
complications. On the other hand, it has been demonstrated that, in diet-induced obesity,
NOX-mediated oxidative stress induces cerebral vascular dysfunction [123]. In addition,
long-term HFD leads to NOXs activation, disturbed brain insulin signaling, and tau protein
hyperphosphorylation/aggregation in rats [124].

2.4. Ceramides

Under lipotoxic conditions, the FFAs accumulated in non-adipose tissues are metab-
olized through the de novo synthesis pathway into lipid derivatives, such as ceramides
and other sphingolipids (e.g., sphingomyelin and sphingosine) [125]. Although physiolog-
ical ceramide levels exert important biological effects, by altering the physical-chemical
properties of the lipid bilayers and regulating the activity of intracellular receptors and
proteins [126], their excessive accumulation triggers a series of cellular stress responses,
leading to apoptosis in different tissues and contributing to the pathogenesis of diseases
such as T2D and AD [127–129].

Pancreatic beta-cell lipotoxicity induced by ceramide accumulation was first reported
in 1998 when Shimabukuro et al. [130] demonstrated that beta-cell apoptosis was mediated
by FAs-enhanced ceramide synthesis in a rat model of obesity and T2D. Increased ceramide
content and pancreatic islet apoptosis were associated with increased expression of serine
palmitoyl transferase (SPT), a key enzyme in the de novo synthesis of ceramides, while
apoptosis was prevented by the SPT inhibitor fumonisin B1 [130]. Similarly, the prolonged
exposure of human pancreatic islets to a mixture of FFAs led to an increase in apoptosis
which was partially reduced by a ceramide synthesis inhibitor [131]. Ceramides can induce
apoptosis in pancreatic beta-cells through several pathways, including Akt inhibition,
activation of JNK and extracellular signal-regulated kinases (ERK), dephosphorylation of
B-cell lymphoma 2 (Bcl-2), and activation of the Bcl-2-associated death promoter (Bad).
Ceramides can directly activate cathepsin D, which is responsible for activating of the
proapoptotic proteins Bid and Bax, thus resulting in lipoapoptosis [108]. Furthermore,
chronic exposure of mouse beta-cells to palmitate has been shown to cause an alteration of
ER sphingolipids composition, including a reduction in sphingomyelin and an accumu-
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lation of ceramides, resulting in the destruction of the ER lipid raft and, therefore, in ER
stress [132].

In addition to beta-cells, the accumulation of ceramides can occur in other insulin-
sensitive tissues in obesity, such as adipose tissue and skeletal muscle, contributing to the
development of insulin resistance and, therefore, to the pathogenesis of T2D [133–135].

As described for T2D, lipotoxicity-induced ceramide accumulation is a mechanism
also involved in the pathogenesis of AD. Ceramide accumulation in the brain could be
directly due to the increase in FFAs levels or indirectly promoted by the FFAs-induced neu-
roinflammation under lipotoxic conditions [136]. As mentioned above, high levels of FFAs
can enter and be metabolized in the brain, resulting in increased ceramide synthesis [137].
Concordantly, an increase in ceramide levels has been observed in the brains of patients
with early stages of AD [138].

Of note, elevated serum ceramide levels can also increase the risk of developing
AD [139]. Indeed, peripherally synthesized ceramides, released into the bloodstream
under conditions of obesity or T2D, can transit across the BBB, alter insulin signaling and
induce insulin resistance in the brain [140]. Concordantly, the exposure of neuronal cells to
ceramides has been shown to alter the expression of several genes critical for insulin and
insulin-like growth factor (IGF) signaling pathways, including insulin, IR, IGF-1 and IGF-2
receptors, IRS-1, and IRS-4 [141]. In addition, the accumulation of ceramides can directly
contribute to neuronal apoptosis through the generation of ROS and the inactivation of the
PI3K/Akt signaling, leading to mitochondria-mediated apoptosis [142].

2.5. Amyloid Accumulation

Amyloid accumulation is a typical pathological feature of various diseases, including
AD and T2D. Specifically, T2D is characterized by extracellular amyloid deposits of the
islet amyloid polypeptide (IAPP) in the pancreas, while AD is marked by the accumulation
of amyloid-β (Aβ) plaques in the brain.

IAPP or amylin is a peptide physiologically produced by beta-cells, packaged in
secretory granules, and secreted with insulin in response to secretagogues, including
glucose [143]. During obesity, insulin resistance and the associated increase in insulin
secretory demand lead to the overproduction of IAPP which, when in excess, is deposited
and tends to form aggregates [144].

Several studies report the ability of FFAs to directly increase IAPP mRNA levels and
to promote its protein secretion and thus its aggregation [145,146]. Furthermore, in human
IAPP (hIAPP) transgenic mice, dietary fat enhances both the prevalence and severity of
islet amyloid deposition, leading to beta-cell loss and impaired insulin secretion [147]. Of
note, hIAPP aggregates can induce ER stress, oxidative stress, and apoptosis, thus being
cytotoxic for beta-cells [144,148–150]. The high concentration of hIAPP can also cause fibril
formation in secretory granules that, once released by exocytosis, can interact with the cell
membrane causing cytotoxicity or settling as fibrils in the extracellular space [151].

On the other hand, senile plaques composed of Aβ peptides and hyperphosphorylated
tau proteins enriched neurofibrillary tangles are the main histopathological features of
AD. Many factors can affect the accumulation and aggregation of Aβ, including dietary
fat and diabetes [152]. The amyloidogenic process is believed to occur within membrane
microdomains (lipid rafts) enriched in cholesterol and sphingolipids. It is, therefore, not sur-
prising that lipotoxicity-induced alteration of lipid homeostasis in these sites can promote
the formation of Aβ peptides. For instance, an increase in cholesterol levels can enhance
the activity of the enzymes β- and γ-secretase that cleave the amyloid precursor protein
into monomeric Aβ peptides, highly subjected to aggregation [153–155]. The alteration in
the levels of lipids, such as ceramides, may also contribute to the pathophysiology of AD
by influencing the production of Aβ. Indeed, there is evidence that ceramide analogues
can modulate the activity of γ-secretases by promoting the formation of Aβ [156,157]. Of
note, Aβ deposition can promote sphingomyelinase activity, thus establishing a vicious
cycle that exacerbates the neurotoxicity in the brain of AD patients [158–160].
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Interestingly, it has been observed that peripheral plasma Aβ (produced by enterocytes
and associated with chylomicrons and lipoprotein B) can cross the BBB, participating in
the formation of Aβ plaques in the brain [161]. In particular, increased levels of plasma
Aβ protein, derived from a diet rich in FAs and cholesterol, lead to the dysfunction of the
BBB and, therefore, to an exaggerated delivery of peripheral Aβ from the blood to the
brain [162,163]. This evidence further strengthens the link between lipid metabolism and
the deposition of amyloid plaques in the brain.

2.6. ER Stress

The ER is the intracellular site where proteins are folded and assembled [164]. When
the demand to synthesize and process proteins exceeds the ER capacity, misfolded or
unfolded proteins can accumulate in the ER and cause the so-called “ER stress”. In these
cases, the unfolded protein response (UPR) is activated in the cell, which initially leads
to a better folding rate and degradation of misfolded proteins. However, if this adaptive
response is insufficient and ER stress persists, a series of mechanisms are activated, leading
to cell dysfunction and death [164].

Beta-cells have a huge biosynthetic capability and are highly dependent on their ER,
where secretory proteins, such as proinsulin, are synthesized to cope with the oscillatory
requirement of secreted insulin to maintain normoglycemia. Consequently, beta-cells are ex-
tremely susceptible to ER stress, especially when overloaded. Many studies have reported
a key role of FFAs, particularly SFAs, in promoting ER stress in pancreatic beta-cells. The ex-
posure of INS-1E cells, human pancreatic islets, and MIN6 cells to palmitate determines the
activation of proteins of the UPR pathway involved in the induction of apoptosis, such as eu-
karyotic translation initiation factor 2A (eIF2A), activating transcription factor 4 (ATF4), and
C/EBP Homologous Protein (CHOP) [165–167]. A proposed mechanism through which
SFAs induce ER stress is the inhibition of the sarco/endoplasmic reticulum/Ca2+/ATPase
pump activity and the consequent depletion of ER calcium [166,168]. Boslem et al. [132]
hypothesized that lipotoxicity alters sphingolipid metabolism by reducing sphingomyelin
in the ER, disrupting ER lipid rafts, and thus promoting protein traffic disorders and ER
stress onset. Of note, ER stress can, in turn, activate neutral sphingomyelinase to generate
ceramide, further participating in the reduction of sphingomyelin levels and the toxic
accumulation of ceramides [169].

ER stress also appears to play a critical role in lipotoxicity- and obesity-induced insulin
resistance in the liver, adipose tissue, and muscle tissue. An increased expression of ER
stress markers, such as immunoglobin heavy chain-binding protein (Bip), protein kinase
like ER kinase (PERK), and eIF2a is associated with an alteration of insulin signaling in the
liver and adipose tissue of HFD-fed mice [170]. ER stress also mediates skeletal muscle
insulin resistance in obese and diabetic patients [171]. Overall, ER stress could represent a
link between lipotoxicity and insulin resistance in T2D.

Similarly, AD is considered a “protein misfolding disease”, characterized by a pro-
gressive aggregation of misfolded and unfolded proteins that contribute to the onset of ER
stress, leading to neuronal dysfunction and death [172,173]. Lipotoxicity can promote ER
stress in the brain: exposure of neuronal cells to palmitate triggers ER stress through the
increased expression of eIF2A and BiP [174,175]. Moreover, a diet rich in palmitate causes
ER stress in the brain, with consequent activation of CHOP in C57bL/6 mice, in vivo [176].

Of importance, high levels of FAs in the brain can indirectly contribute to ER stress
through the accumulation of Aβ. In fact, in vitro studies report that Aβ fibrils or oligomers
trigger ER stress [177–180] through mechanisms involving reduced ER Ca2+, mitochondrial
dysfunction, and subsequent ROS production [181,182]. ER stress can, in turn, contribute
to the formation of Aβ by increasing β-secretase levels, thus suggesting that ER stress and
amyloid deposits can influence each other, resulting in an exacerbated effect [183–185].

ER stress has also been implicated in developing brain insulin resistance in mice fed a
HFD, thus representing a key mechanism underlying the cognitive dysfunction typical of
diseases such as AD [186].
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2.7. Ferroptosis

Ferroptosis is a type of programmed cell death that is morphologically and biochemi-
cally distinct from others (e.g., autophagy, apoptosis, and necroptosis). Morphologically, fer-
roptosis is mainly characterized by the shrinkage of mitochondria with increased membrane
density and the reduction or disappearance of mitochondrial cristae [187]. Biochemically,
it is characterized by iron-dependent lipid peroxide accumulation and inadequate redox
enzymes levels, such as glutathione peroxidase 4 (Gpx4) that converts glutathione (GSH)
to oxidized glutathione in order to control ROS production by lipid peroxidation [188].

Pancreatic beta-cells are prone to ferroptotic death since they are extremely susceptible
to oxidative stress and the accumulation of toxic lipid peroxides due to the low pres-
ence of detoxifying enzymes, as mentioned above (see Section 2.3). Of note, FFAs can
deplete GSH, thus debilitating the detoxification of lipid peroxides by Gpx4 in pancreatic
beta-cells [189–191].

Lipotoxicity can also alter lipid metabolism, thus inducing lipid peroxides accumu-
lation and ferroptosis. Interestingly, in vitro studies have demonstrated that mainlyω-6-
polyunsaturated FAs (PUFAs) are responsible for lipid peroxidation and the subsequent fer-
roptosis induction, whereas SFAs are more frequently linked to apoptosis in beta-cells [190].

Additionally, lipotoxicity can dysregulate the Fe-uptake by cytosolic transporter aconi-
tase in beta-cells, thus resulting in uncontrolled Fe-uptake also into the mitochondria.
The resulting mitochondrial Fe-overload, associated with alterations of lipid metabolism
and oxidative stress, promotes the generation of lipid peroxides, resulting in ferroptosis
activation in beta-cells [189].

In an early stage, ferroptosis has also been shown to alter insulin biosynthesis and
secretion in pancreatic beta-cells [192]. As a result of its deleterious effects on both beta-cell
function and survival, this type of programmed cell death has been associated with the
pathogenesis of diabetes.

As for pancreatic beta-cells, the scarcity of antioxidant defense mechanisms makes the
human brain highly susceptible to ROS insults and oxidative stress, therefore, more prone
to FFAs-induced ferroptosis [92,193]. Indeed, lipotoxicity reduces endogenous antioxidant
systems, including Gpx4, also in the brain, and this is closely linked to ferroptosis and AD
pathology [193,194].

2.8. Autophagy

Autophagy is a physiological process that occurs in cells to remove damaged and dys-
functional organelles and cytoplasmic material, which have the potential to be cytotoxic [151].
Although autophagy is maintained at low levels in cells to control homeostasis in biological
processes, it can also be strongly activated to achieve a defensive cellular response to
lipotoxicity and associated ER stress [195]. However, prolonged autophagy activation can
cause significant damage to the intracellular environment and trigger a programmed cell
death, also known as “autophagic cellular apoptosis” [195].

Interestingly, autophagy dysregulation has been linked to the onset and progression
of both T2D and AD, since it can affect beta-cell function and survival, as well as mediate
the aggregation of Aβ and tau deposits in the brain [196–198].

Of note, under lipotoxic conditions, the autophagic process is strongly triggered by
ER stress in beta-cells, although the molecular mechanisms underlying this event have not
been fully identified. It has been suggested that ER stress could promote autophagy by
activating the JNK protein or by regulating the Akt/Tuberous Sclerosis Complex/mTOR
pathway. In the latter case, the inhibition of Akt phosphorylation results in increased
autophagy, impaired insulin signaling, and pancreatic beta-cell dysfunction [199].

In vivo studies have demonstrated the presence of increased autophagy in pancreatic
beta-cells of both diabetic mice and nondiabetic HFD-fed mice. Of note, autophagy-deficient
mutants mice fed with HFD showed profound deterioration of glucose tolerance, partly
due to the lack of HFD-induced compensatory increase in beta-cell mass, suggesting a role
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of autophagy in guaranteeing the adaptive response of beta-cells to HFD-induced insulin
resistance [200].

Autophagy is also involved in neuron and astrocyte physiology. Therefore, the impair-
ment of any step of the autophagic pathway can generate axonal defects, culminating in
neuronal degeneration and astrocyte damage [28]. It has been demonstrated that astrocytes
can promote autophagy to prevent the formation of protein aggregates in neurons. How-
ever, as in beta-cells, persistent lipotoxic stimuli mediated by ceramide overaccumulation
and ER stress may affect autophagy flux in the brain with the subsequent activation of
apoptotic signaling [28]. In conclusion, basal autophagy represents a protective mech-
anism also in the brain, but lipotoxicity-induced autophagy dysregulation can induce
cellular apoptosis or necrosis, brain damage, and dysfunction, thus suggesting a role in AD
pathogenesis [201].

3. Possible Common Therapies

The discovery of the existence of a causative link between T2D and AD has gener-
ated a great interest in exploring whether anti-diabetes drugs could also be beneficial
for AD treatment [202,203], such that numerous clinical trials and animal studies have
been conducted for this purpose in the last few years. These aspects have been recently
reviewed by Michailidis et al. [202], leading to the conclusion that the high variability in the
experimental design of the studies and heterogeneity in the results make it difficult to come
to robust assumptions. However, some anti-diabetes drugs exert some beneficial effects on
working memory, as well as on cognitive and functional abilities, both on humans and mice.
For instance, Logroscino et al. demonstrated that women with diabetes showed a worse
cognitive status than women without diabetes. However, the use of oral hypoglycaemic
agents fully recovered their cognitive performance [204]. Among the well-established ther-
apeutic options for T2D treatment, insulin and glucagon-like peptide 1 receptor agonists
(GLP-1RAs) have shown the most promising results in relieving typical AD traits.

Insulin exerts many important functions in the brain, mostly regulating food intake
and energy homeostasis [205]. It can also reduce tau protein hyperphosphorylation, en-
hance Aβ clearance and synaptic plasticity, and improve memory [206–208]. In particular,
intranasal insulin appeared to be an effective therapeutic approach for patients with AD,
improving working memory and cognitive skills, with no side effects due to prolonged
treatment [209,210]. Of note, intranasal insulin, unlike peripheral insulin administration,
has the advantage of bypassing the BBB and avoiding the risk of hypoglycemia [211]. Only a
few studies have suggested the ability of exogenous insulin to prevent lipotoxicity-induced
injury of pancreatic beta-cells [212] and skeletal muscle cells [213]. Conversely, to the best
of our knowledge, no studies have investigated the anti-lipotoxic effects of insulin in brain
cells. However, insulin delivered to the brain by intranasal administration is known to
acutely suppress systemic lipolysis and reduce circulating FFAs levels in humans, which
could lead to the prevention of lipotoxicity-induced neurodegeneration [213].

GLP-1RAs (in particular, exenatide and liraglutide) have also shown interesting ef-
fects in neuroregulation and neuroprotection. Indeed, GLP-1R is widely distributed in
the brain and specifically in the hypothalamus, thalamus, brain stem, striatum, substan-
tia nigra, cerebral cortex, and hippocampus [214]. Notably, numerous GLP-1RAs have
been successfully used in rescuing AD animal models [215], showing a marked ability
to enhance neuronal cell proliferation, memory, and synaptic plasticity, while reducing
Aβ accumulation, oxidative stress, and neuroinflammation [216]. Despite this, only a
few trials have explored the effects of GLP-1RAs in human AD patients. Among them,
Mullins et al. [217] showed that 18 months of treatment with exenatide on patients at risk
of AD did not produce differences in several cognitive parameters, magnetic resonance
imaging of cortical thickness and cortical volume compared to placebo. Additional two tri-
als confirmed no cognitive differences in patients with AD or cognitive impairment treated
with liraglutide [218,219]. Conversely, Gejl et al. [220] demonstrated that the six-month
treatment of AD patients with the GLP-1RA liraglutide had moderate neuroprotective
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effects, mainly expressed by improvements in cerebral glucose metabolism, without ef-
fects on amyloid deposition or cognition. Interestingly, among the anti-diabetes drugs
with potential beneficial effects in patients with AD, GLP-1RAs are those with the most
pronounced anti-lipotoxic effects not only in peripheral organs (skeletal muscle, heart,
liver, adipose tissue, and pancreas) [221,222], but also in the brain [223–226]. However, in
the latter case, there are still few studies. In particular, GLP-1RAs are able to attenuate
lipotoxicity-induced oxidative stress [227] and inflammation [228,229] in hepatic HepG2
cells and the liver of HFD-fed mice. Interestingly, Leonardini et al. [230] have demonstrated
that the activation of GLP-1R counteracts palmitate-induced apoptosis via inhibition of
ceramide generation in human cardiac progenitor cells. Furthermore, numerous studies
have demonstrated the ability of GLP-1RAs to prevent lipotoxicity-induced beta-cell failure
by targeting numerous dysfunctional pathways, such as inflammation, oxidative stress, ER
stress, and, to a lesser extent, autophagy and amyloid accumulation (reviewed in [231]).
Although ad hoc studies are needed both in vitro and in animal models, GLP-1RAs are
very likely to exert their anti-lipotoxic effects on the brain as well.

In addition to drugs, lifestyle modification (increased physical activity and healthy
dietary intervention) is one of the first management strategies advised for patients newly
diagnosed with T2D and should accompany the diabetic patient throughout his life [232].
Similarly, since no effective pharmacological treatment is available to cure AD, a greater
emphasis has been placed on implementing non-pharmacological (lifestyle) interventions
that may prevent AD or reduce the escalation of AD burden [233]. Targeted studies
will have to be conducted to identify how a physical activity or specific functional foods
can positively impact the onset and progression of both T2D and AD, focusing on the
mechanisms underlying lipotoxicity. However, some examples are already present in
the literature.

For instance, irisin is a hormone mainly secreted by skeletal muscle in response to
physical activity, with a pivotal role in regulating energy metabolism [221,234]. Numerous
interventional studies in animal models of diabetes and/or obesity have shown that the
exogenous administration of recombinant irisin can restore glucose and lipid homeostasis
and exert anti-diabetic and anti-obesity effects [221]. Irisin has shown prominent anti-
lipotoxic effects in the heart, skeletal muscle, liver, and pancreatic beta-cells [221,235]. In
addition, recent evidence suggests that irisin plays a developmental role in regulating the
process of neuronal differentiation and maturation, induces the expression of neurotrophic
factors, such as brain-derived neurotrophic factor (BDNF), and could exert neuroprotec-
tive effects on neurodegenerative diseases, improving memory impairment and synaptic
plasticity [236,237]. Interestingly, irisin improves learning and memory function, regulates
cognitive function, promotes neurogenesis, and prevents neuronal damage caused by
oxidative stress, thus representing a potential target for ameliorating AD pathology and
preventing AD onset [238–241]. Of note, irisin levels are reduced in both the serum of T2D
patients [242] and the cerebrospinal fluid of AD patients [239].

On the other hand, a healthy dietary pattern, characterized by antioxidant and anti-
inflammatory properties, significantly reduces the risk of T2D, especially in the high-risk
population [243]. At the same time, it may constitute promising approaches in preventing
cognitive decline or delaying the progression to AD [233]. For instance, the adoption
of a diet pattern particularly rich in PUFAs and polyphenols (e.g., curcumin, apigenin,
resveratrol, quercetin, and many others) has long been recognized as a promising strategy to
prevent the onset and progression of both T2D [243–248] and AD [249–253]. Their ability to
prevent lipotoxic damage in the setting of T2D and AD remains largely to be demonstrated.

4. Conclusions

Over the past years, although numerous trials have been performed in AD patients,
only two of them have led to the approval of a medication for their clinical use (memantine
in 2003 and aducanumab in 2021), proving that drug development in AD is indeed chal-
lenging. The discovery of a causative correlation between T2D and AD has generated a
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great interest in exploring whether anti-diabetes pharmacological and non-pharmacological
therapeutic approaches could also be beneficial for AD treatment. In this regard, the most
promising approaches are represented by lifestyle modifications, intranasal insulin, and
GLP-1RAs. Nevertheless, the scarcity of the studies, the high variability in these studies,
and the heterogeneity in the results make it difficult to come to robust conclusions.

In order to envision new molecules with therapeutic efficacy in both T2D and AD,
it is important to know the molecular pathways involved in the onset and progression
of both diseases. In this review, we have reported evidence that lipotoxicity may repre-
sent the common trigger in the pathogenesis of T2D and AD. Indeed, lipotoxicity can
promote pancreatic beta-cell dysfunction and peripheral insulin resistance, which are the
two hallmarks of T2D, as well as to promote neurodegeneration and neuronal dysfunction
typical of AD. Interestingly, the lipotoxicity-induced damage pathways are very similar
in all tissue involved in the pathogenesis of both T2D and AD and include inflammation,
insulin resistance, oxidative stress, ceramide synthesis, amyloid accumulation, ER stress,
ferroptosis, and autophagy (Figure 1). This evidence suggests that lipotoxicity represents a
crucial biological feature that unites T2D and AD, and therefore it should be targeted in the
design of new drugs with anti-diabetes and anti-neurodegeneration effects.
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