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Abstract: Background: Multi-omics delivers more biological insight than targeted investigations. We
applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). Methods:
46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas
chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME)
volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal
strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results
in n = 73. Results: 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME
in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis,
glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with
NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone
metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac
pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). Conclusion: Breath acetone discriminated HFrEF
from other cardiac pathology using a consumer sensor, but was not cardiac specific.

Keywords: heart failure with reduced ejection fraction

1. Introduction

Heart failure is a common heterogeneous condition which carries significant morbidity
and mortality. Despite numerous advances in heart failure management, new diagnostic
tools and methods of patient stratification are needed to meet the growing demands that
heart failure poses on healthcare providers. New tools are required to diagnose heart
failure and stratify patients for treatment strategies. Metabolomics is a well-established
analytical method, which involves the broad identification and quantitation of hundreds
to thousands of metabolites in a single analysis. Metabolomics applied to heart failure
has demonstrated its diagnostic superiority to brain natriuretic peptide (BNP) in patients
with both reduced and preserved ejection fraction [1]. Cellular metabolism is altered in
patients with heart failure and other disease states. Metabolomics has been used to reveal
these novel molecular pathways [2,3], and provides a means to monitor the effectiveness of
therapies through the practice of systems pharmacology [4,5]. Despite this, however, due
to numerous barriers such as standardisation, validation and platform cost, metabolomics
has not been translated into clinical care [6].
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Metabolomics can be applied to multiple biological tissues including plasma, urine
and even breath, the latter known as volatilomics. Metabolomic profiling of volatile organic
compounds (VOCs) in breath is beginning to show promise as a diagnostic tool for heart
failure [7–9]. For instance, acetone, a product of ketone metabolism, has been demonstrated
to be elevated in not only the plasma and urine of patients with heart failure but also
in their breath [10–13]. Patterns of additional VOCs, including acetone, have been used
to accurately discriminate the presence of heart failure in a non-invasive manner [14].
The integration of multiple sources of data or multi-omics, such as metabolomics and
volatilomics applied to varying biofluids, together with genomics and protein biomarkers
can provide even greater insight than any single source of data [15].

A commonly used VOC sensing technique is gas chromatography-mass spectrometry
(GC-MS). This technique is sensitive, allowing the identification of individual components
of gas mixtures, however, is not necessarily suitable for use in clinical environments
given its speed and requirement for pre-processing and storage of samples [16]. Liquid
chromatography-tandem mass spectrometry (LC-MS) is another method that offers rapid,
sensitive and specific metabolomic analysis, and has been shown in literature to have a
further advantage of identifying metabolites in diminutive levels [17]. Other techniques
can be used to identify VOCs including high-performance liquid chromatography (HPLC).

We investigated the utility of metabolomics, multi-omics and deep phenotyping in the
interrogation of biological processes occurring in patients with heart failure with reduced
ejection fraction (HFrEF). We then translated those findings to investigate the potential
utility of a low-cost breath acetone (BrACE) sensor for predicting the presence of HF in both
an inpatient and outpatient setting. In addition, we evaluated these methods in identifying
novel biomarkers for heart failure and ventricular arrhythmia.

2. Materials and Methods
2.1. Patients

The NanoHF study (A Novel Nanosensor array for Heart Failure diagnosis) was ap-
proved by the Northern B Health and Disability Ethics Committee (16/NTB/115) (#16/680)
and Waitematā District Health Board’s IRB (#RM13458). Patients were identified from an
echocardiography database, > 18 years of age, able to provide written informed consent
and had previously documented signs and symptoms of heart failure with an ejection
fraction between 20 and 45% on echocardiography. Exclusion criteria included diabetes
mellitus (Type 1, Type 2 on insulin and/or last available HbA1c ≥ 65 mmol), chronic renal
impairment (eGFR < 50 mL/min), chronic lung disease (e.g., COPD and Asthma), and/or
hospital admission within 3 months of enrolment related to exacerbation of heart failure.
This was because these conditions have been associated with higher levels of serum acetone
when compared to controls. Heart failure was defined as a clinical syndrome accompanied
by biochemical (NTproBNP; normal < 35 pmol/L and HFrEF at any age > 212 pmol/L) or
mechanical (LV ejection fraction < 50%, global longitudinal strain (GLS) < 18%) abnor-
malities. Enrolment was enriched for patients with devices (ICD, CRT). Controls were
self-reported volunteers who also underwent ECG and echocardiography.

2.2. Hypotheses

The primary objective was to evaluate the ability of a novel breath sensor, optimised to
detect acetone, and volatilomics to discriminate VOC patterns of heart failure. The secondary
purpose was to explore the biology and validate a metabolomic panel for heart failure.

2.3. Biomarkers

Blood was collected using EDTA tubes. After centrifugation at 3000× g for 5 min,
plasma was stored at −80 ◦C before being shipped on dry ice to core lab facilities for testing.
NT-proBNP was measured using a Siemens Dimension Vista assay.
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2.4. GCMS

Plasma and urine samples underwent thawing, extraction and methyl chloroformate
derivatisation, as described previously [16]. Gas Chromatography-Mass Spectrometry
(GC-MS) was used for the identification and semi-quantitation of amino acids (except
arginine), organic acids, and fatty acids. GCMS instrument parameters were based on
Smart et al. [18], using an Agilent 7890A gas chromatograph coupled to a 5975C inert mass
spectrometer. Data analysis was semi-automated by using Automated Mass Spectral De-
convolution and identification software (AMDIS) against an in-house library of 165 methyl
chloroformate derivatised compounds. Compounds that are not included in this library
were tentatively identified using the National Institute of Standards and Technology (NIST)
library. Metabolomic data were expressed as relative abundance in reference to an internal
standard (DL-alanine-2,3,3,3-d4).

2.5. LCMS

A targeted metabolomics approach was used to analyse plasma samples from HFrEF
patients and controls. The sample preparation and analysis procedures were performed ac-
cording to the AbsoluteIDQ p400 kit (Biocrates Life Sciences AG, Innsbruck, Austria) using
a Thermo Q-Exactive Orbitrap LC-MS. This kit allows the measurement of 400 metabolites
by UPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrom-
etry) and FIA-MS (MS-based flow injection analysis). The data analysis and calculation of
the metabolite concentrations analysed by FIA were automated using MetIDQ software
(Biocrates Life Sciences AG, Innsbruck, Austria).

2.6. Volatilomics

200 µL plasma and urine were used for solid-phase microextraction (SPME) volatilomics
with a divinylbenzene/carboxen/polydimethylsiloxane fibre assembly. Fused silica Rxi-5Sil
MS Columns were used in an Agilent 5975C Series GC/MSD using methods similar to those
previously described to identify 73 VOCs [19]. The original objective had been to evaluate the
diagnostic utility of a novel single-walled carbon nanotube sensor (SWCN) array developed
at JPL/NASA Ames [20,21]. However, by the time of enrolment, the sensor was not ready
for clinical use. We, therefore, tested a selection of commercially available acetone sensors
including anAT6000 (NM hot wire sensor) (Greenwon, ShenZhen, China), Keyto (Keyto, San
Francisco, CA, USA), Tiger LT (Photoionisation sensor) (Ion Science, Fowelmere, UK) and
Ketoscan mini (Sentech, Gyeonggi-do, South Korea) in a sample of cardiac inpatients and
consecutive outpatients.

2.7. Statistics

Metaboanalyst was used for pathway and multivariate analysis which was adjusted
for multiplicity to reduce the false discovery rate (FDR) [20]. Univariate analysis was
performed using the student t-test for continuous parametric variables, a Mann-Whitney U
test for nonparametric and Chi-square test for categorical variables. Receiver-operating
characteristic curve (ROC) analysis was used to assess the performance of diagnostic
biomarkers by c-statistic. All tests were two-tailed and p < 0.05 was deemed statistically
significant, except where tests for multiplicity were applied. Medcalc software version
16.8.4 was used to analyse the data. Machine learning to a validated 4 metabolite panel
(1), using logistic regression (LR), random forest, decision tree and support vector machine
with a 67:33 training/validation random split with tenfold cross-validation. An interactive
network was generated to compare the metadata of patients using a Javascript D3 Force
layout using a Pearson correlation matrix.

3. Results

Three hundred sixty-two patients were screened for inclusion/exclusion criteria. Sixty-
six participants (46 with a documented diagnosis of heart failure and 20 self-reported
healthy volunteers) were enrolled in the study, with written informed consent. Baseline
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characteristics are outlined in Table 1. Twenty-seven (59%) of the heart failure patients
had ischaemic cardiomyopathy and 19 (41%) had either an ICD (n = 14) or CRTD (n = 5).
Ten (71%) of ICDs were implanted for primary prevention. Heart failure patients were
older and had a higher percentage of males than controls. Seventeen (37%) of heart failure
patients had normal NTproBNP, indicating biochemical HF recovery (HFrec). The mean
NYHA status was II.

Table 1. Baseline characteristics.

HF
N = 46

Control
N = 20 p Value

Age, mean (SD) 68 (8) 52 (9) 5 × 10−9

Male, n (%) 41 (89) 10 (50) 0.0006

European 29 (63) 16 (80) 0.18

AF 10 (22) 0 (0) N/A

HTN 21 (46) 0 (0) N/A

T2Dm 9 (20) 0 (0) N/A

ACEi/ARB 37 (80) 0 (0) N/A

Beta blocker 39 (85) 0 (0) N/A

MRA 14 (3) 0 (0) N/A

Statin 29 (63) 0 (0) N/A

Frusemide 10 (22) 0 (0) N/A

EF bp mean (SD) 39% (10 57% (5) 8 × 10−9

GLS −13% (0.04) −21% (0.05) 3 × 10−8

NTproBNP (pmol/L) 115 (124) 8 (10) 0.0002
AF = atrial fibrillation, HTN = hypertension, T2DM = type 2 diabetes, ACEi = angiotensin converting enzyme
inhibitor, ARB = angiotensin receptor blocker, MRA = mineralocorticoid receptor antagonist, EF bp = ejection
fraction by Simnpson’s biplane, GLS = global longitudinal strain.

3.1. Metabolomics

28 metabolites across all diagnostic definitions of heart failure were identified by GCMS
which met FDR (Table 2). Numerous of these were either directly part of or indirectly linked
to the citric acid cycle and mitochondrial metabolism. By univariate analysis, isocitric acid
had the highest AUC of 0.84, 95% CI of 0.73 to 0.92. 35 metabolites were identified by
LCMS which fulfilled the FDR (Table 3). Most notably these included symmetric dimethyl
arginine, creatinine, arginine and kynurenine as well as numerous phosphatidylcholines,
sphingomyelins, lysophosphatidylcholines, two cholesteryl esters and one triglyceride
(55:9). Nineteen common metabolites were detected by both GCMS and LCMS allowing
for analytical method comparisons.

Using a previously validated panel of metabolites (histidine, phenylalanine, spermi-
dine, and phosphatidylcholine C34:4) [1] and LR, an AUC of 0.92 was achieved, accuracy
0.85, precision 0.79, recall 0.85, F1 score 0.82, compared to NTproBNP AUC 0.93, 95% CI
0.83 to 0.98, for the discrimination of heart failure.

3.2. Volatilomics

Only one volatile, acetone, reached significance by the stringent FDR used (Table 4,
Figures 1 and 2). However, several common VOCs were identified in both plasma and
urine (t-test, p < 0.05) which have previously been associated with heart failure. These
included pentane, 2-butanone, and 2-pentanone.
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Figure 1. SPME plasma NTproBNP ≥ 35 pmol/L. Log10 transformed t-test p values for individual
metabolites with p-value threshold for multiplicity (horizontal line) (left). Acetone was the only VOC
reaching statistical significance (right).

Table 2. Metabolites identified as significantly different in heart failure.

Metabolite Tstat p Value = –LOG(10p) FDR

Cis-Aconitic Acid −5.44 9.09 × 10−7 6.04 9.25 × 10−5

Isocitric acid −5.35 1.28 × 10−6 5.89 9.25 × 10−5

Glutathione −4.87 7.56 × 10−6 5.12 2.81 × 10−4

Unknown 115100 5965.5 18950.1 −4.87 7.76 × 10−6 5.11 2.81 × 10−4

Citric acid −4.43 3.76 × 10−5 4.42 1.09 × 10−3

DL-gamma-methyl-ketoglutaramate −4.31 5.77 × 10−5 4.24 1.39 × 10−3

4-Hydroxyphenylacetic acid −4.11 1.16 × 10−4 3.93 2.11 × 10−3

Linoleic acid C18_2n-6,9c 4.12 1.57 × 10−4 3.80 1.62 × 10−2

Beta-Alanine −3.96 1.89 × 10−4 3.72 6.84 × 10−3

Fumaric acid −3.96 1.90 × 10−4 3.72 3.06 × 10−3

Cis-Vaccenic acid C18_1n-7c 4.01 2.23 × 10−4 3.65 1.62 × 10−2

Unknown 113100 8548.1 5921.2 −3.84 2.80 × 10−4 3.55 3.51 × 10−3

Malic acid −3.84 2.89 × 10−4 3.54 3.51 × 10−3

Unknown 127100 15949.8 5948.8 −3.56 7.02 × 10−4 3.15 6.37 × 10−3

Itaconic acid −3.76 3.72 × 10−4 3.43 4.15 × 10−3

Unknown 114100 14731.9 11527.2 −3.61 6.07 × 10−4 3.22 5.87 × 10−3

Pentadecanoic acid C15_0 3.67 6.35 × 10−4 3.20 2.65 × 10−2

Unknown 125100 18490.5 9654.3 −3.56 7.02 × 10−4 3.15 6.37 × 10−3

Ornithine −3.36 1.32 × 10−3 2.88 1.12 × 10−2

Cysteine −3.41 1.35 × 10−3 2.87 3.23 × 10−2

11,14-Eicosadienoic C20_2n-6,9c 3.34 1.67 × 10−3 2.78 3.46 × 10−2

Malonic acid −3.28 1.71 × 10−3 2.77 1.37 × 10−2

Glutamic acid −3.19 2.22 × 10−3 2.65 4.03 × 10−2

Succinic acid −3.14 2.55 × 10−3 2.59 1.95 × 10−2

Arachidic acid C20_0 3.17 2.68 × 10−3 2.65 4.03 × 10−2

2-Hydroxyisobutyric acid −3.04 3.41 × 10−3 2.47 2.47 × 10−2

Unknown 128100 13921.1 4219.1 −2.85 5.87 × 10−3 2.23 3.87 × 10−2

Adipic acid −2.78 7.07 × 10−3 2.15 4.46 × 10−2

T stat = T statistic, FDR = False discovery rate.
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Table 3. Metabolites identified as significantly different in heart failure.

Metabolite Tstat p Value = –LOG(10p) FDR

Symmetric dimethylarginine −5.31 1.65 × 10−6 5.78 7.11 × 10−5

Cholesteryl ester (18:2) 5.06 4.15 × 10−6 5.38 9.13 × 10−4

Sphingomyelin (42:1) 4.91 7.19 × 10−6 5.14 8.13 × 10−4

Sphingomyelin (40:4) 4.82 1.00 × 10−5 5.00 8.13 × 10−4

Sphingomyelin (38:1) 4.52 2.88 × 10−5 4.54 1.75 × 10−3

Triglyceride (55:9) −4.52 2.91 × 10−5 4.09 7.07 × 10−3

Sphingomyelin (40:2) 4.23 8.05 × 10−5 4.09 3.91 × 10−3

Creatinine −4.22 8.44 × 10−5 4.07 1.82 × 10−3

Sphingomyelin (40:1) 4.06 1.44 × 10−4 3.84 3.51 × 10−2

Sphingomyelin (33:2) 4.04 1.50 × 10−4 3.82 6.06 × 10−3

Phosphatidylcholine (34:5) 3.98 2.18 × 10−4 3.66 2.01 × 10−2

Lysophosphatidylcholine (18:2) 3.89 2.53 × 10−4 3.60 8.77 × 10−3

Phosphatidylcholine (30:0) 3.90 2.80 × 10−4 3.55 2.01 × 10−2

Sphingomyelin (33:1) 3.89 2.94 × 10−4 3.53 2.01 × 10−2

Phosphatidylcholine (30:0) 3.81 3.79 × 10−4 3.42 2.15 × 10−2

Phosphatidylcholine (39:3) 3.75 3.89 × 10−4 3.41 1.18 × 10−2

Phosphatidylcholine (35:5) 3.60 6.31 × 10−4 3.20 1.67 × 10−2

Phosphatidylcholine (34:2) 3.56 7.30 × 10−4 3.14 1.67 × 10−2

Phosphatidylcholine (32:3) 3.52 8.13 × 10−4 3.09 1.67 × 10−2

Phosphatidylcholine (36:5) 3.52 8.25 × 10−4 3.08 1.67 × 10−2

Phosphatidylcholine (36:2) 3.49 1.00 × 10−3 3.00 3.28 × 10−2

Arginine 3.41 1.18 × 10−3 2.93 4.40 × 10−2

Sphingomyelin (41:1) 3.38 1.27 × 10−3 2.90 2.31 × 10−2

Sphingomyelin (39:1) 3.35 1.40 × 10−3 2.85 2.31 × 10−2

Sphingomyelin (39:2) 3.36 1.47 × 10−3 2.83 3.85 × 10−2

Sphingomyelin (41:2) 3.35 1.54 × 10−3 2.81 3.85 × 10−2

Sphingomyelin (38:2) 3.31 1.56 × 10−3 2.81 3.85 × 10−2

Phosphatidylcholine (32:2) 3.34 1.58 × 10−3 2.80 3.85 × 10−2

Kynurenine −3.25 1.91 × 10−3 2.72 2.74 × 10−2

Sphingomyelin (31:1) 3.25 2.05 × 10−3 2.69 4.65 × 10−2

Cholesteryl ester (16:0) 3.09 2.98 × 10−3 2.53 4.07 × 10−2

Lysophosphatidylcholine (16:0) 3.06 3.26 × 10−3 2.49 4.17 × 10−2

Lysophosphatidylcholine (18:0) 3.00 3.94 × 10−3 2.50 4.49 × 10−2

Phosphatidylcholine (34:6) 2.96 4.41 × 10−3 2.36 4.61 × 10−2

Lysophosphatidylcholine (15:0) 2.95 4.55 × 10−3 2.34 4.61 × 10−2

T stat = T statistic, FDR = False discovery rate.
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Table 4. VOC identified by SPME as significantly different in heart failure.

Tstat p Value = –LOG10(p) FDR

Acetone −6.0327 9.80 × 10−8 7.0088 1.08 × 10−5

T stat = T statistic, FDR = False discovery rate.

Figure 2. SPME urine NTproBNP > 211 pmol/L. Log10 transformed t-test p-values for individual
metabolites with p-value threshold for multiplicity (horizontal line) (left). Single VOC reaching
statistical significance (right).

Of the three consumer sensors tested only one had the sensitivity, reproducibility and
accuracy to identify breath acetone (BrACE) differences in HF patients versus controls in
the clinical validation (n = 61, inpatient/outpatients n = 32/29). BrACE had an AUC of
0.8, 95% CI 0.61 to 0.92 for discriminating heart failure in 12 (41%) cardiac outpatients with
compensated heart failure (Figures 1 and 2). BrACE was higher in acute decompensated
heart failure (HFpEF and HFrEF) versus compensated patients (median 2.6 versus 1.6 ppm,
p = 0.046). However, in a sample of breathless inpatients (n = 12) with noncardiac pathology,
BrACE was 3.2 +/−2.7 ppm (mean/SD) (pneumothorax, pneumonia, lung malignancy,
uncontrolled diabetes), reflecting increases in ketone body production due to physiological
stress (Appendix A).

3.3. Pathway and Network Analysis

Metabolites from the citric acid cycle dominated the pathway analysis, with other
pathways identified including arginine, alanine, aspartate and glutamate biosynthesis,
as well as glyoxylate and dicarboxylate metabolism. Networks showed multiple hubs,
including GLS with a high degree of betweenness centrality https://projects.interacta.io/
theranostics/ (28 January 2021). Plasma acetone correlated with NT-proBNP (r = 0.59, 95%
CI 0.4 to 0.7), triacylglycerol (55:9), 2-oxovaleric and cis-aconitic acid, involved with ketone
metabolism and mitochondrial energetics.

4. Discussion

In this study, we took a multi-omics approach using urinary and plasma metabolomics,
volatilomics, biomarkers and DNA sequencing to deeply phenotype patients with HFrEF.
Our main objectives were to evaluate the volatilome of patients with heart failure, using
plasma and urine as a surrogate for breath, and then validate our results using a widely
available breath acetone sensor. We also used untargeted and targeted metabolomics to
validate a 4 metabolite panel previously shown to be diagnostic for HFrEF [1].

Acetone was first identified as a potential biomarker in the breath of heart failure
patients in 1995 by Kupari et al. [11]. Breath acetone (BrACE) has then subsequently been
shown to have similar diagnostic accuracy to BNP, with acetone concentrations reflecting
heart failure severity [22]. This was reinforced by a longitudinal study showing elevated
BrACE concentration correlated with PCWP (BrACE > 1.05 ppm was associated with

https://projects.interacta.io/theranostics/
https://projects.interacta.io/theranostics/
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PCWP ≥ 18 mmHg, AUC 0.72) [23] and was associated with a poorer prognosis [24].
Similarly, urine acetone has been shown to correlate with heart failure [13] and its severity,
determined by NYHA class and echocardiography [12].

In our study we had intended to validate BrACE using a SWN sensor array, capable
of discriminating VOC patterns similar to mass spectrometry; however, the sensor was
not ready for clinical use. A previous study by Samara et al, at the Cleveland Clinic, used
SIFT-MS (Syft technology, Christchurch, New Zealand) and discriminant analysis, a form
of machine learning, to identify a breath fingerprint for heart failure [8]. This included
acetone, pentane and other ion peaks which have subsequently been validated along
with isoprene [25], 2-pentanone and 1-butanol in a detailed study by Biagini et al. [14].
Biagini similarly proposed the use of BrACE as a biomarker and potential monitor for heart
failure, especially as it reduced three-fold in response to in-hospital treatment for acute
decompensation. We similarly showed that not only is BrACE a potential diagnostic for
heart failure but is also at lower concentration in the stable compensated setting. We have
for the first time demonstrated the measurement of BrACE with a low-cost consumer sensor
(Ketoscan mini, Senentech, Gyeonggi-do, Korea), with sufficient sensitivity, precision and
accuracy to measure acetone < 2 ppm (+/−1 ppm < 5 ppm), in the healthy range [26]. The
main limitations are that BrACE levels are confounded by prolonged starvation, ketogenic
diets and the use of lozenges/gum-containing menthol. Additionally, uncontrolled diabetes
mellitus can be a cause of ketosis. In patients with diabetes, the body uses fats rather than
glucose to produce energy, causing the production of excess ketones, such as acetone [27].
Diabetes is a common comorbidity in heart failure patients and consequently represents
a further limitation of BrACE levels. Hence its use as an exclusion criterion in this study.
Despite the SWN sensor being unavailable for clinical use, we are continuing to work on a
sensor array, using consumer-available sensors [28].

Metabolomics has provided a wealth of information about not only the mechanisms
underlying heart failure but also suggested therapies. Ketone bodies, such as acetoacetate
and beta-hydroxybutyrate (βOH), are one of the many energy substrates for the heart,
inclusive of glucose, branched-chain amino acids and free fatty acids. It is believed that
ketone body formation from the liver is an early adaptive response to heart failure. Though
debate still exists around whether this is a positive or negative adaptive mechanism a
recent knockout model would suggest the former [29]. Deletion of succinyl-CoA:3-ketoacid-
CoA transferase 1 (SCOT) in a mouse model, increased circulating ketones and reduced
the cardiac inflammasome preventing heart failure caused by increased afterload [30].
Metabolomics has also shown that beta-hydroxybutyrate, acetone and succinate correlate
with myocardial energy expenditure measured by echocardiography (kcal/min) and act
independently to treatment with angiotensin converting enzyme inhibitors, β-receptor
blockers, diuretics and statins [31]. This would suggest a mechanism independent of these
traditional therapies, which is open to modification. Empagliflozin, an SGLT2 inhibitor,
increases ketone body formation, but not cardiac substrate utilisation, which may in part
explain its mechanism of action [32,33]. Similarly, nutritional interventions such as βOH,
which can be taken orally, may have a role in heart failure. βOH, given as an infusion, has
been shown to increase overall energy production without compromising glucose or fatty
acid metabolism, albeit without increasing cardiac efficiency [34,35].

In our study, untargeted GC-MS/LCMS metabolomics revealed several pathways
altered in heart failure, with mitochondrial metabolism at the forefront. Although stan-
dardisation has been an issue with metabolomics, we have shown a 4-panel metabolite
profile, using an LCMS kit, produces a reproducible result, equivalent to the diagnostic
capacity of NTproBNP [1]. LCMS identified arginine and symmetric dimethylarginine in
the kynurenine pathway, previously implicated in heart failure [1,36]. Tryptophan and the
kynurenine pathway are intimately linked to NAD+ production and supplementation with
NAD donors, such as nicotinamide riboside, has been suggested as a potential therapeu-
tic in heart failure [37]. As ketone utilisation and mitochondrial function are intimately
linked, the measurement of BrACE opens up the possibility of a real-time probe of body
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metabolism, as either a screening tool for diagnosis or monitoring of pharmacological
therapy or nutritional interventions with mitochondrial therapies. Mitochondrial therapies
might be particularly effective in titin truncation cardiomyopathy [38] more so than in other
cardiomyopathies [39], though this is yet to be fully elucidated.

5. Limitations

This study was limited by its small sample size. Moreover, results that were not
prespecified can only be considered exploratory. Due to the small sample size controls were
not age, gender and race matched with heart failure patients. The GC-MS analysis used an
in-house non-quantitative method, which may not be reproducible elsewhere. However,
the p400 LCMS kit did provide quantitation on a commonly available, well-validated
mass spectrometry platform which has also previously been used in heart failure [1].
Although the sample preparation steps for LCMS may limit its application in a clinical
laboratory, other methods such as NMR may provide scalability and utility for clinical use.
700 MHz NMR results are awaited for this study, which will provide further quantitation
of metabolites identified by both GC-MS and LCMS.
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Appendix A

Figure A1. HFrEF = heart failure reduced ejection fraction, CCHF = chronic compensated heart
failure, SPME = Solid-phase microextraction, GCMS = Gas chromatography mass spectrometry,
LCMS = Liquid chromatography mass spectrometry.
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