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Abstract: Ferroptosis is a new form of iron-dependent cell death and plays an important role during
the occurrence and development of various tumors. Increasingly, evidence shows a convincing
interaction between ferroptosis and tumor immunity, which affects cancer patients’ prognoses.
These two processes cooperatively regulate different developmental stages of tumors and could be
considered important tumor therapeutic targets. However, reliable prognostic markers screened
based on the combination of ferroptosis and tumor immune status have not been well characterized.
Here, we chose the ssGSEA and ESTIMATE algorithms to evaluate the ferroptosis and immune
status of a TCGA breast invasive ductal carcinoma (IDC) cohort, which revealed their correlation
characteristics as well as patients’ prognoses. The WGCNA algorithm was used to identify genes
related to both ferroptosis and immunity. Univariate COX, LASSO regression, and multivariate
Cox regression models were used to screen prognostic-related genes and construct prognostic risk
models. Based on the ferroptosis and immune scores, the cohort was divided into three groups: a
high-ferroptosis/low-immune group, a low-ferroptosis/high-immune group, and a mixed group.
These three groups exhibited distinctive survival characteristics, as well as unique clinical phenotypes,
immune characteristics, and activated signaling pathways. Among them, low-ferroptosis and high-
immune statuses were favorable factors for the survival rates of patients. A total of 34 differentially
expressed genes related to ferroptosis-immunity were identified among the three groups. After
univariate, Lasso regression, and multivariate stepwise screening, two key prognostic genes (GNAI2,
PSME1) were identified. Meanwhile, a risk prognosis model was constructed, which can predict
the overall survival rate in the validation set. Lastly, we verified the importance of model genes
in three independent GEO cohorts. In short, we constructed a prognostic model that assists in
patient risk stratification based on ferroptosis-immune-related genes in IDC. This model helps assess
patients’ prognoses and guide individualized treatment, which also further eelucidatesthe molecular
mechanisms of IDC.

Keywords: breast cancer; ferroptosis; immune; prognosis; prediction

1. Introduction

Breast cancer is the most common cancer diagnosed among women worldwide and
has become the leading cause of female cancer-related mortality [1]. Unfortunately, its
increasing morbidity and mortality rates are ascertained which result in an inevitable
financial burden not only for individual families but also for national medical systems [2].
Due to their heterogeneity, the prognosis for patients with different breast cancer sub-
types varies [3]. The most common histological type of breast cancer is invasive ductal
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carcinoma (IDC), which accounts for 70–75% of total incidences [4,5], As the dominant
category of breast cancer [6], IDC expresses lower hormone receptors than invasive lobular
carcinoma(ILC), while exhibiting advanced blood vessel infiltration capacity [5] and a high
percentage of the development of lung metastasis [7,8]. The disease specific survival(DSS)
of IDC patients is significantly lower than those suffering from ILC [9]. Surgical removal is
considered a current first-line treatment for breast cancer cases; however, recurring and
distal metastases are frequently observed post operation. Therefore, the discovery of a
novel biomarker is desired in order to establish more precise treatment plans for breast
cancer patients.

Tumor immunotherapy, as an innovative treatment strategy in oncology, is recognized
as an effective cancer treatment. However, the tumor environment and solid primary tumor
attributes affect the outcomes of immune-related treatments. Additionally, resistance to
immunotherapy occurs among subtypes largely due to breast cancer heterogeneity. It is
undeniable that not all breast cancer patients would benefit from identical immunotherapy.
Hence, combined immunotherapy approaches are the new trend in cancer treatment [10,11].

Ferroptosis, a new type of programmed cell death first proposed in 2012, is also
known as iron-dependent oxidative cell death, which is morphologically and genetically
different from apoptosis, necrosis, and autophagy [12]. Ferroptosis is characterized by iron
accumulation and lipid peroxidation, where the phospholipid membrane undergoes iron-
dependent oxidative modification, and the depletion of cysteine specifically triggers this
form of cell death [13]. The pathophysiological mechanism of ferroptosis remains unknown.
Nevertheless, it is closely related to various human diseases, such as ischemia-reperfusion
injury [14], neurodegenerative disease [15], and different types of cancer, including breast
cancer [16–19]. Interestingly, in an in-depth study of tumor immunity, it was found that
ferroptosis also plays an important role in the regulation of tumor immunity. It is a double-
edged sword in regulating the tumor immune microenvironment [20]. The occurrence
of ferroptosis in different cells in the microenvironment will bring about different effects.
Tumor cells that undergo ferroptosis can trigger anti-tumor immune responses. Meanwhile,
activated CD8 T cells can mediate direct tumor cell killing by further inducing ferroptosis of
tumor cells [21,22]. Thus, the induction of ferroptosis in tumor cells can trigger antitumor
immunity and enhance the effect of immunotherapy. However, immune cells are equally
susceptible or resistant to ferroptosis in different ways. When lipid ROS accumulates
excessively in the tumor microenvironment, they trigger ferroptosis in cytotoxic T cells,
leading to a decrease in T cell effector function and impaired antitumor immunity [21,23].
Tregs, which perform immunosuppressive functions, can rapidly induce GPX4 expression
after TCR/CD28 co-stimulation activation to avoid ferroptosis [24]. Thus, balancing the
dual role of ferroptosis in tumor cells, antitumor immune cells, and immunosuppressive
cells is particularly important for anticancer therapy. Stratified analysis of ferroptosis and
immune status in different patients may provide more precise therapeutic strategies in
response to the heterogeneous characteristics of tumors.

In our study, we aimed to explore the interaction between cell ferroptosis and the
immune status of patients, in addition to its influence on disease prognosis. Through
combination analyses of IDC patients’ ferroptosis status and immune function data, we
characterized a novel panel of ferroptosis-immune-related gene signatures and investigated
their prognostic value as well as clinical characteristics among IDC patients.

2. Materials and Methods
2.1. Data Sources and Preparation

We obtained the IDC gene expression dataset and associated clinical information from
public databases. Samples with insufficient clinical information were excluded, as well as
cases with short survival time (<30 days) due to uncertainty of the cause of death. Gene
expression data uniformed by FPKM from 660 IDC samples and 112 normal breast sam-
ples were downloaded from the TCGA database (https://portal.gdc.cancer.gov (accessed
on 13 February 2021)) Three validation datasets (GSE21653; GSE45255; GSE61304) were
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chosen from the Gene Expression Omnibus (GEO) (https://www.geo.org/en/ (accessed
on 22 March 2021)) Validation sequencing data were combined and corrected using the
“sva” package. A total of 336 IDC samples with survival information were obtained as
validation datasets.

BRAC mutation datasets were downloaded from TCGA and pre-processed by varScan2.
R Bioconductor package “Maftools” were used to analyze and visualize Mutation Annota-
tion Format (MAF) files, which calculated tumor sample mutation frequency and tumor mu-
tation burden (TMB). The FerrDb database is the first validated ferroptosis function-related
database (http://www.zhounan.org/ferrdb/index.html (accessed on 24 February 2021)).
We accessed 256 ferroptosis-related genes, among them, 111 of which are ferroptosis mark-
ers, 108 are ferroptosis drivers, and 69 are ferroptosis inhibitors. There are also 28 genes
annotated in multiple groups. Tumor immune infiltration was collected by multiple dif-
ferent algorithms on TIMER2.0 (http://timer.cistrome.org/ (accessed on 15 March 2021)).
Those six algorithms were able to estimate the overall tumor immune infiltration status
among TCGA samples [25]. The immunophenoscore was obtained from the TCIA database
(https://tcia.at/ (accessed on 13 April 2021)) [26], which is a good predictor for evaluating
the response of anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) and anti-programmed
cell death protein 1 (anti-PD- 1) in tumors. The TNMplot (https://www.tnmplot.com/
(accessed on 5 January 2022)) [27] platform was used for result validation, which orga-
nizes gene expression changes between tumors and normal and metastatic tissues from
different databases. Proteomic data were obtained from the Human Protein Atlas database
(https://www.proteinatlas.org/ (accessed on 12 August 2021)) [28] and the UALCAN
platform (http://ualcan.path.uab.edu (accessed on 31 August 2021)) [29].

2.2. Tumor Ferroptosis Scores

Using the 256 ferroptosis-related genes obtained from the above database, we used
the single-sample gene set enrichment analysis (ssGSEA) in the R package “GSVA” (R, con-
ductor) [30] to calculate the gene set enrichment scores that were positively and negatively
associated with the occurrence of ferroptosis (ES). The score obtained by normalizing the
positive ES minus the negative ES is defined as the Ferroptosis score (FerrS) to evaluate the
ferroptosis trend and level of the samples.

2.3. Tumor Immune Microenvironmental Analysis

Estimation of Stromal and Immune cells in Malignant Tumors using Expression data
(ESTIMATE) algorithm was used to establish tumor environment component analysis.
ESTIMATE algorithm generated immune scores using gene expression data which further
predicted the proportion of basal and immune cells.

2.4. Differential Gene Expression Analysis

The “limma” package was used to extract DEG among different breast cancer sub-
types (|logFC| ≥ 1.5, p.adjust < 0.05), and co-DEG was obtained after overlapping
different groups.

2.5. Function Enrichment Analysis

We downloaded “clusterProfiler”, “org.Hs.eg.db”, and “enrichplot” packages from
R conductor for functional enrichment analysis. Filter cutoff was set to PDF < 0.05 and
followed by Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathways analysis.

2.6. Gene Set Enrichment Analysis

R “enrichplot” package was used to differentiate enrichment pathways between
high- and low-FerrS groups. Pathways were considered enriched if p.adjust < 0.05,
q-values < 0.05, and (NES) > 1.

https://www.geo.org/en/
http://www.zhounan.org/ferrdb/index.html
http://timer.cistrome.org/
https://tcia.at/
https://www.tnmplot.com/
https://www.proteinatlas.org/
http://ualcan.path.uab.edu
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2.7. Weighted Correlation Network Analysis (WGCNA)

WGCNA analysis was performed to top 25% of variance genes using the “WGCNA”
package [31], which aimed to find classification-related gene modules. The scale-free
network was constructed with a SoftThreshold of 3. A motion hierarchical clustering
tree was calculated using relative parameters (cutHeight = 500,000, minSize = 10, merge-
CutHeight = 0.25), which assigned correlated genes into the same modules and calculated
their relevance.

2.8. Signature Gene Identification and Risk Score Definition

We randomly classified 660 sample data into a training set and a validation set. Uni-
variate cox regression analysis (p < 0.05) lasso regression analysis, and multivariate cox
regression analysis were performed to evaluate the strength of its predictive survival in
the training set analyzed by R packages (“glmnet”, “survival”, “survminer”). Only 2 of
34 genes (GNAI2, PSME1) could independently assess the survival prognosis of patients,
and a dual-gene risk score (RS) model for survival prediction had been developed. Use the
following formula: FIRS = (coef of GNAI2 × GNAI2 expression value) + (coef of PSME1 ×
PSME1 expression value).

2.9. Statistically Analysis

All statistical analysis was performed using RStudio and SPSS. The “limma” software
package was used for differential expression analysis; “glmnet” and “survminer” software
packages were used for Cox analysis and lasso regression analysis; “timeROC” was used
for time-related ROC analysis and area under the curve (AUC) calculation; the Kaplan-
Meier method was used for survival analysis; the Kruskal-Wallis test was used to assess
the significance of differences in specific gene expression or immune cell components; the
chi-square test was used to assess the correlation between typing and clinical traits; p < 0.05
was considered statistically significant (p < 0.05, “*”; p < 0.01, “**”; p < 0.001, “***”).

3. Results
3.1. IDC Ferroptosis and Immune-Landscape

In order to investigate the levels of ferroptosis in IDC patients, we obtained
256 ferroptosis-related genes from the FerrDb database and calculated the ferroptosis
score (FerrS) using the normalized positive core machinery components’ enrichment score
(ES) minus the negative ES calculated by ssGSEA in IDC samples. The results showed that
the FerrS of IDC patients was significantly lower than that of normal samples, which is
consistent with a previous study (Figure 1A) [28]. As malignancies are often characterized
by an iron-rich microenvironment to support rapid proliferation and progression, this
creates an “addiction” of cancer cells to high iron levels, and it subjects tumors to persistent
oxidative stress. Tumor cells thus become resistant to ferroptosis, thereby providing a
growth advantage and leading to cancer chemoresistance. We believe that this may explain
the lower iron death score in IDC. We then classified these IDC tumor data into two groups
(high and low) based on the FerrS. A Kaplan–Meier survival curve indicated that high FerrS
patients had an unfavorable prognosis in terms of their overall survival (OS) compared to
the low FerrS group (Figure 1B). This is consistent with the fact that tumor cells possess
stem-cell-like and dedifferentiated features that are more prone to ferroptosis [13]. We
further explored possible factors that may interfere with the FerrS, including age, primary
tumor status, and subtypes. The results showed that patients with an age <65 received a
higher FerrS, as did patients with a recurrent tumor. Subtype analysis revealed that triple
negative breast cancer (TNBC) subtypes lead to an advanced FerrS compared to non-TNBC
patients, which may be due to the glutamine dependency of TNBC as the glutamine uptake
or inhibition of system XC increased the level of intracellular ROS, leading to ferroptosis
(Figure 1C–E) [32,33]. Subsequently, we performed gene set enrichment analysis on both
the high- and low-FerrS groups. Gene ontology term analysis showed that genes in the high
FerrS group were enriched in membrane disruption, T−helper 17 cell lineage commitment,
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etc. (Figure S1A) KEGG pathway analysis results revealed that DEGs with a high FerrS
were highly associated with several cancer-development- and immune-signal-related path-
ways, such as the IL−17 signaling pathway, primary immunodeficiency, and the intestinal
immune network for IgA production, suggesting that the ferroptosis score (FerrS) is able to
predict the occurrence and development of tumors, as well as the modification of patients’
immune microenvironment (Figure 1G).
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Figure 1. IDC ferroptosis and immune-landscape: The ssGSEA and ESTIMATE algorithms were
used to evaluate the ferroptosis score (FerrS) and immune score (ImmS) in IDC samples. (A) FerrS
in IDC and normal groups; (B) Kaplan–Meier overall survival curves for patients (n = 660) in high-
and low−FerrS groups; (C–E) The difference of FerrS in clinical features; (F) Kaplan–Meier overall
survival curves for patients (n = 660) in high- and low−ImmS groups; (G) GSEA KEGG enrichment
analysis between high− and low−FerrS groups.
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We then characterized the immune microenvironment of IDC patients by individually
calculating their immune score (ImmS) by using the ESTIMATE algorithm. The ImmS
ranged from −1116 to 3633 among all of the patients who were then further divided
into two groups (high- and low-ImmS) based on the median value. Patients in the high-
ImmS group had better prognoses than those in the low-ImmS group, indicating that
immune function plays an important role in IDC patients (Figure 1F). Since the FerrS has
an impact on immune signaling pathways, we analyzed the correlation between the FerrS
and tumor immune infiltration. We obtained tumor infiltration results using six different
algorithms from TIMER2.0 and analyzed their correlation with the FerrS. We can see that
most immune promoting cells positively correlated with the ferroptosis score (FerrS, for
example, the CD8+T, CD4+T, and NK cells. We believe that immune system activation
was related to the release of damage-associated molecular pattern molecules (DAMPs) by
ferroptotic cells [34]. Interestingly, immune suppressive cells such as Treg cells, showed
an identical trend, indicating that a subset of cells that undergo ferroptosis may suppress
the immune system and allow tumors to grow [13] (Figure S1B,C). Therefore, there is a
complex regulatory network between ferroptosis and immunity, and it is necessary to
stratify patients by taking both scores into account.

3.2. Ferroptosis and Immune-Related Subtypes Identification

Since the patients in the low-FerrS group and high-ImmS group have better prog-
noses, we screened the intersection patients of the two groups and named them the
FerrLowImmHigh group. Similarly, we screened out the patients in the high-FerrS group
and the low-ImmS group with poor prognoses as the FerrHighImmLow group. The remain-
ing patients were divided into the FerrHighImmHigh group and the FerrLowImmLow group
according to their scores. A survival analysis of the four groups produced expected results,
with FerrLowImmHigh patients having the best prognoses, FerrHighImmLow patients having
the worst prognoses, and those of the FerrHighImmHigh and FerrLowImmLow patients being
in the middle. We also found that FerrLowImmHigh patients showed a significant survival
difference between FerrHighImmHigh or FerrLowImmLow (p < 0.05), and FerrHighImmLow

patients were the same (p < 0.05). However, was no significant survival difference between
FerrHighImmHigh and FerrLowImmLow patients (p = 0.92), suggesting that the FerrS and
ImmS both had significant effects on IDC, and that the two may act as checks and balances.
(Figure 2A). Considering that the molecular differences between groups with different prog-
noses may be an important site that affects the malignant behaviors of tumors, we combined
FerrHighImmHigh and FerrLowImmLow patients as the MIX group for a follow-up analysis.

Next, we retrieved 84 key DEGs (logFC > 1.5) associated with the FerrS and ImmS
among the three groups (Figure 2B). The heatmap showed that most of the key genes were
highly expressed in FerrLowImmHigh patients, leading to a better survival rate
(Figure 2C). Principal component analysis results exhibited a significant separation between
the two clusters, FerrHighImmLow and FerrLowImmHighpatients, which clearly distinguished
patients between the two groups for clustering (Figure 2D).
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Figure 2. Ferroptosis and immune−related subtypes identification: (A) Kaplan–Meier survival
curves for overall survival stratified according to the combined FerrS−ImmS signature. (B) The Venn
diagram shows the number of DEGs among the three subtypes. (C) Heatmap of DEGs to visualize
the expression levels among FerrHighImmLow (120), FerrLowImmHigh (120) and MIX (420). (D) PCA
based on the expression profile of DEGs according to FerrHighImmLow and FerrLowImmHigh group.

3.3. Clinical Features between Subtypes

In order to understand the differences in clinical characteristics among the three sub-
types, we compared the age, tumor stage, TNM stage, ER, PR, and HER2 expression status
data from the patients. Due to the small number of M1 stages in each subtype (<5), we
did not discuss the differences in the M stages to ensure accuracy. Although there were no
significant differences in the distribution of tumor staging among the three subtypes, signif-
icant differences in ER, PR, and HER2 expression were observed. (Figures 3A and S2A–C)
The hormone receptor expression level in the FerrHighImmLow group was relatively nega-
tive, and the HER2 expression level was positive. This suggested that such patients will be
resistant to hormonal therapy. Trastuzumab has been widely used in HER2+ patients with
satisfactory results, but the effect is mostly transient, and the enhanced oncogenic potential
induced by HER2 cannot be underestimated, resulting in unsatisfactory clinical outcomes
for patients [35]. Therefore, FerrHighImmLow patients may have rapid tumor progression
and poor prognoses due to the limitation of treatment strategies. We further performed a
stratified analysis of survival for each clinical feature to understand whether subtypes in
different clinical statuses affect survival time. The results showed that the prognostic trend
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of each subtype in the stratified survival analysis of each clinical feature was consistent with
the overall prognostic trend (FerrHighImmLow < MIX < FerrLowImmHigh). For the tumor
stage, the subtypes had no significant effect on survival in the early stages (stages I and II),
but differed significantly in the advanced stages (stages III and IV). This also suggested
that being of the FerrHighImmLow group lead to rapid tumor progression, especially in
advanced tumors. (Figures 3B–E and S2).
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three groups stratified by stage. (E) The difference in OS between three groups stratified by HER2.
(* p < 0.05; ** p < 0.01; *** p < 0.001).

3.4. Differences in the Immune Microenvironment among Subtypes

We further compared differences in the tumor microenvironment among the three
subtypes. Patients in the FerrLowImmHigh group had high immune score and matrix scores,
whereas patients in the FerrHighImmLow group had high scores in tumor cells (Figure 4A–C).
In addition, the tumor immune infiltration analysis also indicated that most of the anti-
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tumor immune cells, such as memory B cells, CD8+ T cells, activated NK cell, monocytes,
and macrophage M1 were increased in the FerrLowImmHigh group, whereas B cell plasma
and macrophage M0 cells were observed in the FerrHighImmLow group (Figure 4D). The
macrophage M0 and B cell plasma cells showed a strong negative correlation with most
immune cells (Figure 4E). Interestingly, Tregs also showed high levels in FerrLowImmHigh

group. We consider that this may be related to the ability of Tregs to rapidly induce GPX4
expression after TCR/CD28 co-stimulation activation to avoid ferroptosis [24]. These
results indicated that the proportion of immune cells infiltrated in the microenvironment
changed among the subtypes, which led to differences in antitumor immunity among
the groups.
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relation analysis was conducted to determine the correlation of immune cells and microenvironment.
(* p < 0.05; ** p < 0.01; *** p < 0.001).

3.5. Analysis of Ferroptosis and Immune-Related Genomic Heterogeneity among Subtypes

In order to explore the differences in the contribution of single-gene expression levels
among each subtype, we analyzed and drew an expression map of significant genes among
subtypes based on published key regulatory gene profiles of the ferroptosis pathway [36].
The results showed that a group of genes including GPX4, SLC40A1, and FTH1, was found
to exhibit higher differential expression levels (FerrLowImmHigh > MIX > FerrHighImmLow),
which are known as negative ferroptosis regulation factors. Meanwhile, genes that promote
ferroptosis, such as TFRC, NCOA4, and LPCAT3, were elevated in the FerrHighImmLow

group. These results validated the accuracy of FerrS in the judgment of ferroptosis. How-
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ever, we found that SLC7A11 is low in the FerrLowImmHigh group, which may be due to its
complex function in IDC (Figure 5A).
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Figure 5. Distribution of individual expression of ferroptosis and immune−related genes among
subtypes. Box and whisker plots show the expression of selected ferroptosis and immune-related
genes between three groups. (A) The expression of ferroptosis−related genes between three groups;
(B) The expression of HLA marker genes between three groups; (C) The expression of T cell phenotype
and functional marker genes between three groups; (D) The EGFR expression between three groups;
Data were analyzed using Kruskal–Wallis test; p values are reported as: * p < 0.05; ** p < 0.01;
*** p < 0.001.
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Next, we employed the immune response-related gene signatures mentioned in the
study of Zheng et al. [37] to compare their differences among the three subtypes. The
results showed that the majority of key signature genes related to immunity displayed
regular differential expressions, FerrHighImmLow < MIX < FerrLowImmHigh, which proved
the various patterns of immune responses between groups. Overall, patients from the
FerrHighImmLow group exhibited suppressive immune microenvironment features, other
than FerrLowImmHigh patients. FerrLowImmHigh patients also present a higher expression
level of human leukocyte antigens (Figure 5B). T cell phenotype and functional markers,
as well as CD3E, CD4, TBX21, FOXP3, CD8B, PRF1, and GZMB, were elevated in the
FerrLowImmHigh group (Figure 5C). Except for the effector/repressor function markers
(ARG1\NOS2), FerrLowImmHigh patients presented with significantly increased expres-
sion levels in phenotypic and functional markers of myeloid lineage; FerrLowImmHigh

patients all exhibited significantly higher expression levels (Figure S3A). Other markers,
including IFNγ markers (CXCL9, CXCL10, IDO1, IFMG, and STAT1) and immune mod-
ulators (ENTPD1) also showed higher expression levels in the FerrLowImmHigh group
(Figure S3B,C). However, the epidermal growth factor receptor (EGFR) related to tumor
invasion and metastasis was expressed less in the FerrLowImmHigh group (Figure 5D).
In addition, we found that in the FerrLowImmHigh group, immune activation receptors
and immune suppressive receptors were highly expressed, indicating that this phenotype
undergoes complex immune responses. (Figure S3D,E).

3.6. Relationship between Tumor Mutations in Different Subtypes

Previous studies have discovered that the tumor mutational burden (TMB) is closely
related to the efficacy of immunotherapy. Therefore, we analyzed the variation in TMB
and mutation frequency among different subtypes; however, there was no significance for
TMB and mutation frequency between groups (Figure 6A,B). We also listed the top 20 most
frequently mutated genes in both the FerrHighImmLow and FerrLowImmHigh groups. As
shown in Figure 6C, the gene mutation patterns were similar, and the tumor suppressor
gene TP53 had the most significant mutation between the two groups. These findings
indicated that the differences in clinical characteristics and prognoses between subtypes
caused by gene mutations are not significant.

3.7. FerrS-ImmS Related Gene Screening and Functional Analysis

Weighted gene co-expression network analysis (WGCNA) is commonly used to iden-
tify gene modules that share relevant clinical traits or classifying characteristics. There-
fore, we used the WGCNA method to screen out genes that are closely related to the
FerrHighImmLow and FerrLowImmHigh groups. First, we created a scale-free network (soft
threshold = 3) and generated modules through motion hierarchical clustering tree cutting.
After merging modules with similar heights, a total of 16 modules were generated. The
“gray” modules contained genes that are not co-expressed and which were excluded from
further analyses (Figure 7A).

We then analyzed the distribution difference of 15 modules between the FerrHighImmLow

and FerrLowImmHigh groups. Eight modules that were explored had significant differences.
The FerrLowImmHigh group exhibited higher intrinsic genes (ME) in the yellow, turquoise,
and red modules, whereas they exhibited lower ME in the tan, midnightblue, greenyellow,
blue, and black modules (Figure 7C). The correlation between modules and subtypes was
then examined. It was found that the red module was significantly positively correlated
with the FerrLowImmHigh group (cor = 0.63, P = 4 × 10−28) (Figure 7D,E), and that the
genes contained in this module were also highly correlated with the subtypes (cor = 0.77,
P = 8.6 × 10−36) (Figure 7B). These genes may be key signature genes between the
FerrHighImmLow and FerrLowImmHigh groups which were selected for subsequent analyses.
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Genes are sorted according to frequency of mutations.

Next, we overlapped the DEGs obtained above with genes from the red module,
and acquired a total of 34 key genes (Figure 7F). Functional enrichment analysis revealed
multiple biological processes that mainly involve antigen processing, antigen presentation,
that is, gamma interferon reaction, etc. Cell components include the MHC protein complex,
endoplasmic reticulum membrane composition, Golgi vesicles, etc. Molecular functions
include antigen binding, immune receptor activity, and amide binding (Figure 7G). KEGG
functional pathway analysis shows that genes are mainly enriched in immune-related
pathways such as antigen processing and presentation, Th17 cell differentiation, cell ad-
hesion molecules, etc. Additional pathways, such as the phagosome, have been found to
directly or indirectly regulate iron accumulation or lipid peroxidation to coordinate the
complex ferroptosis response [38]. In addition, studies have revealed there was also a high
correlation between Th17 cell and lipid oxidation activity that could induce ferroptosis [39]
(Figure 7H).
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Figure 7. Ferroptosis−immunity related gene screening and functional analysis: (A) Gene
co−expression network analysis. (B) Correlation scatter plot between the red module and the
genes in the module. (C) Expression of the identified gene modules in the subtypes. (D) Diagram
of the correlation between the module and FerrHighImmLow and FerrLowImmHigh group. Each cell
contains the corresponding correlation and p value. (E) Dendrogram of gene modules shows that
the red module is highly correlated with the subtypes. (F) The Venn diagram shows the number of
crucial genes among the DEGs and red module. (G,H) Gene ontology terms enriched and KEGG
pathway analysis. ns, nonsignificant; * p < 0.05; ** p < 0.01; *** p < 0.001.

3.8. Risk Model of IDC Based on FerrS-ImmS Related Genes

We randomly divided 660 samples into a training set and a validation set at a ratio of
1:1 (the clinical information is presented in Table S1). In the training set, a univariate Cox
analysis (Table S2) and a Lasso cox regression model (Figure 8A) were used to evaluate
the above 34 genes. These results confirmed that five genes have prognostic significance
(p < 0.05). Next, we incorporated five genes into the multivariate COX regression analysis
and adopted the stepwise regression method to determine the optimal risk score model:
FIRS = (−0.90* GNAI2 expression value) + (−0.39* PSME1 expression value) (Figure 8B). A
survival analysis showed that patients with a high FIRS had a more unfavorable prognosis
than patients with low-FIRS (p < 0.001 in the Train group, P = 0.035 in the Test group,
p < 0.001 in the ALL group) (Figure 8C–E). A time-dependent ROC curve analysis demon-
strated the values of RS in the Train group (AUC of the first, second, and third years were
0.754, 0.734, and 0.708, respectively), the Test group (AUC of the first, second, and third
years were 0.796, 0.702, and 0.631, respectively), and the ALL group (AUC of the first,
second, and third years were 0.765, 0.719 and 0.675, respectively), which confirmed the
accuracy and prognostic ability of FIRS among the three cohorts (Figure 8F–H).
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Figure 8. Risk model of IDC based on FerrS−ImmS related genes: (A) Lasso regression analysis.
(B) Multivariate COX analysis. (C–E) Kaplan–Meier overall survival curves for patients in high− and
low−risk groups of the Train group (C), Test group (D), and ALL group (E). (F–H) Time−dependent
ROC curves at 1, 2, 3 years for patients in the Train group (F), Test group (G), and ALL group
(H) to evaluate the prediction efficiency of the prognostic signature. (I–L) Immunotherapy sensitivity
analysis between high− and low−risk groups. (** p < 0.01).
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We further compared the clinical differences between the high- and low-risk groups
(Figure S4A). The results showed that there were significant differences in the expression
of PR and ER between the two groups, whereas there were no significant differences in
clinical stage. The FerrHighImmLow group was mainly distributed in the high-risk group
and the FerrLowImmHigh group was distributed in the low-risk group, which is consistent
with our above analysis. In the univariate COX analysis, stage (p < 0.001), T (p < 0.001),
N (p < 0.001), and FIRS (p = 0.002) were the prognostic factors affecting IDC patients. In
the multivariate COX analysis, only stage (p = 0.007) and FIRS (p < 0.001) could be used as
independent post-factors of IDC, and the risk index of FIRS was higher (Figure S4B,C). To
further verify the accuracy of the FIRS model, we next compared three prognostic models,
including four-gene signature (Ding) [40], five-gene signature (Du) [41], and seven-gene
signature (Wu) [42] models with FIRS. The results showed that our model FIRS had a larger
area under the curve (AUC) than the other models at 1, 2 and 3 years. Therefore, the FIRS
model was determined in this study to be a more reasonable and efficient model, and fewer
genes were used to determine the prognostic risk of IDC (Figure S4D–F).

Furthermore, we compared the sensitivity difference between the high-FIRS group
and the low-FIRS group to immunotherapy in order to screen for the population that
was the most suitable for tumor immunotherapy. They were further classified into four
groups, namely, ips_ctla4_neg_pd1_neg (CTLA4-negative response and PD1-negative re-
sponse), ips_ctla4_neg_pd1_pos (CTLA4-negative response and PD1-positive response),
ips_ctla4_pos_pd1_neg (CTLA4-positive response and PD1-negative response), and
ips_ctla4_pos_pd1_pos (CTLA4-positive response and PD1-positive response). Addition-
ally, the results suggested that the population with a low FIRS had higher drug respon-
siveness, whether it was single immune checkpoint inhibitor administration or combined
immunotherapy therapy, indicating the advantages of immunotherapy in these patients
(Figure 8I–L).

3.9. Risk Model Gene Expression and Prognostic Characteristics

To investigate the clinical significance of prognostic marker genes, we compared the
differential expression of prognostic marker genes in normal tissues and IDC tissues. The
results showed that G Protein Subunit Alpha I2 (GNAI2) was elevated in tumor samples at
the mRNA level, whereas the PSME1 mRNA expression level was significantly reduced in
tumor tissues (Figure 9A). We verified through the TNMplot platform [27], and obtained
similar results (Figure 9B). Due to post-transcriptional regulation or translational regulation,
such as protein degradation, gene expression may not be related to final protein expression.
Therefore, we studied the protein levels of marker genes between normal breast tissue
and IDC samples using data from the Human Protein Atlas database [28], and found that
protein expression levels were consistent with mRNA expression results (Figure 9C). The
UALCAN platform [29] collected the proteomics results in the CPTAC database; we verified
them through the platform and received consistent results (Figure 9D). A survival analysis
showed that samples that had highly expressed GNAI2 and PSME1 had better prognoses
in OS in the TCGA database (Figure 9E). In addition, eligible corrected data from the GEO
database underwent a combined survival analysis. The results also showed that the highly
expressed PSME1 and GNAI2 had better RFS, which verified the importance of PSME1 and
GNAI2 in IDC (Figure 9F).
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Figure 9. Risk model gene expression and prognostic characteristics: (A) Differential expression of
risk model gene between tumor tissues and normal tissues in TCGA. (B) Differential expression of
risk model gene between tumor tissues and normal tissues in TNMplot platform, which contains
multiple database transcriptome data. (C) Differences in protein expression of the risk model gene in
tumor tissue and normal tissue from Human Protein Atlas immunohistochemistry. (D) Differences
in protein expression of the risk model gene in tumor tissue and normal tissue from the UALCAN
platform. (E) Kaplan–Meier overall survival curves for patients in high− and low−expression groups
of risk model gene of the TCGA cohort. (F) Kaplan–Meier relapse−free survival curves for patients
in high− and low−expression groups of risk model gene of the GEO cohort.

4. Discussion

The heterogeneous state of breast tumors often results in a complex immune mi-
croenvironment, and patients with a “hot” immune microenvironment often have better
prognoses. This difference in survival is often based on the abnormal molecular features
rather than tumor tissue type. Therefore, more and more studies have attempted to identify
subgroups based on molecular profiles of tumor patients to reflect different treatment
responses and prognoses among patients. Ferroptosis is a new iron-dependent cell death
mode discovered in recent years that can effectively inhibit the growth and development
of tumors by inducing ferroptosis [43]. Interestingly, tumors with different differentiation
states have different sensitivities to ferroptosis. Tumor cells with tumor stem-like features
as well as dedifferentiated features are more prone to ferroptosis [13]. This implies that the
induction of ferroptosis may be a promising therapeutic strategy for this class of highly
progressive tumor subtypes. This feature was also confirmed in our study; for example,
TNBC subtypes with poor prognoses in breast cancer classification had a higher FerrS than
non-TNBC subtypes did. Considering the fact that IDC patients with different ferroptosis
and immune statuses have different prognoses, there is a complex regulatory network
between the occurrence of ferroptosis and immune responses [13,44,45]. Therefore, in this
study, we divided the samples into four different subtypes according to the FerrS and
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ImmS, which showed different survival characteristics. Among them, the survival differ-
ence between the FerrLowImmHigh group and the FerrHighImmLow group was the most
obvious, and these two subtypes have unique clinical phenotypes, immune characteristics
and activated pathways. Furthermore, based on these two subtypes, we constructed a
risk model of RS that can be used to predict patient outcomes, which can be used as an
independent prognostic factor for IDC. Further immunotherapy predictions also suggest
that RS may be a promising immunotherapy stratification marker. These results facilitate
the clinical management and precision treatment of patients.

In the analysis of the clinical characteristics of the three subtypes, we found significant
differences in hormone receptor expression as well as HER2 expression among the three
subtypes, with the FerrHighImmLow group exhibiting lower hormone receptor expression
and higher HER2 receptor expression. This implies that the use of conventional hormone
receptor-targeting drugs may be clinically limited in such patients. In addition, high HER2
expression would lead to more aggressive tumor growth [35], which corroborates the
worse prognosis of the FerrHighImmLow group in patients with advanced stages (stages III
and IV).

We further characterize the molecular characterization of the FerrLowImmHigh and
FerrHighImmLow groups in ferroptosis and immunity. Ferroptosis key signature genes were
highly expressed in the FerrHighImmLow group, indicating the heterogeneity of ferroptosis
in IDC patients. In terms of immune infiltration, key anti-tumor immune cells, such
as T cell CD8+, activated NK cells, and macrophage M1, have been observed to be a
dominant proportion in the FerrLowImmHigh group, the same being true for immune-related
characteristic genes. Interestingly, it seems contradictive that both activated and inhibitory
immune markers are elevated in the FerrLowImmHigh group. This result may imply the
exhaustion of an anti-tumor immune response which leads to a gradually increased tumor
immune response. Therefore, patients in the FerrLowImmHigh group can be selected and
suitable for immunotherapy because of an immune checkpoint blockade and the restoration
of an anti-tumor immune response [46].

Due to the significant differences in clinical outcomes among subtypes, we aimed
to explore the molecular mechanisms behind these groups. We screened out the genes
that were most relevant to the different subtypes using the WGCNA method and then
used a Cox analysis to finally construct a prognostic model containing two genes (PSME1
and GNAI2). G Protein Subunit Alpha I2 (GNAI2), as a G protein family member, is a
vital signal transduction molecule. It suppresses the activity of adenylate cyclase (AC),
thereby reducing cAMP content in the cell, which is further involved in a series of biologi-
cal processes. cAMP signaling is closely related to mitochondrial function. Inhibition of
Epac1, an effector of cAMP, prevents the onset of cellular ferroptosis induced by erastin
and the loss of mitochondrial integrity caused by ferroptosis [47]. GNAI2 exerts different
biological functions in different cancer types. For example, its high expression promotes
the development and progression of colitis-associated, gastric cancers, and ovarian can-
cers [48–50]; but it inhibits the proliferation of squamous cell carcinoma of the tongue and
hepatocellular carcinoma. In addition, GNAI2 is involved in the shaping of the immune
microenvironment. Yu et al. [48] found that GNAI2 induces a “hot” immune microenvi-
ronment in gastric cancer, which is positively correlated with a variety of chemokines that
promote cell migration in inflammatory and immune responses. At the same time, GNAI2
deficiency leads to a significant defect in chemokine receptor signaling and lymphocyte
transport in T cells, and GNAI2 significantly affects T cell motility in lymph nodes [51].
Proteasome Activator Subunit 1(PSME1) is an important proteasome component that is
universally expressed in eukaryotic cells. Its functions involve the degradation of specific
proteins, as well as misfolded proteins. Meanwhile, PSME1 plays a role in immune system
management [52]. PSME1 is regulated by IFNγ, as well as being an effective agonist for
MHC class I antigen presentation, which mediates the epitope recognition of cytotoxic T
cells and ultimately leads to T cell activation [53]. Activated T cells have been shown to
promote tumor ferroptosis as a novel antitumor mechanism. CD8+ T cells downregulate



Biomolecules 2023, 13, 147 18 of 21

the expression of SLC3A2 and SLC7A11, two subunits of the glutamate–cystine reverse
transport system Xc-, by releasing IFNγ, which in turn impairs cystine uptake by tumor
cells, promoting tumor cell lipid peroxidation and the onset of ferroptosis [22]. In a study
by Nasri et al. [54] PSME1 protein was found to be overexpressed in CD4+ T cells in
patients with polycystic ovary syndrome and involved in several pathways of cellular
metabolism, particularly glycolysis and iron death pathways. It is thus clear that both
GNAI2 and PSME1 are closely related to the regulation of ferroptosis and immune function
in the organism, but the specific mechanisms of how GNAI2 and PSME1 are involved in
the occurrence of cellular ferroptosis need to be further investigated. In our study, we
found that these two genes also play an important role in IDC, and the expression levels of
the two genes were directly proportional to the survival of patients. The low expression
of GNAI2 in IDC may be one of the reasons for promoting tumor progression. Notably,
PSME1 is overexpressed in IDC and associated with better prognoses, which we believe
may be related to genes that play different roles in tumor initiation and progression. This
phenomenon was mentioned in the study of Deng et al. [55]; the ferroptosis-related gene
CHAC1 was down-regulated in KIRC samples, but the expression level of CHAC1 was
directly proportional to the poor prognosis of clear cell renal cell carcinoma and could be
an effective indicator of a poor prognosis. Therefore, the specific mechanism of PSME1
action remains to be further elucidated.

Finally, a prognostic model constructed by GNAI2 and PSME1 stratified patients into
high- and low-risk groups with significant survival differences between the two groups.
RS showed good performance in predicting prognoses and was an independent prognostic
factor for IDC. This study provides a deeper understanding of the underlying molecular
mechanisms of IDC.

Limitations in this study may need further investigation. First of all, retrospective
research data from public databases may lack useful parameters that affect patient survival
and ignore heterogeneity between different populations. It is necessary to conduct a
prospective analysis in a multicenter cohort for further validation. Second, our omics
data is based on transcriptome-level quantification, which may have an influence on the
prediction of ferroptosis-process-related components at the translational level.

5. Conclusions

In conclusion, the ferroptosis and immune status is associated with the prognosis
of IDC patients. We stratified patients based on ferroptosis and immune status, and
developed a prognostic model based on two ferroptosis-immune-related genes. It showed
good prognostic stratification ability in the training cohort and the verification cohorts. It
might serve as a prognostic classifier for clinical decision-making regarding individualized
prognostication and treatment, and follow-up scheduling.
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27. Bartha, Á.; Győrffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic
Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [CrossRef]

28. Pontén, F.; Schwenk, J.M.; Asplund, A.; Edqvist, P.H. The Human Protein Atlas as a proteomic resource for biomarker discovery.
J. Intern. Med. 2011, 270, 428–446. [CrossRef] [PubMed]

29. Chen, F.; Chandrashekar, D.S.; Varambally, S.; Creighton, C.J. Pan-cancer molecular subtypes revealed by mass-spectrometry-
based proteomic characterization of more than 500 human cancers. Nat. Commun. 2019, 10, 5679. [CrossRef]

30. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform.
2013, 14, 7. [CrossRef] [PubMed]

31. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

32. Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol. Cell 2015, 59,
298–308. [CrossRef]

33. Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; et al. Targeting ferroptosis in breast
cancer. Biomark. Res. 2020, 8, 58. [CrossRef]

34. Wen, Q.; Liu, J.; Kang, R.; Zhou, B.; Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun.
2019, 510, 278–283. [CrossRef]

35. Emde, A.; Köstler, W.J.; Yarden, Y. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer.
Crit. Rev. Oncol./Hematol. 2012, 84 (Suppl. 1), e49–e57. [CrossRef] [PubMed]

36. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18,
280–296. [CrossRef] [PubMed]

37. Zheng, S.; Zou, Y.; Liang, J.Y.; Xiao, W.; Yang, A.; Meng, T.; Lu, S.; Luo, Z.; Xie, X. Identification and validation of a combined
hypoxia and immune index for triple-negative breast cancer. Mol. Oncol. 2020, 14, 2814–2833. [CrossRef]

38. Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081. [CrossRef]
39. Shou, Y.; Yang, L.; Yang, Y.; Xu, J. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis. 2021,

12, 1009. [CrossRef]
40. Ding, S.; Sun, X.; Zhu, L.; Li, Y.; Chen, W.; Shen, K. Identification of a novel immune-related prognostic signature associated with

tumor microenvironment for breast cancer. Int. Immunopharmacol. 2021, 100, 108122. [CrossRef] [PubMed]
41. Du, J.X.; Chen, C.; Luo, Y.H.; Cai, J.L.; Cai, C.Z.; Xu, J.; Ni, X.J.; Zhu, W. Establishment and validation of a novel autophagy-related

gene signature for patients with breast cancer. Gene 2020, 762, 144974. [CrossRef] [PubMed]
42. Wu, F.; Chen, W.; Kang, X.; Jin, L.; Bai, J.; Zhang, H.; Zhang, X. A seven-nuclear receptor-based prognostic signature in breast

cancer. Clin. Transl. Oncol. 2021, 23, 1292–1303. [CrossRef]
43. Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J.

Cell. Mol. Med. 2017, 21, 648–657. [CrossRef]
44. Efimova, I.; Catanzaro, E.; Van der Meeren, L.; Turubanova, V.D.; Hammad, H.; Mishchenko, T.A.; Krysko, D.V. Vaccination with

early ferroptotic cancer cells induces efficient antitumor immunity. J. Immunother. Cancer 2020, 8, e001369. [CrossRef] [PubMed]
45. Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Stockwell, B.R. Regulation of ferroptotic

cancer cell death by GPX4. Cell 2014, 156, 317–331. [CrossRef] [PubMed]
46. Pauken, K.E.; Wherry, E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015, 36, 265–276. [CrossRef]
47. Musheshe, N.; Oun, A.; Sabogal-Guáqueta, A.M.; Trombetta-Lima, M.; Mitchel, S.C.; Adzemovic, A.; Dolga, A.M. Pharmacological

Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants 2022, 11, 314. [CrossRef]
48. Yu, H.; Liu, S.; Wu, Z.; Gao, F. GNAI2 Is a Risk Factor for Gastric Cancer: Study of Tumor Microenvironment (TME) and

Establishment of Immune Risk Score (IRS). Oxidative Med. Cell. Longev. 2022, 2022, 1254367. [CrossRef]
49. Raymond, J.R.; Appleton, K.M.; Pierce, J.Y.; Peterson, Y.K. Suppression of GNAI2 message in ovarian cancer. J. Ovarian Res. 2014,

7, 6. [CrossRef]
50. Li, Z.W.; Sun, B.; Gong, T.; Guo, S.; Zhang, J.; Wang, J.; Chu, W.M. GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis

in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2. Gastroenterology 2019, 156, 2297–2312. [CrossRef]

http://doi.org/10.1016/j.jbc.2022.101617
http://www.ncbi.nlm.nih.gov/pubmed/35065965
http://doi.org/10.1038/s41586-019-1170-y
http://doi.org/10.1016/j.cmet.2019.04.002
http://doi.org/10.1016/j.celrep.2021.109235
http://doi.org/10.1093/nar/gkaa407
http://www.ncbi.nlm.nih.gov/pubmed/32442275
http://doi.org/10.1016/j.celrep.2016.12.019
http://doi.org/10.3390/ijms22052622
http://doi.org/10.1111/j.1365-2796.2011.02427.x
http://www.ncbi.nlm.nih.gov/pubmed/21752111
http://doi.org/10.1038/s41467-019-13528-0
http://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1016/j.molcel.2015.06.011
http://doi.org/10.1186/s40364-020-00230-3
http://doi.org/10.1016/j.bbrc.2019.01.090
http://doi.org/10.1016/j.critrevonc.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/20951604
http://doi.org/10.1038/s41571-020-00462-0
http://www.ncbi.nlm.nih.gov/pubmed/33514910
http://doi.org/10.1002/1878-0261.12747
http://doi.org/10.1080/15548627.2020.1810918
http://doi.org/10.1038/s41419-021-04284-5
http://doi.org/10.1016/j.intimp.2021.108122
http://www.ncbi.nlm.nih.gov/pubmed/34536743
http://doi.org/10.1016/j.gene.2020.144974
http://www.ncbi.nlm.nih.gov/pubmed/32707305
http://doi.org/10.1007/s12094-020-02517-1
http://doi.org/10.1111/jcmm.13008
http://doi.org/10.1136/jitc-2020-001369
http://www.ncbi.nlm.nih.gov/pubmed/33188036
http://doi.org/10.1016/j.cell.2013.12.010
http://www.ncbi.nlm.nih.gov/pubmed/24439385
http://doi.org/10.1016/j.it.2015.02.008
http://doi.org/10.3390/antiox11020314
http://doi.org/10.1155/2022/1254367
http://doi.org/10.1186/1757-2215-7-6
http://doi.org/10.1053/j.gastro.2019.02.040


Biomolecules 2023, 13, 147 21 of 21

51. Hwang, I.-Y.; Park, C.; Kehrl, J.H. Impaired trafficking of Gnai2+/− and Gnai2−/− T lymphocytes: Implications for T cell
movement within lymph nodes. J. Immunol. 2007, 179, 439–448. [CrossRef] [PubMed]

52. Groettrup, M.; Soza, A.; Eggers, M.; Kuehn, L.; Dick, T.P.; Schild, H.; Kloetzel, P.M. A role for the proteasome regulator PA28alpha
in antigen presentation. Nature 1996, 381, 166–168. [CrossRef] [PubMed]

53. Sijts, A.; Sun, Y.; Janek, K.; Kral, S.; Paschen, A.; Schadendorf, D.; Kloetzel, P.M. The role of the proteasome activator PA28 in
MHC class I antigen processing. Mol. Immunol. 2002, 39, 165–169. [CrossRef] [PubMed]

54. Nasri, F.; Zare, M.; Doroudchi, M.; Gharesi-Fard, B. Proteome Analysis of CD4 T Cells Reveals Differentially Expressed Proteins
in Infertile Polycystic Ovary Syndrome Patients. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1998–2004. [CrossRef]

55. Li, D.; Liu, S.; Xu, J.; Chen, L.; Xu, C.; Chen, F.; Wang, Y. Ferroptosis-related gene CHAC1 is a valid indicator for the poor
prognosis of kidney renal clear cell carcinoma. J. Cell. Mol. Med. 2021, 25, 3610–3621. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4049/jimmunol.179.1.439
http://www.ncbi.nlm.nih.gov/pubmed/17579064
http://doi.org/10.1038/381166a0
http://www.ncbi.nlm.nih.gov/pubmed/8610016
http://doi.org/10.1016/S0161-5890(02)00099-8
http://www.ncbi.nlm.nih.gov/pubmed/12200048
http://doi.org/10.2174/1871530320666201119152323
http://doi.org/10.1111/jcmm.16458

	Introduction 
	Materials and Methods 
	Data Sources and Preparation 
	Tumor Ferroptosis Scores 
	Tumor Immune Microenvironmental Analysis 
	Differential Gene Expression Analysis 
	Function Enrichment Analysis 
	Gene Set Enrichment Analysis 
	Weighted Correlation Network Analysis (WGCNA) 
	Signature Gene Identification and Risk Score Definition 
	Statistically Analysis 

	Results 
	IDC Ferroptosis and Immune-Landscape 
	Ferroptosis and Immune-Related Subtypes Identification 
	Clinical Features between Subtypes 
	Differences in the Immune Microenvironment among Subtypes 
	Analysis of Ferroptosis and Immune-Related Genomic Heterogeneity among Subtypes 
	Relationship between Tumor Mutations in Different Subtypes 
	FerrS-ImmS Related Gene Screening and Functional Analysis 
	Risk Model of IDC Based on FerrS-ImmS Related Genes 
	Risk Model Gene Expression and Prognostic Characteristics 

	Discussion 
	Conclusions 
	References

