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Abstract: Tubulin superfamily (TSF) proteins are widespread, and are known for their multifaceted
roles as cytoskeletal proteins underpinning many basic cellular functions, including morphogenesis,
division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the
dynamic cytoskeletal network of fibres, whereas the bacterial homolog FtsZ assembles the division
ring at midcell. The functions of the lesser-known archaeal TSF proteins are beginning to be identified
and show surprising diversity, including homologs of tubulin and FtsZ as well as a third archaea-
specific family, CetZ, implicated in the regulation of cell shape and possibly other unknown functions.
In this study, we define sequence and structural characteristics of the CetZ family and CetZ1 and
CetZ2 subfamilies, identify CetZ groups and diversity amongst archaea, and identify potential
functional relationships through analysis of the genomic neighbourhoods of cetZ genes. We identified
at least three subfamilies of orthologous CetZ proteins in the archaeal class Halobacteria, including
CetZ1 and CetZ2 as well as a novel uncharacterized subfamily. CetZ1 and CetZ2 were correlated to
one another as well as to cell shape and motility phenotypes across diverse Halobacteria. Among
other known CetZ clusters in orders Archaeoglobales, Methanomicrobiales, Methanosarcinales, and
Thermococcales, an additional uncharacterized group from Archaeoglobales and Methanomicrobiales
is affiliated strongly with Halobacteria CetZs, suggesting that they originated via horizontal transfer.
Subgroups of Halobacteria CetZ2 and Thermococcales CetZ genes were found adjacent to different
type IV pili regulons, suggesting potential utilization of CetZs by type IV systems. More broadly
conserved cetZ gene neighbourhoods include nucleotide and cofactor biosynthesis (e.g., F420) and
predicted cell surface sugar epimerase genes. These findings imply that CetZ subfamilies are involved
in multiple functions linked to the cell surface, biosynthesis, and motility.

Keywords: archaea; tubulin; FtsZ; CetZ; cytoskeleton

1. Introduction

The cytoskeleton is a dynamic and expansive network of structural proteins, filaments,
and polymers necessary for all domains of life. At its core, the function of the cytoskeleton
is to provide structure and organisation of the cytoplasm; however the downstream cel-
lular roles and mechanisms of cytoskeletal proteins extend far beyond this, making them
fundamentally important for a range of cellular processes, including cell division [1,2],
chromosome segregation [2], cell motility and migration [3–6], endocytosis [7], and intracel-
lular transport of many cargo types such as signaling molecules, membrane components,
and organelles [8,9]. How cytoskeletal proteins contribute to these processes has been
extensively studied in bacteria and eukaryotes; however, little is known about their func-
tions in Archaea, the third major grouping of life [10]. While archaea share similar basic
cellular organisation and morphology with Bacteria, archaeal DNA replication and tran-
scription mechanisms resemble those of Eukarya [10], which has raised the question of
whether the cytoskeletal functions of archaeal cells are distinct or resemble those of bacteria
or eukaryotes.

Biomolecules 2023, 13, 134. https://doi.org/10.3390/biom13010134 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13010134
https://doi.org/10.3390/biom13010134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-0914-6650
https://orcid.org/0000-0003-4868-7350
https://doi.org/10.3390/biom13010134
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13010134?type=check_update&version=1


Biomolecules 2023, 13, 134 2 of 20

Tubulin superfamily proteins (TSFs) are widespread across all three domains of life,
including in archaea. The tubulin superfamily consists of tubulin, the subunits of which
assemble into the microtubules, FtsZ, a key cell division protein, and CetZs, which are
specific to the archaea [4,11]. TSFs possess a critical GTPase active site, where guanosine
triphosphate (GTP) binding between subunits promotes polymerisation; in turn, GTP
hydrolysis to guanosine diphosphate (GDP) promotes depolymerization [12–19]. It is this
dynamic polymerisation which allows tubulin superfamily proteins to mobilize as the
larger structures that contribute to their diverse array of functions. In eukaryotes, tubulin
assembles into cylindrical microtubules that control cell shape and structure, and contribute
to chromosome segregation during cell division [2]. In addition, microtubules form tracks
for intracellular transport motors such as kinesins and dynein [20], which are eukaryotic-
specific motor proteins that transport a range of cargo such as organelles [21], vesicles and
secretory proteins [22], RNA [23], lipids [24], and other membrane components such as
surface adhesins [25]. In addition, microtubules are involved in cell migration through their
facilitation and maintenance of membrane protrusions [26,27] (further reviewed in [3]).

FtsZ is present in bacteria and archaea and is a major contributor to cell division.
Bacterial FtsZ does not form microtubules, instead assembling a multi-protein division ring,
or divisome, at the midcell, which constricts to drive cytokinesis through a mechanism
involving directed ingrowth of the peptidoglycan cell wall [19,28–30]. Most archaea possess
two FtsZ homologues with differing roles in division, which appear to be important in
archaea that do not have a pseudopeptidoglycan cell wall [29]. While in bacteria there
are many characterised divisome proteins [31–34], the functional partners of FtsZs and
divisome components in archaea remain largely unknown [35,36].

How tubulin and its complex assemblies and activities evolved around the time
of eukaryogenesis from primordial FtsZ is unknown. Understanding the diversity and
evolution of TSFs in archaea, which have a common ancestor with eukaryotes, should help
to gain insight into the evolutionary and functional pathways of these proteins in general.

CetZ proteins represent the third major family of tubulin superfamily proteins. They
have only been found in archaea, and interestingly, they show specific sequence similarities
to both FtsZ and tubulin [4]. Furthermore, while CetZs contribute to cell shape and motility,
they appear to have no direct role in cell division. Current insights into CetZ function
come from studies of the halophilic archaeon Haloferax volcanii [4,37]. H. volcanii cells are
pleomorphic, and commonly exhibit irregular flattened plate or rod shapes [38]. Cells
transition from plate to rod shapes in several conditions, including during the early stages
of growth in batch culture [37,39], when depleted of trace metals [37], or when becoming
motile in soft agar [4]. Rod development requires the most highly conserved of the CetZs,
CetZ1, and deletion of cetZ1 results in reduced motility, which has been attributed to the
inability to form rods [4].

CetZ2 is conserved across many archaeal species, and appears to form its own ortholo-
gous group separate from CetZ1 [4], suggesting that it could have a distinct role. Consistent
with this, deletion of cetZ2 does not directly impact rod development or motility under
the same conditions where CetZ1 has a role [4]. Currently, there is no known phenotype
resulting from deletion of cetZ2; however, overexpression of a CetZ2 GTPase mutant in-
hibits rod development and motility, implicating it generally in cell shape control and
motility [4]. The molecular mechanism through which CetZs contribute to shape control
and motility are not yet understood, nor is it clear whether CetZs influence motility or
other functions through a mechanism or pathway which is independent of their function in
rod development. Here, we explore the diversity and possible roles of the main groups of
CetZs in archaea by assessing their distribution across archaeal species and their synteny
with other genes within their immediate genomic regions.
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2. Materials and Methods
2.1. Identification and Analysis of Archaeal Tubulin Superfamily Homologues

The amino acid sequences of a diverse set of tubulin superfamily proteins, including
the partly characterized CetZ1-6, FtsZ1, and FtsZ2 from the archaeon H. volcanii, were first
aligned using MUSCLE [40,41] (www.ebi.ac.uk/Tools/msa/muscle, accessed on October
2021). The alignment was used as a query to search for tubulin superfamily (TSF) homo-
logues in 182 other archaeal species in the UniProt database (www.uniport.org, accessed on
October 2021) using JackHMMER [42] (www.ebi.ac.uk/Tools/hmmer/search/jackhmmer,
accessed on October 2021). At least one species per known family of archaea was selected
from the NCBI Taxonomy database (www.ncbi.nlm.nhi.gov/taxonomy, accessed on Octo-
ber 2021), prioritising those for which complete genome sequences were available (Table S1).
The amino acid sequences of 550 significant hits (those with an E-value less than 0.03) were
downloaded and aligned with the search set using MUSCLE. The complete multiple se-
quence alignment was used to construct a maximum likelihood tree with 100 bootstrap
replicates in MEGA X [43] v10.2.6 (www.megasoftware.net, accessed on October 2021). The
sequences of the previously characterized FtsZ and CetZ proteins from H. volcanii were
used to label known and novel subgroups of archaeal TSF proteins.

Conserved amino acid residues in separate alignments of CetZ1 (49 sequences) and
CetZ2 (41 sequences) were identified by comparing the consensus sequence and consensus
scores for each residue in the multiple alignment and generating a unique residue score,
defined as the average of the CetZ1 and CetZ2 consensus scores at that position. Conserved
residues were taken as those that had a unique residue score greater than 90%. A similar
analysis comparing conserved FtsZ and CetZ characteristic residues was performed, with
an 80% cut-off used for the unique residue score.

3D structural comparisons of the indicated crystal structures or Alphafold2 [44] pre-
dicted structures were carried out in PyMOL [45] v2.5.1 (www.pymol.org, accessed on
October 2021) using the super (superimpose) and APBS electrostatics [46] functions.

2.2. Analysis of cetZ Genomic Regions

A diverse set of archaeal species (20 for cetZ1, 22 for cetZ2, and 27 for non-Halobacteria
cetZs) with complete genome sequences were chosen for analysis of gene content within
an arbitrary (40 kb) region in the vicinity of cetZ. The DNA sequences and corresponding
annotations for the 40 kb region centered on each cetZ gene of interest were downloaded
from the NCBI genome database (www.ncbi.nlm.nih.gov/genome, accessed on October
2021). The predicted coding sequences in FASTA protein format were obtained and used to
assign arCOGIDs and arCOG annotations within the region using the eggNOG-mapper
v2 [47,48] (www.eggnog-mapper.embl.de, accessed on October 2021). A summary of the
data is provided in Table S2. The arCOGIDs of genes located within the 40 kb cetZ genomic
regions were counted and compared across species to determine which arCOGs were most
often present. Finally, arCOGIDs were mapped onto each genomic region to compare
genomic arrangements of the cetZ regions between species.

3. Results
3.1. Identification and Classification of Tubulin Superfamily Proteins in Archaea

To assess the distribution of CetZs amongst archaeal species in greater depth than
previously available [4,49], tubulin superfamily (TSF) homologues were identified in 183 di-
verse species selected from across the full breadth of known archaea, and a phylogenetic
tree of was then generated from the aligned sequences. Table S1 lists the represented
species, the number of identified homologues, and their assigned family where possible.
The phylogenetic tree (Figure 1) was labelled with the three main branches that represent
the FtsZ1, FtsZ2, and CetZ families based on the functionally characterized H. volcanii
proteins [4,29,37]; many species possessed at least one homologue from each of these
three main families. Several tubulins and non-canonical TSF proteins were identified,

www.ebi.ac.uk/Tools/msa/muscle
www.uniport.org
www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
www.ncbi.nlm.nhi.gov/taxonomy
www.megasoftware.net
www.pymol.org
www.ncbi.nlm.nih.gov/genome
www.eggnog-mapper.embl.de
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which showed a patchy distribution generally in diverse archaeal species, including those
belonging to the Thaumarchaeota, Asgard, and DPANN archaea (Table S1).
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Figure 1. Phylogram of archaeal tubulin superfamily proteins; 550 identified tubulin superfamily
protein sequences from 183 diverse archaea were aligned to generate the phylogram. Archaeal FtsZs
are shaded in blue, while tubulin and non-canonical TSFs are shaded in purple. Four main groups
of CetZs were identified: Halobacteria CetZs (red); Halobacteria-like CetZs from Archaeoglobales
and Methanomicrobiales (orange); non-Halobacteria-like CetZs from Archaeoglobales, Methanomi-
crobiales, and Methanosarcinales (green); and CetZs from Thermococcales CetZs (yellow). Within
Halobacteria, we define two important CetZ clusters, CetZ1 and CetZ2 (circled in black), by compar-
ing bootstrap values from this phylogenetic analysis with unique residue identification (Section 3.5).
Selected branch bootstrap percentages are shown.

3.2. Multiple CetZs Are Abundant in Halobacteria

Proteins from the class Halobacteria form one major branch of the tree (Figure 1), and
many Halobacteria species (of which 60 were included) have multiple CetZs. We identified
three distinct subfamilies of CetZ proteins that have representatives in many of the diverse
Halobacteria; these form distinct and strongly supported orthologous groups with relatively
short branch lengths (Figure 1). Two of these subfamilies are named based on whether they
grouped with the characterized CetZ1 and CetZ2 proteins from H. volcanii [4,48]. The key
differences between CetZ1 and CetZ2 are described further below. Another novel subfamily
of CetZs (Figure 1) containing uncharacterized proteins from diverse Halobacteria was
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identified, suggesting that these proteins may have a common function in these species.
Most of the other CetZs did not sit within clear subgroups, including H. volcanii CetZ3-6,
suggesting that they could have relatively weakly conserved roles, or in certain cases be
potentially redundant.

3.3. Deep Branching CetZs in Thermoccales Define the CetZ Family Boundary

All Thermococci species analysed (in the main order Thermococcales and family
Thermococcaceae) each encode at least one designated CetZ homologue. Two strains,
Thermococcus AM4 and Thermococcus gammatolerans EJ3, each encode an additional highly
divergent TSF protein which is weakly branched near other non-canonical TSF proteins;
these likely have strain-specific or redundant functions. However, the main Thermococcales
CetZs form a tight cluster (Figure 1), in accordance with the relatively close genomic
similarity among the known Thermococcaceae. This represents the most deeply branching
group we classified as CetZ. We then analysed the multiple sequence alignment (Figure 2A)
and 3D structure predictions (Figures 2B and S1) to identify and define CetZ family-specific
amino acid residues that differ from FtsZ family-specific residues. Consistent with a
previous initial analysis [4], we confirmed that the unique residues were largely clustered
around the GTP/GDP binding pocket and GTPase active site (Figure 2C), which may reflect
a fundamental difference in the polymerization properties of FtsZ and CetZ. Two of the key
residues in CetZ from Pyrococcus furiosus (Thermococcales) were identical to FtsZ (D250
and E274), while three were not consistent with the consensus residues of either CetZ or
FtsZ (A40, Y16, S153). However, as most residues were consistent with the CetZ consensus,
this supports the inclusion of the Thermococcales proteins in the CetZ family and their use
in defining the CetZ family boundary for separation of CetZ sequences from non-canonical
TSF proteins. The naming of this group of Thermococcales proteins as CetZ is further
supported by the gene association studies described further below.
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Figure 2. Characterising unique residues in archaeal FtsZ and CetZ-family proteins. (A) Unique
residues were defined as residues which had a unique residue score of greater than 80%. The
consensus sequence residue score represents the frequency at which the indicated amino acid was
detected at that position in the alignment of FtsZ and CetZ sequences. The unique residue score is
the average of the FtsZ and CetZ consensus sequence residue scores at that alignment position. The
equivalent unique residues in CetZ from P. furiosus are shown in green if the residue is the same as the
CetZ consensus, in orange if the residue is the same as the FtsZ consensus, and in black if the residue
does not match either the CetZ or FtsZ consensus. (B) Three-dimensional structural comparison
of the crystal structure of GDP-bound CetZ1 from H. volcanii (PDB: 4B46) and the AlphaFold2 [44]
predicted structure of FtsZ1 from H. volcanii. The GDP from the CetZ1 crystal structure has been
superimposed onto the FtsZ structure predicted by AlphaFold2 [44]. Residues that constitute the
M-loop of CetZ1 are represented in magenta. Unique residues listed in A are represented in orange
for FtsZ1 and green for CetZ1. (C) Comparison of the GTP/GDP binding pockets of FtsZ1 and CetZ1
(containing GDP from the CetZ1 crystal structure), indicating specific identified unique residues and
their sidechains.

3.4. CetZs in Archaeoglobales, Methanomicrobiales, and Methanosarcinales

Interestingly, two CetZs were identified in each complete genome analysed from
the orders Archaeoglobales and Methanomicrobiales, and they appeared in two corre-
sponding regions of the tree: one formed a single branch within the main CetZ group
dominated by Halobacteria sequences, while the other formed a more diverse set which
branched more deeply and was closer to the deepest classified CetZs from Thermococci
(Figure 1). AlphaFold2 [44] predicted structures of these CetZs in (Figure S1) showed
that the Halobacteria-like CetZ was structurally more similar to CetZ1, while the other
was akin to CetZs from Thermococci and the crystal structure of CetZ from Methanosaeta
thermophilla. Therefore, the two protein subfamilies are likely to have distinct functions in
these species, and one appears to be phylogenetically and possibly functionally related to
the Halobacteria CetZs. In the order Methanosarcinales, only one clear CetZ was identified
per genome, which clustered with the non-Halobacteria-like CetZs from Archaeoglobales
and Methanomicrobiales.



Biomolecules 2023, 13, 134 7 of 20

3.5. Halobacteria CetZ1 and CetZ2 Subfamilies Show Distinct Characteristics

Having surveyed the diversity of CetZs across archaea, the strength of the grouping of
CetZ1 and CetZ2 subfamilies was clear. We then sought to identify key characteristics and
differences between CetZ1 and CetZ2 by comparing their sequence features and available
crystal structures [4]. Ten amino-acid residues with different chemistry between CetZ1
and CetZ2 and sixteen residues with similar chemistry met the 90% conservation criterion
(Figure 3A). When mapped to the crystal structures of CetZ1 and CetZ2 from H. volcanii,
these residues were generally located on the surface of the proteins and not in any specific
region (Figure 3B).
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Figure 3. Characterising unique residues in CetZ1 and CetZ2 sub-families from Halobacteria.
(A) Unique residues were defined as residues which had a unique residue score greater than 90%. The
consensus sequence residue score and unique residue score were calculated as in Figure 2. Consensus
residues are coloured according to their chemistry as in Figure 2A. (B) Three-dimensional structural
comparison of crystal structures of GDP-bound CetZ1 (PDB: 4B46) and GTP-bound CetZ2 (PDB: 4B45)
from H. volcanii. Residues that constitute the M-loop of CetZ1 and CetZ2 are represented in magenta.
Unique residues listed in (A) are represented in blue for CetZ1 and green for CetZ2. (C) Surface
electrostatics calculations for CetZ1 and CetZ2 are shown in the same respective orientations as in
panel (B).
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Other larger-scale structural differences were detected as well. Surface electrostatic
analysis showed that the H. volcanii CetZ2 surface had regions that were more negatively
charged than that of CetZ1 (Figure 3C). The predicted surface charge distributions exhibited
both global similarities (e.g., the negatively charged C-terminal tail evident in both CetZ1
and CetZ2) and conserved differences between each family, which might reflect specific
molecular interactions or functions of CetZ1 and CetZ2 (Figure S2). In addition, the
sequence alignment of CetZ1 and CetZ2 proteins showed that CetZ1 has a long M-loop (or
Microtubule loop, originally assigned a role in tubulin filament lateral association), usually
14–26 residues long, which is unresolved in the crystal structure of CetZ1 from H. volcanii.
In comparison, CetZ2 has a short M-loop of around 3–6 amino acids. Thermococci CetZs
had a short M-loop, while other CetZs generally had long M-loop regions, including those
from Halobacteria, Methanomicrobia, and Archaeoglobales. Based on the bootstrap values
of CetZ1 and CetZ2 branches and using the above identified characteristics of CetZ1 and
CetZ2 proteins, we defined the distinct groupings of CetZ1 and CetZ2 homologues, as
circled in Figure 1. The individual assigned CetZ1 and CetZ2 homologues are listed in
Table S3.

3.6. The Presence of CetZ1 and CetZ2 in Halobacteria Correlates with Rod Shape and Motility

CetZ1, and possibly CetZ2, have been implicated in regulation of cell shape linked
to motility in the model archaeon H. volcanii. To investigate whether these are likely to
be a general function of these subfamilies, the distributions of CetZ1 and CetZ2 across
55 Halobacteria species were compared and the reported motility and cell shape phenotypes
of each species were tabulated (Figures 4 and S3, Table S1). Note that species that did not
fall into the “motility reported” or “rods reported” categories are not necessarily non-motile
or non-rod forming species, due to limited observations available for certain species or
potential conditional phenotypes.
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Figure 4. Correlations between CetZ1, CetZ2, rod shape, and motility in Halobacteria. Venn di-
agram showing overlapping circles representing the number of Halobacteria reported as motile
or rod forming, having both CetZ1 and CetZ2 present, or having CetZ1 but not CetZ2 present
(Table S1). The number of species showing co-occurrence of these characteristics is indicated where
circles overlap. Species-specific data are provided in Figure S3. * The organism in this category is
Natronomonas pharaonis (see Section 3.10, Figure S4A).

A majority of Halobacteria (45 out of 55 species) were found to have both CetZ1 and
CetZ2, with many having other CetZs as well. Forty species were reported to form rods,
and 37 of these had both CetZ1 and CetZ2. A smaller proportion of the 55 Halobacteria
were reported as motile (26 species); however, 24 of these motile species had both CetZ1
and CetZ2. While there appears to be a strong correlation between the presence of both
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CetZ1 and CetZ2, rod shape, and motility, the same was not true for the seven species that
had CetZ1 but not CetZ2 (CetZ2 was never present without CetZ1); five of the seven were
not reported as motile or rod forming, two were rod forming, and one was motile. These
observations reinforce the apparent correlation between the presence of both CetZ1 and
CetZ2, motility, and rod shape.

There were three species that had no clear CetZ1 or CetZ2: Halococcus saccharolyticus,
Halococcus morrhuae, and Natronomonas pharaonis. Both Halococcus species did not have other
CetZs, and were described as coccoid shape with no pleomorphism or motility reported,
which appears to be consistent across all species of the Halococcus genus [50,51]. On the
other hand, N. pharaonis is motile and rod-shaped [52], and was identified as having three
CetZs: one that groups with the non-canonical TSF proteins and two CetZs that clearly lie
outside the CetZ1 and CetZ2 branches (Figure S4A) and have been annotated in the Uniprot
database as CetZ1 and CetZ2. In Section 3.10., these N. pharaonis CetZs are discussed
further and compared to other Halobacteria CetZ proteins and their characteristics. Future
identification of their potential roles in N. pharaonis would be of interest for comparing the
function and diversification of CetZs among Halobacteria.

The above observations suggest the potential for the conserved groups of CetZ proteins
to play multiple complex roles in cell shape and motility in each species. Therefore, many
other genes are likely to be required to work with cetZ functions in the establishment of
such complex phenotypes. Genes with related functions are frequently found in proximity;
thus, to further investigate the potential multifaceted functions of CetZ1 and CetZ2 in
Halobacteria, we sought to identify gene content and synteny in the vicinity of cetZ genes
by focusing on the 40 kb genomic regions centered on the cetZ1 and cetZ2 genes in a diverse
set of at least twenty Halobacteria species. The EggNOG v5.0 [47,48] database was used to
classify genes in these regions based on their homology groups identified in the collection
of archaeal Clusters of Orthologous Groups (arCOGs) [53,54], as described below.

3.7. cetZ1 Genomic Regions Are Associated with Cofactor and Nucleotide Biosynthesis

Figure 5 lists the arCOGs found in at least half of the analysed cetZ1 genomic regions
and shows maps of the relevant conserved parts of the cetZ1 genomic regions. Regions
within the 40 kb area with no consistent genomic arrangement across species are not shown,
though they are described in Table S2. Twenty cetZ1 genomic regions were analysed, and
the arCOGID for cetZ, arCOG02202, was observed 22 times. This is because in two species,
Halobellus limi and Natrialba magadii, another cetZ gene was located within 20 kb of the cetZ1
gene. The arCOG observed most often was arCOG01117, a transcriptional regulator, with
26 occurrences. Further investigation showed that most often these transcriptional regu-
lators appeared in pairs, with either side of a gene belonging to arCOG01957 involved in
potassium transport, which was identified in 12 genomic regions. These transcriptional reg-
ulators were present in 15 of the 20 analysed genomic regions; they belong to the Lrp/AsnC
family of transcriptional regulators, which are abundant and widespread in archaea [55]
and have been implicated in the regulation of amino acid and energy metabolism, transla-
tion and DNA repair, and response to physiological conditions such as growth phase and
oxidative stress [56–59]. The next hit, arCOG03015 (nolA), was identified in all analysed
cetZ1 genomic regions, and was immediately upstream of cetZ1 in most. As with most
of the genes in the region, the role of nolA in Halobacteria is largely unstudied; however,
by homology, nolA is a predicted nicotinamide adenine dinucleotide (NAD)-dependent
nucleoside-diphosphate-sugar epimerase, and homologs from other species have roles
in cell surface polysaccharide biosynthesis [60]. Interestingly, several other genes were
involved in biosynthesis of coenzyme F420 (cofC, cofG and cofH), and nucleotides (purC,
purQ, purS, and a thymidylate kinase gene) were common within the cetZ1 genomic regions
(Figure 5). The above linkages may suggest a potential functional association or common bi-
ological purpose between the role of the CetZ1 cytoskeleton in nutrient-dependent motility
and in cellular energy acquisition or biosynthesis; however, any potential direct functional
significance of the apparent associations is yet to be revealed.
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3.8. cetZ2 Is Associated with A Type IV Pili Regulon in Haloferacales and Halobacteriales

The genes surrounding cetZ2 were next analysed in 22 Halobacteria (Figure 6). The
arCOG for CetZ appeared 23 times in this set: the 22 cetZ2 genes, and one cetZ1 that
was located within the 40 kb range of cetZ2 in Natrialba magadii. In most species from the
orders Haloferacales and Halobacteriales, cetZ2 was located adjacent to a pilB/C regulon
(encoding a predicted type IV pilus system), though not in the third order, the Natrialbales.
Figure 6A lists the top arCOG hits within pili-associated (12 species) and non-pili-associated
(10 species) cetZ2 regions, examples of which are shown in Figure 6B. The pili-associated
cetZ2 regions showed very similar gene organisation and arCOG conservation within the
pilB/C regulon, and these arCOGs dominate the cetZ2 regions overall. Notable arCOGs
within the cetZ2 pili-associated regions include pilB, an ATPase motor which provides
the energy required for pilus biogenesis, and pilC, the inner membrane component and
base of type IV pili. Interestingly, CetZs were frequently adjacent to pili regulons in
Halobacteria [61]; however, that study did not investigate which family the CetZs belonged
to (i.e., CetZ1, CetZ2, or other homologues) or whether the CetZ homologues adjacent to
pili regulons were consistent between species. Here, we identify that these pilB/C regulons
are specifically adjacent to cetZ2. Their distribution pattern appears to represent a mobile
genetic element, as genes beyond the regulon are generally consistent with those found
adjacent to cetZ2 in the non-pili associated regions.
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Figure 6. Conserved portions of pili-associated and non-pili-associated cetZ2 genomic regions in
Halobacteria. (A) The 20 kb regions either side of the cetZ2 gene were analysed from 22 species of
the orders Haloferacales (10), Halobacteriales (7), and Natrialbales (5). Of these 22 regions, 12 were
pili-associated and 10 were non-pili-associated. Table listing the most frequently observed arCOGs
and their occurrence in 22 cetZ2 genomic regions from the orders Haloferacales, Halobacteriales, and
Natrialbales. (B) Examples of cetZ2 genomic regions, showing their conserved residues only. The
cetZ2 regions from Haloferax volcanii DS2, Halorubrum lacusprofundi ATCC 49239, and Halomicrobium
mukohataei DSM 12286 are pili-associated. The cetZ2 regions from Halodesulfurarchaeum formicicum,
Halostagnicola larsenii XH-48, and Natrarchaeobaculum aegyptiacum are non-pili associated. Genes
encoding cetZ2 are represented in black, and genes belonging to arCOGs present within majority
(at least 11) of the cetZ2 genomic regions are coloured according to their COG category as detailed
in Table S2. arCOGIDs are listed beneath each gene. arCOGs encoding uncharacterised proteins
which are present in at least half of the cetZ2 genomic regions are represented in grey, and arCOGs
not present in majority of cetZ2 genomic regions are represented in white.

3.9. Non-Pili Associated Genes Conserved in cetZ2 Regions

No arCOGs were identified to be conserved in only non-pili-associated cetZ2 re-
gions, consistent with the possibility that the type IV pili regulon is a relatively recent
acquisition that has been retained only in some Haloferacales and Halobacteriales. Two
arCOGs were almost always present in cetZ2 regions, whether pili-associated or non-
pili-associated. These were arCOG04674, a hypothetical protein, and arCOG03095, an
epimerase/dehydratase that is structurally homologous to the epimerase found adjacent
to cetZ1 (Figure S5). arCOG04674 was previously annotated as a potential transcription
factor, and is strongly predicted to be structurally homologous to other known transcription
factors (Figure S5). In H. volcanii, it is upregulated in response to low and high salinity and
low temperature [62]. arCOG04674 has been annotated as “COG0630 Type IV secretory
pathway, VirB11 components, and related ATPases involved in archaeal flagella biosynthe-
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sis”; however, our analysis suggests that it is not directly associated with the type IV pili
system sometimes found with cetZ. Other cetZ2-associated genes included arCOG01566
(predicted exopolyphosphate-related protein), arCOG01377 (predicted phosphodiesterase
nucleotide pyrophosphatase), arCOG08125 (uncharacterised protein), and arCOG04794
(predicted glycosyltransferase).

The above results suggest a notable synteny between cetZ2, arCOG01818 (pilB2),
arCOG04674, and arCOG03095. To further investigate, we expanded our analysis of these
associations by including an additional 19 Halobacteria; we identified cetZ2 at the whole-
genome level and recorded whether they were proximal to arCOG04674, arCOG03095, or a
pilB2/C2 type IV regulon (Figures 7 and S6). This confirmed that cetZ2 was only adjacent to a
pilB2/C2 type IV regulon in the orders Haloferacales and Halobacteriales among the 41 total
species we analysed. In 13 species, arCOG01818 (pilB2) was identified in a pilB2/C2 type IV
regulon that was not within the cetZ2 region. Species from the order Natrialbales typically
had pilB2 not contained within a regulon or no pilB2 at all. One exception was Halobiforma
lacisalsi AJ5, which had a pilB2/C2 regulon that was not adjacent to cetZ2. The hypothetical
protein arCOG04674 was found within the cetZ2 region in 34 of the 41 analysed species,
and in the remaining seven species it was positioned elsewhere on the genome, sometimes
associated with a pilB2/C2 type IV regulon. Similarly, 32 species had the predicted sugar
epimerase arCOG03095 within the cetZ2 region; arCOG03095 was detected elsewhere on
the genome in eight species and sometimes associated with a pilB2/C2 regulon, and only
one species (Halodesulfurarchaeum formicicum) was found to have no gene belonging to this
arCOG in its complete genome.
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Figure 7. Synteny of cetZ2 with type IV system components pilB2 (arCOG01818), arCOG04674, and
arCOG03095. arCOGs were classified as ‘associated with cetZ2’ if found within 20 kb either side of
the cetZ2 gene. arCOGs ’associated with a type IV pili regulon’ were defined as those found within
or adjacent to other arCOGs identified in the H. volcanii pilB2/C2 regulon. Species-specific data are
provided in Figure S6.

3.10. The Genomic Environments of N. Pharaonis cetZ Genes

We examined the gene neighbourhoods of the two N. pharaonis cetZ genes that
sit outside the currently defined CetZ1 and CetZ2 families in the phylogenetic trees
(Figures 1 and S4A), yet have been annotated as cetZ1 (UniProt accession number Q3IRF0)
and cetZ2 (UniProt accession number Q3IRT7 (www.uniprot.org, accessed on October 2021).
Interestingly, the less divergent protein, Q3IRF0, had a typical cetZ1 genomic organisation
(Figure S4D) and was in proximity to many of the arCOGs often conserved in cetZ1 re-
gions. It shared five of the ten unique residues with CetZ1, and had a long M-loop region
(Figure S4B,C), suggesting that Q3IRF0 may be derived from the CetZ1 subfamily. Con-

www.uniprot.org
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versely, Q3IRT7 was not contained within a genomic region typical for cetZ2 genes from
other species (Figure S4E), and only shared one of the ten unique residues with CetZ2,
while it shared four with CetZ1 (Figure S4B) and had a long M-loop (Figure S4C) region,
which is uncharacteristic of other CetZ2 proteins. Hence, Q3IRT7 is unlikely to be a CetZ2,
and is more likely an additional or redundant version of Q3IRF0. While these N. pharaonis
CetZs are atypical compared to others from Halobacteria, they may be similar to CetZs
from other Natronomonas species, of which, only N. pharaonis was included in our study.

3.11. Synteny in cetZ Genomic Regions of Non-Halobacteria Euryarchaeota

Euryarchaea outside of the class Halobacteria that have CetZ belonged to one of four
orders: Thermococcales, Archaeoglobales, Methanomicrobiales, and Methanosarcinales.
The genomic regions surrounding 27 of these cetZ genes (located outside the Halobacteria
CetZ branch; Figure 1) were analysed to search for conservation or synteny. The top
arCOG hits for the CetZ regions and exemplary genomic maps are shown in Figure 8.
Strikingly, a majority of the top arCOG hits in cetZ regions were predicted pilin family
proteins linked to a type IV pili-like system (arCOG05787, 05789, 03821, 03822, 05790, 05786,
and 05788), reminiscent of the synteny between the pilB2/C2 type IV regulon and cetZ2
in certain Halobacteria. A breakdown of gene association by taxonomic order (Figure 8)
revealed that this strong association was solely present in the Thermococcales; we observed
that all analysed cetZ regions from Thermococcales were pili-associated, and the genomic
organisation of the arCOGs within this region was well conserved. This tendency for cetZ
genes to be associated with type IV systems may indicate that CetZ proteins can be co-opted
by these systems for structural roles in their assembly or function.
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Figure 8. Conserved portions of the 40kb cetZ genomic regions from non-Haloarchaea Euryarchaeota.
(A) The 20 kb regions on either side of the cetZ gene were analysed from 27 species of the orders
Thermococcales (15), Archaeoglobales (3), Methanosarcinales (6), and Methanomicrobiales (3). Table
listing the most frequently observed arCOGs and their occurrence in 27 cetZ genomic regions from
each order. (B) Examples of cetZ genomic regions, showing their conserved residues only (except in
the case of Archaeoglobus veneficus DSM 11195, which has no conserved regions). The genes encoding
cetZ are represented in black, and genes belonging to arCOGs present within at least 10 of the cetZ
genomic regions are coloured according to their COG category as detailed in Table S2, and arCOGIDs
are listed beneath each gene. arCOGs encoding uncharacterised proteins which are present in at
least 10 of the cetZ genomic regions are represented in grey, and arCOGs not present in at least 10
of cetZ genomic regions are represented in white. Four arCOGs (00476, 04459, 00245, and 01482)
were not present in majority of all cetZ genomic regions, but were highly conserved within the order
Methanosarcinales; these arCOGs are coloured according to their COG category.

The Thermococcales cetZ regions beyond the pili-like system were reminiscent of
the Halobacteria cetZ1 regions, in that purine and cofactor biosynthesis genes were of-
ten located within the 40 kb cetZ region (Figure 8A). They were also implicated in cell
wall/membrane/envelope biogenesis and cell motility/adhesion, as in the cetZ2 genomic
regions (Figure 8, arCOG05787 and 03512). The analysed cetZs in Archaeoglobales, Metha-
nomicrobiales, and Methanosarcinales were non-pili associated, and showed few similari-
ties within or across taxa. However, four arCOGs were consistently observed in the cetZ
genomic regions of Methanosarcinales species, which notably included nadC, nadA, and
nadX, all of which are involved in cofactor (NAD) biosynthesis.

4. Discussion

Despite comprising a major family of the tubulin superfamily, our current knowl-
edge of the biological functions of CetZs is based on a limited number of studies in
H. volcanii [4,49]. Here, we assessed the diversity of tubulin superfamily proteins from
183 archaeal species, defined sequence and structural features of the clearest CetZ groups,
and identified genes commonly co-conserved within the cetZ genomic regions to investigate
other potential biological functions of CetZs. As expected, Halobacteria were found to
have multiple CetZ homologues within individual species. The most conserved of the
Halobacteria CetZs were CetZ1 and CetZ2, which formed distinct orthologous groups
(Figure 1). Although both CetZ1 and CetZ2 have previously been reported to function
generally in cell shape control and motility, they do not produce the same phenotypes [4],
and may therefore have different roles. CetZ1 and CetZ2 showed characteristic differences
in amino acid composition and conserved genes within cetZ1 and cetZ2 genomic regions
differed, with common genes in cetZ1 regions having predicted functions in nucleotide
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and coenzyme biosynthesis (Figure 6) and common genes in cetZ2 regions functioning in
cell envelope biogenesis and cell motility/adhesion (Figure 7). CetZ2 was only present
in species that had CetZ1 (Figures 4 and S4), and the majority of rod-forming and motile
Halobacteria species had both CetZ1 and CetZ2 (Figures 4 and S4), suggesting that CetZ2
might be functionally dependent on CetZ1.

Outside of Halobacteria, CetZs were mostly clustered taxonomically, and were only
confidently identified in Euryarchaeota within the orders Thermococcales, Archaeoglobales,
Methanomicrobiales, and Methanosarcinales (Figure 1). The overall CetZ family was com-
pared in sequence and structure to the archaeal FtsZ. Characteristic amino acid differences
were concentrated around the GTP/GDP binding pocket (Figure 2), which may result in
fundamental differences in the polymerisation behaviour and function of FtsZs and CetZs.

CetZs from Thermocococcales were strongly clustered in the phylogenetic analysis
(Figure 1) and were structurally comparable to CetZs from other Euryarchaeal species
(Figures 2 and S1), supporting their inclusion in the CetZ family. Thermococcales CetZs
showed consistent genomic organisation with genes involved in nucleotide and coenzyme
metabolism (as in Halobacteria cetZ1 regions) as well as in cell motility/adhesion and
cell wall/membrane/envelope biogenesis (as in Halobacteria cetZ2 regions) (Figure 8).
Unlike Halobacteria, Thermococcales species only have one CetZ. It is interesting that the
Thermococcales cetZ regions contained genes with similar predicted functions to those
conserved in both cetZ1 and cetZ2 regions from Halobacteria. This is consistent with the
notion that there has been divergence and specialization of multiple CetZ functions that
could be performed similarly by the sole CetZ in Thermococcales species.

Archaeoglobales and Methanomicrobiales species typically had one Halobacteria-
like CetZ and one CetZ which branched closer to CetZs from Thermococcales. Inter-
estingly, sequence and structure predictions of these two subgroups of CetZs from Ar-
chaeoglobus fulgidus (Figure S1) showed that the Halobacteria-like CetZ had a long M-loop,
similar to Halobacteria CetZs (except for those belonging to the CetZ2 subfamily), while
the A. fulgidus CetZ clustering more closely with Thermococcales CetZs had a short M-loop.
Thus, the M-loop region appears to have variable functions that may be characteristic of
CetZ subfamily functions. Perhaps the two sub-families of CetZs in Archaeoglobales and
Methanomicrobiales species are functional pairs with separate functions in these species,
as CetZ1 and CetZ2 may be in Halobacteria.

The functions of the most common genes found in cetZ regions across Euryarchaeota
may point towards biological pathways or mechanisms involving CetZs. We saw that
cetZ and cetZ1 genomic regions contained several genes implicated in nucleotide, cofactor,
and sugar metabolism. One set of genes, purP, purD, purS, purQ, purL, purU, purC, are
involved in de novo biosynthesis of purines (inosine 5′-monophosphate from phospho-
ribosyl pyrophosphate), with pathways feeding into thiamine, histidine, and DNA and
RNA biosynthesis [63]. Purinosomes (multienzyme complexes of purine biosynthesis
enzymes) have been found to functionally associate with microtubules in human cells [64].
Likewise, it may be possible that CetZs contribute a similar role in helping stabilize purine
biosynthesis or other multienzyme complexes in archaea. Three cofactor biosynthesis genes
were frequently present in cetZ1 genomic regions, namely, cofC, cofG, and cofH, all of which
are conserved across bacteria and archaea and contribute to cofactor F420 biosynthesis.
Cofactor F420 is an electron carrier, and is notably required for redox steps in archaeal
methanogenesis [65]; however, the potential significance of the genetic linkage to cetZ is
currently unknown. Genes belonging to arCOG03015 and 03095 were identified as highly
conserved in the cetZ1 and cetZ2 regions, respectively. These genes are uncharacterised in
archaea, but are predicted NAD-dependent sugar epimerase/dehydratases by homology
to bacterial enzymes. Cytoskeletal proteins, including tubulin and FtsZ, have been shown
to influence and regulate metabolism [66], and are generally known to help localize biosyn-
thetic activities; thus, the genetic associations noted above might reflect similar functions of
CetZs in stabilizing or localizing metabolic activities in archaeal cells.
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Several type IV pili-related systems were found to be encoded adjacent to all the
cetZ regions of Thermococcales as well as a majority of cetZ2 regions from Halobacteriales
and Haloferacales. The biological role of these type IV systems is unknown, although
type IV systems generally assemble as a multi-component extracellular dynamic filament
embedded in the cell envelope with roles in adhesion and motility. Makarova et al., 2016 [61]
identified pili regulons in archaea, finding cetZs adjacent to pilBC regulons in Thermococci
and pilB2/C2 regulons in Halobacteria but not with other clades of pili regulons. In general,
pili-associated cetZ regions contained five to six predicted pilins (the extracellular filament
subunits) and typically two predicted envelope proteins. Pili-associated cetZ2 regions
usually had seven predicted pilins, including one ATPase (pilB2) and one transmembrane
component (pilC2) as well as one predicted surface protein. Other cytoskeletal proteins,
including FtsZ, are known to act as scaffolds that direct the biosynthesis of the bacterial
cell envelope and its substructures [1,33,34,67], and potentially have this role in archaea
as well [29,68]. Similarly, it seems possible that CetZs may have been adopted to act as
scaffolds for the assembly of type IV pili systems in certain archaea.

In summary, we have shown that the CetZ family is comprised of multiple diverse
subfamilies across a subset of the Euryarchaeota. In many archaeal species, multiple
CetZs from different subfamilies are likely to have separated and specialized functions that
may work together in cytoskeletal roles, potentially akin to the known multifunctionality,
specialization, and coordination of tubulin subfamily members in eukaryotes. Our gene
association analyses suggest that CetZs may act in ways that promote the assembly or
localization of biosynthetic and cell-surface associated complexes, akin to the function of
the well characterized bacterial cytoskeletal proteins.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13010134/s1, Figure S1: Structures of archaeal TSF proteins;
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Figure S5: AlphaFold2 predictions of highly conserved genes within cetZ1 and cetZ2 genomic regions;
Figure S6: Synteny of cetZ2, pilB2 (arCOG01818), arCOG04674, and arCOG0305; Table S1: Species
and TSF extended data for phylogenetic analysis; Table S2: cetZ genomic region analysis extended
data; Table S3: List of cetZ1 and cetZ2 homologues.
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