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Abstract: Natural products (NPs) are a rich source of structurally novel molecules, and the chemical 

space they encompass is far from being fully explored. Over history, NPs have represented a signif-

icant source of bioactive molecules and have served as a source of inspiration for developing many 

drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to 

drug discovery research, mitigating costs and time. In this sense, compound databases represent a 

fundamental element of CADD. This work reviews the progress toward developing compound da-

tabases of natural origin, and it surveys computational methods, emphasizing chemoinformatic ap-

proaches to profile natural product databases. Furthermore, it reviews the present state of the art in 

developing Latin American NP databases and their practical applications to the drug discovery 

area. 

Keywords: chemoinformatics; compound databases; chemical space; diversity; drug discovery; 

open science; pseudo-natural product 

 

1. Introduction 

Natural products (NPs) are a major source of bioactive molecules, and their im-

portance is invaluable [1]. Between 1981 and 2014, over 50% of newly developed drugs 

were developed from NPs [2]. Over nearly four decades, they have been a significant re-

source of bioactive compounds for medicinal chemistry [3]. There are several sources for 

bioactive molecules, which include marine [4,5], fungal [6,7], bacteria [8], and plants [9]. 

Endogenous substances produced by humans and animals are another vital source of bi-

oactive compounds [10]. Venoms and poisons produced by different animals are other 

rich sources [11].  

Currently, there is an effort to find bioactive compounds from NPs as starting points 

for the further development of drug candidates for infectious diseases: antibacterial [12], 

antiprotozoal [13], antifungal [14], and antiviral [15]. Additionally, NPs are currently em-

ployed in medicinal chemistry to develop new chemotherapies, for example, neurodegen-

erative [16], cancer [17], immune-related [18], liver [19], and kidney [20] diseases, to men-

tion a few examples. Moreover, during the current pandemic outbreak, NPs have been a 

rich source for discovering potential lead compounds against severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [21,22]. 

Figure 1 shows the chemical structures of representative NPs approved for clinical 

use. The figure shows the pharmacological effect and the source of the compound . With 

the exception of captopril, all compounds were approved for clinical use without modi-

fying the original chemical structure of the compound found in the extraction source. 

Captopril was developed based on the bradykinin potentiating factor in Bothrops jararaca 

snake venom. In 1981, it was the first animal toxin-based drug approved for human use. 

[23,24]. Digoxin is obtained from the plants of the genus Digitalis [25]. 
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Figure 1. Chemical structures of representative natural products approved for clinical use. The phar-

macological effect and the source of the compound are indicated (plants, animals, and bacteria). 

Captopril was inspired by a natural product (see main text for details). 

Information regarding the known activities of plants, either of their therapeutic or 

side or toxic effects, can serve as a starting point in the drug discovery process from NPs 

[10]. Furthermore, the stress-driven growth of plants and micro-organisms is used in the 

drug discovery process from NPs since it stimulates the production of secondary metab-

olites [26]. On the other hand, NP-based drug repositioning is a technique with potentially 

lower development costs and shorter time frames [27]. NPs show great promise in drug 

repositioning because they have been used for various medical purposes for thousands of 

years [27]. 

Computer-aided drug design (CADD) [28] has helped to mitigate the cost of billions 

and decrease time through the preclinical and clinical phases [29]. Chemoinformatics is a 

discipline with many tools used in CADD that has deeply impacted drug discovery in the 

pharmaceutical industry and academia [30]. One definition of chemoinformatics is the ap-

plication of informatics methods to solve chemical problems [31]. To date, the discovery process 

of more than 70 commercialized drugs has included a computational method [28]. 
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Nowadays, chemoinformatics has major applications in the research of NPs to identify 

and optimize bioactive compounds [32,33]. In this context, databases of NPs play a key 

role in drug discovery. Over 120 different NP databases and collections have been pub-

lished and re-used since 2000: 98 of them are still somehow accessible, and only 50 are 

open access [34]. Around the world, several NP databases have been published, which 

contain compounds found in a certain country or geographical region. Specifically, in 

Latin America, some databases have been published representing the biodiversity of a 

particular geographical area [35]. 

The present manuscript discusses the importance of NPs as a source of bioactive mol-

ecules, the relevance of compound databases in drug discovery research, and the role of 

chemoinformatics in the development and analysis of compound databases. Finally, it re-

views the state of the art in developing Latin American NP databases and their practical 

applications in drug discovery. 

2. Importance of Natural Products as a Source of Bioactive Molecules 

Nature is an abundant source of privileged scaffolds. The term privileged structure 

was first proposed in 1988 as structures capable of providing useful ligands for more than 

one receptor [36]. However, in drug discovery, a privileged scaffold should not hit many 

targets as in the term “frequent hitters” because they are associated with unwanted effects 

[37,38]. Privileged scaffolds are sources of molecular skeletons around which one may 

build compound libraries in the search for new drug candidates [3]. Terpenoid, polyke-

tide, phenylpropanoid, and alkaloid structures are examples of privileged scaffolds from 

NPs that are currently used in the design and development of new drug candidates (Fig-

ure 2) [39].  

There is one approach that involves the preparation of biologically relevant small-

molecule libraries through unprecedented combinations of NP fragments to afford novel 

scaffolds that do not occur in nature; these molecules are called “pseudo-natural prod-

ucts” (pseudo-NP). Pseudo-NPs retain the biological relevance of NPs yet exhibit struc-

tures and bioactivities not accessible to nature or through the use of existing design strat-

egies. Pseudo-NPs may display unexpected bioactivities that differ from the activities of 

the NPs from which their fragments are derived. That is why their bioactivity should be 

monitored in a wide biological space through different biochemical and biological assays. 

Most of the pseudo-NP collections fall within the “Lipinski rule of 5” (Ro5) space, showing 

advantageous physicochemical “drug-like” properties. For the design of pseudo-NP li-

braries, it is important to consider that the combination of biosynthetically unrelated NP 

fragments may be beneficial for novel bioactivity, maximizing the biological relevance of 

the resulting pseudo-NP scaffold. There are pseudo-NP collections that have been devel-

oped through the first-time combination of some scaffolds, resulting in totally new chem-

ical entities, such as chromopynones, indotropanes, pyrrotropanes, and pyrroquino-

linones (Figure 3) [40,41]. 
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Figure 2. Examples of privileged scaffolds present in natural products. 
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Figure 3. Examples of the combination of NP-derived fragments to form pseudo-NPs. The resulting 

pseudo-NPs come from a specific synthetic route that is depicted elsewhere [40]. 

Throughout history, NPs have served as biomolecule reservoirs, both for molecules 

that later ended up converting into approved drugs without suffering chemical modifica-

tions (Figure 1) and for starting points for optimization that later, with further structural 

modifications, were approved for clinical use. Sometimes, bioactive molecules from NPs 

lack suitable physicochemical properties, and their synthetic complexity may hinder their 

direct use as therapeutics. In this case, to be developed as drug candidates, NPs need to 

go through an optimization process that usually involves structural modifications to im-

prove one or more of the following characteristics: potency, selectivity, solubility, meta-

bolic and chemical stability, and the removal of toxicity (or at least a significant reduction 

in toxicity) [42]. This is usually done by decreasing the molecular size, eliminating the 

unnecessary functional groups and chiral centers, and introducing nitrogen atoms (be-

cause of the limited nitrogen presence in the NPs) [42]. 

3. Relevance of Compound Databases in Drug Discovery Research 

CADD can potentially speed up and decrease the cost of the drug discovery process. 

Traditional drug discovery technologies have very low hit identification rates. For in-

stance, the hit identification rate of high-throughput screening (HTS) is only 0.021% and 

of molecular docking is 34.8% [43]. Compound databases are very useful resources in 

CADD. A database can be defined as an organized collection of data in any field [44]. It is 

important to highlight the importance of databases, firstly as a starting point to organize 

information. Depending on the kind of information stored, databases can be divided into 

six categories summarized in Table 1 [45]. In order to retrieve the required information, it 

is important to identify and look into the correct database category.  
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Table 1. Categories into which databases can be divided according to the type of information stored. 

Database 

Category 
Content Database References 

Chemical in-

formation 

Chemical and crystal structures spectra 

Reactions and syntheses 

Thermophysical data 

ChemSpider 

ChEBI 

Chemical Universe Database 

GDB 

[46] 

[47] 

[48] 

Bioactivity 

Inhibitor constant (Ki) 

Dissociation constant (Kd)  

Half maximal inhibitory concentration (IC50) 

Half maximal effective concentration (EC50) 

PubChem 

ChEMBL 

BindingDB 

ChemBank 

PDBbind 

[49] 

[50] 

[51] 

[52] 

[53] 

Drug 
Detailed drug data 

Comprehensive drug target information 
DrugBank [54] 

Natural 

product 

Pathways (synthesis and degradation) 

Structures 

Universal Natural Product Data-

base 

MeFSAT 

Natural Product Atlas 

[55] 

 

[56] 

[57] 

Chemical 

availability 
Available compounds offered by chemical vendors 

ZINC 

NCI 

[58] 

[59] 

Fragment 

Structures 

Physicochemical information 

Binding site preferences 

FDB-17 

Fragment Store 

PADFrag 

[60] 

[61] 

[62] 

One major CADD approach for the identification of lead molecules is the virtual 

screening (VS) of compound databases [45]. The term VS was first mentioned in the 1990s 

[63], referring to the identification of novel hits from large chemical libraries. VS tech-

niques are usually classified into two major categories: structure-based (SBVS) and ligand-

based (LBVS). In general, SBVS is more suitable for finding structurally novel ligands and 

is the preferred method when the three-dimensional (3D) structure of the target protein 

has been experimentally characterized [64]. When the structure of the target is unknown, 

or its prediction by structure-based methods is challenging, LBVS is the choice [65]. LBVS 

assumes that molecules with similar structures exhibit similar behavior. Among the LBVS 

techniques are the quantitative structure–activity relationship (QSAR) [64] and quantita-

tive structure–property relationship (QSRP) [66] studies. QSAR/QSPR studies aim to find 

a mathematical association between the molecule structure with a given property, such as 

biological activity [65]. In this sense, the bioactivity and chemical information (i.e., 

chemogenomic) databases are crucial to allow the creation of QSAR/QSPR models that 

predict certain pharmacological activity or a property of pharmaceutical interest for a de-

termined molecule or set of analog molecules.  

Another important application of the databases in the drug discovery process is the 

training of artificial intelligence (AI) algorithms. AI encompasses a set of computational 

algorithms that allow computers to simulate human cognitive abilities such as learning 

from experience and solving problems [67]. Among the LBVS techniques is the AI-based 

QSAR, and the creation and training of these models rely on the data found in the bioac-

tivity databases. AI can be applied to SBVS, specifically, to the docking of the protein-

ligand complexes [68]. AI-based scoring functions have shown better performance in 

benchmark studies [69,70]. The creation of AI-based scoring functions depends on the 

availability of the required data in the database to train the model. AI algorithms have 
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already been applied in the drug discovery process from NPs such as: data-mining into 

traditional medicines and peer-reviewed articles, the prediction of chemical structures 

from microbial genomes, the automation of the dereplication process of NPs, encoding 

NPs into molecular representations, the vectorization of NPs with molecular descriptors, 

the mapping of NPs in the chemical space, the engineering of likeness scores, and the 

deorphanization and generation de novo natural product-inspired compounds [71]. Fi-

nally, research on using AI to create models that allow the prediction of the biological 

effects of NPs has increased in recent years. The application of AI models to predict the 

biological effects of molecules, toxicity, and drug–target and drug–drug interactions has 

been reviewed elsewhere [72]. 

4. Role of Chemoinformatics in the Development and Analysis of  

Compound Databases 

Generating a compound database relies on the capacity to represent chemical com-

pounds so that the actual chemistry software can recognize and differentiate the mole-

cules. For this purpose, several notations have been created that represent chemical struc-

tures. There are three types of notations for chemical structures: one-dimensional (1D), 

two-dimensional (2D), and three-dimensional (3D). 

The most popular 1D notation is the simplified molecular input line entry system 

(SMILES), with its first version reported in 1998 [73]. A general issue with this notation is 

that the same molecule can be represented with multiple SMILES strings. Therefore, the 

canonical SMILES were developed: the canonicalization process allows the creation of 

unique SMILES strings for every molecule. It is important to be aware that multiple algo-

rithms exist for canonicalization. Further, there is an extended version that allows stereo-

chemistry specification: isomeric SMILES [74]. Most of the compound databases store the 

compounds using the SMILES notation. The international chemical identifier (InChI) [75] 

notation was first introduced in 2007 [76]. In contrast to SMILES, InChI allows the creation 

of a unique identifier for every molecule. Additionally, this notation allows the inclusion 

or exclusion of stereochemical, isotopic, and tautomeric information. Nevertheless, InChI 

was barely used: the reason could be that, in contrast to SMILES strings, it is not human-

readable and has a long string. InChIKey strings appeared in 2009 to tackle the problems 

of InChI. It is a fixed-length (27-character) condensed version of InChI [76]. Later, SMILES 

arbitrary target specification (SMARTS) notation was developed to specify substructural 

patterns which allow the matching of molecules that contain the specified substructural 

pattern [77]. For 2D graphical representation, there are programs that allow drawing of 

the chemical structures and facilitate the storage and interconversion between standard 

1D and 3D file formats [78]. 3D databases are very useful for structure-based screening. It 

is not common to find (high-quality) 3D databases, but among the resources that provide 

3D high quality molecular representations is the ZINC database [58] which provides the 

protonated and tautomeric molecular form which is very important for molecular docking 

and other 3D-dependant applications [45]. 

Chemoinformatics has played a key role in database assembly, curation, and content 

analysis. Currently, there are available several open-source software that allow character-

ization of the physicochemical profile and structural features of compound databases. For 

instance, RDKit [79] is a collection of chemoinformatics and machine-learning software 

that is possible to use from Python or through a graphical interface with the free available 

software KNIME Analytics Platform [80]. RDKit allows the efficient calculation of several 

physicochemical properties of pharmaceutical interest from a large compound database. 

Examples are the octanol/water partition coefficient (logP) [81], topological polar surface 

area (TPSA) [82], molecular weight (MW), number of Lipinski hydrogen bond acceptors 

(HBA) and donors (HBD), and number of rotatable bonds (RB) [83,84]. Furthermore, with 

RDKit, it is possible to characterize the molecular complexity through the calculation of 

the number of stereocenters and the fraction of carbon atoms with sp3 hybridization. Ad-

ditionally, this software allows users to identify and filter molecules with structural alerts: 
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chemical moieties that can potentially confer toxicity to the molecule. There are more util-

ities of RDKit for the chemoinformatic analysis, characterization, and creation of com-

pound databases: identification of the Murcko scaffold [85], molecule fragmentation, cal-

culation of multiple fingerprints, and the generation of canonical SMILES, InChI and 

InChIKey strings. Moreover, it is suitable for the preparation of compounds for molecular 

docking studies. RDKit software has been extensively used in academia, as shown in these 

recent examples [86–90]. 

In the last ten years, chemoinformatic methods to evaluate the diversity of compound 

databases have been developed and adopted in the drug discovery process. Molecular 

diversity can be evaluated using the six physicochemical properties of pharmaceutical in-

terest previously mentioned: logP, TPSA, MW, HBA, HBD, and RB [84]. Molecular diver-

sity captures information regarding the whole molecule and is straightforward to inter-

pret. It can be evaluated using boxplots, histograms, and density plots. In order to have a 

complete evaluation of the diversity, fingerprints help to capture structural information 

that the physicochemical descriptors do not. Fingerprints capture structural features us-

ing the minimum unit of information in informatics: the bit. A string made of just bits, 

containing only one and zeros, can be created for every compound in the database. Two 

common molecular fingerprints employed to capture structural information are the Mo-

lecular ACCess System (MACCS) keys-166 bits [91] and Extended Connectivity Finger-

print (ECFP4) [92]. With either of both fingerprints, it is possible to make similarity com-

parisons, using the Tanimoto coefficient [93], among the compounds in the database and 

even make comparisons between several databases. In this sense, the cumulative distri-

bution functions allow the comparison of structural diversity quantitatively among sev-

eral databases. The diversity of a compound database also can be computed by taking into 

account just the core structure of the molecule: the scaffold. In this regard, there are three 

different ways to evaluate scaffold diversity: counts, cyclic system retrieval curves, and 

Shannon entropy (SE). Finally, global diversity can be assessed using consensus diversity 

plots (CDPs). In CDPs, it is possible to represent four measures of diversity: the most com-

mon are fingerprint-based, scaffold, whole molecular properties associated with drug-like 

characteristics, and size of the database. All the different ways to assess the diversity of a 

compound database previously mentioned have been extensively reviewed recently [94]. 

Additionally, the reader is further directed to the following references for more detailed 

information about the basis of molecular diversity analysis [95,96]. There is a free-access 

online server for diversity assessment that uses, as an input, the SMILES strings and al-

lows the evaluation of diversity, creating the plots mentioned above in an automated way: 

box plots, histograms, and density plots from the logP, TPSA, MW, HBA, HBD and RB, 

cumulative distribution functions, cyclic system retrieval curves, CDPs, and SE determi-

nation [97]. 

5. Natural Product Databases 

Between 2000 and 2019, 123 commercial and open access NP databases have been 

published. Of them, 98 are still somehow accessible, 92 are open access, and only 50 con-

tain molecular structures that can be retrieved for a chemoinformatic analysis [34]. Table 

2 summarizes examples of the most representative NP databases. Among the largest com-

mercial databases is the Dictionary of Natural Products [98]. It contains more than 230,000 

compounds and provides names and synonyms, physicochemical properties, spectro-

scopic data, molecular structures, and biological source and use. Another commercial da-

tabase is Scifinder [99], assembled and maintained by the American Chemical Society 

(ACS). It contains arguably the most extensive collection of NPs, with over 300,000. This 

is due to the fact that, since 1957, the Chemical Abstracts Service (CAS), a division of the 

ACS, assigns a unique registry number to every new chemical substance reported in the 

scientific literature. Another large commercial database is Reaxys [100], collected and 

maintained by Elsevier. It contains approximately 107 molecules including over 200,000 

NPs. The Collection of Open Natural Products (COCONUT) [101] is a major open access 
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database of NPs, containing more than 411,000 NPs collected from 50 open access NP da-

tabases. The Universal Natural Product Database [55] is a compilation that tried to gather 

all the known NPs; it has more than 229,000 NPs. It provides 3D structures with stereo-

chemical information and calculated molecular descriptors. It is not yet accessible through 

the link in the original publication. Instead, it is contained and maintained on the ISDB 

website [102]. The SuperNatural Ⅱ [103] database contains over 325,000 NPs and includes 

information about 2D structures, physicochemical properties, predicted toxicity class, and 

potential vendors. Nevertheless, it does not provide a bulk download.  

ZINC [104] is another open access database with over 80,000 NPs, with approxi-

mately 48,000 which are purchasable. It includes information regarding known biological 

targets and predicted targets. The download of the entire subset of NPs in 1D or 3D nota-

tion is straightforward. Some NP databases are no longer accessible through the link pro-

vided in the original publication. Fortunately, their structures are in ZINC. Such is the 

case with the Herbal Ingredient Targets [105] and Herbal Ingredients in vivo Metabolism 

database [106], which contain NPs mostly from Chinese plants. Specs [107] has an indus-

trial catalog of purchasable NPs, although the website does not allow the downloading of 

compounds anymore. Nonetheless, the structures are available via ZINC. Despite the Uni-

versal Natural Product Database, SuperNatural Ⅱ, and ZINC being among the largest da-

tabases of NPs in the public domain, they do not offer information regarding the taxo-

nomic and geographic origin of the organisms that produce the NPs, and there is a lack of 

literature references [34]. 

Traditional Chinese medicine (TCM) is part of the public health system [108]. There-

fore, the China Government encourages research in the area of NPs, and as a consequence, 

a large number of NP databases have been published [109–115]. Nonetheless, TCM@Tai-

wan is the most extensive database of NPs used in the TCM [116], containing approxi-

mately 58,000 molecules. Regarding traditional medicine in India (Indian Ayurveda), 

there are two open access databases available: IMPPAT [117], which contains more than 

10,000 phytochemicals extracted from 1700 medicinal plants; and MedPServer [118], con-

taining 1124 NPs coming from North-East India. Moreover, there are several databases 

containing compounds from African traditional medicine [119–124]. Nevertheless, Af-

roDB [125] is the most comprehensive, composed of around 1000 NPs, and it is accessible 

via ZINC. 

Table 2. Most representative natural products databases. 

Database Name Number of Compounds  Accessibility Reference 

Collection of Open Natural Products (COCONUT) 411,621 Open access [101] 

Universal Natural Product Database ∼229,000 Open access [55] 

SuperNatural Ⅱ 325,508 Open access [103] 

ZINC ∼80,000 Open access [104] 

Dictionary of Natural Products ∼230,000 Commercial [98] 

Scifinder ∼300,000 Commercial [99] 

Reaxys ∼200,000 Commercial [100] 

TCM@Taiwan ∼58,000 Open access [116] 

IMPPAT ∼10,000 Open access [117] 

AfroDB ∼1000 Open access [125] 
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6. Latin American Natural Product Databases 

Around the world, several NP databases are published that represent the biodiver-

sity of a specific geographical region. For instance, the databases mentioned in section 5 

represent the biodiversity of China, India, and Africa. Latin America stands out for its rich 

and unique biodiversity. In fact, it is home to at least a third of the global biodiversity 

[126]. Therefore, the Latin America region is a potential source of new drug candidates. 

Some Latin American countries have published their own NP database that contains com-

pounds found in their respective country. Table 3 summarizes the Latin American NP 

databases released so far. In the next subsections, each database is discussed.  

Table 3. Latin American natural products databases. 

Database Size Country Source Database website Reference 

NuBBEDB 2223 Brazil Plants Micro-organ-

isms 

Terrestrial animals 

Marine animals 

http://nubbe.iq.unesp.br/portal/nubbe-

search.html 

[127],[128] 

SistematX 9514 Brazil Plants https://sistematx.ufpb.br/ [129],[130] 

UEFS 503 Brazil Plants http://zinc12.docking.org/cata-

logs/uefsnp 

[131] 

CIFPMA 454 Panama Plants Not available. 

Structures accessible under request. 

[132],[133] 

UNIIQUIM Unknown Mexico Plants https://uniiquim.iquimica.unam.mx/ [134] 

BIOFACQUIM 553 Mexico Plants 

Fungus 

Propolis 

Marine animals 

Database version 1  

https://biofacquim.herokuapp.com/  

Database version 2 

https://figshare.com/articles/da-

taset/BIOFAQUIM_V2_sdf/11312702  

[135],[136] 

6.1. NuBBEDB 

The database is the result of the collaboration between the Nuclei of Bioassays, Bio-

synthesis and Ecophysiology of Natural Products (NuBBE) research group of the São 

Paulo State University and the Laboratory of Computational and Medicinal Chemistry of 

the University of São Paulo. The database was published in 2013 as the first NP library of 

Brazilian biodiversity, containing 640 compounds [127]; in 2017, an updated version came 

out with more than 2000 NPs [128]. Currently, the database contains 2223 compounds. 

The available information regarding the compounds includes the International Union of 

Pure and Applied Chemistry (IUPAC) name, linear notations (SMILES, InChI, and 

InChIKey strings), Ro5 and Veber descriptors, and predicted spectroscopic data: nuclear 

magnetic resonance (NMR), source, therapeutic effect and reference. It is possible to 

download the whole database in .mol2 format. Additionally, the database can be found in 

Chemspider and ZINC, and it is part of the COCONUT database.  

The website allows users to search compounds by selecting specific criteria: meta-

bolic class (alkaloids, flavonoids, lignoids, etc.), name and location of the species that 
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contain the NP, source (marine, plant, etc.), and drug-like physicochemical properties. 

Furthermore, one can draw a structure and retrieve the compounds that contain it or 

search compounds that contain a specific NMR signal. 

An absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of 

the database revealed that 91% of the compounds can permeate through the human intes-

tinal barrier, and 93% of the molecules can efficiently move in systemic circulation and 

reach their desired site of action. Moreover, it is predicted that most of the compounds do 

not inhibit five isoforms of CYP450 (CYP 3A4, 2D6, 1A2, 2C9, and 2C19). The CYP450 

enzyme is responsible for detoxifying more than 80% of drugs in liver first-pass metabo-

lism, and therefore, any compound that inhibits it may cause toxicity. The clearance pre-

diction revealed that 94% of the compounds are readily excreted from the human body 

after executing their therapeutic function. Finally, 87% of compounds were shown to have 

no mutagenicity, tumorigenicity, reproductive effect, and irritant properties [137]. 

Another study characterized the chemical space and diversity. It was found that 

NuBBEDB has a focused chemical space within the space of drug-like physicochemical 

properties. The study also revealed that the larger source of diversity is driven by the side 

chains. Another finding revealed that the diversity and complexity varies according to the 

origin of the compounds when comparing NuBBEDB to other NP databases. One conclu-

sion of the study is that NuBBEDB is a promising source of molecules for drug discovery 

[138]. 

The NuBBEDB database was employed in a VS study with the purpose of finding com-

pounds against Trypanosoma cruzi. The researchers looked for trypanothione reductase 

inhibitors: this enzyme is a validated target for the discovery of new antiprotozoal com-

pounds. Ten compounds were identified as potential inhibitors of the enzyme [139]. In 

another study, 13 compounds against Mycobacterium tuberculosis were identified from 

NuBBEDB [140]. The molecules are inhibitors of the serine/threonine protein kinase, which 

is essential for the growth and survival of the pathogen [141]. 

6.2. SistematX 

The database was developed at the Laboratory of Cheminformatics of the Federal 

University of Paraiba, Brazil. The first version came out in 2018 containing 2150 secondary 

metabolites [129], and a second version was published in 2021 with a total of 9,514 unique 

secondary metabolites [130]. The information for every compound includes the IUPAC 

name, SMILES, InChI and InChIKey strings, CAS registry number, physicochemical drug-

like descriptors, predicted NMR spectra, predicted biological activities, and the biblio-

graphic reference. A unique feature is the information regarding the taxonomic rank, from 

family to species, and the global positioning system (GPS) coordinates of the plant from 

which the compound was isolated. On the website (Table 3), the search of specific com-

pounds can be through the 2D drawing of the structure, by the SMILES strings, compound 

name, taxonomic rank, and physicochemical properties. It is possible to download the 

entire database in .csv or .sdf format. 

SistematX has been employed in five VS studies. In the first study, compounds with 

potential antichagasic activity were identified from 1306 sesquiterpene lactones on the 

database. (Chagas disease is an endemic disease caused by Trypanosoma cruzi.) The 

study employed two approaches, LBVS and SBVS. From LBVS, the most prominent com-

pound showed a probability of 0.82 of inhibition. From SBVS, 13 potential inhibitors were 

identified [142]. In another VS study, with the purpose of identifying compounds against 

the intracellular parasitic protozoan Leishmania donovani which causes Leishmaniasis, 

13 promising, enzyme-targeting, antileishmanial compounds were identified from the 

sesquiterpene lactones on SistematX [143]. In the third VS study, the researchers looked 

for compounds against Schistosoma mansoni, which causes the chronic parasitic disease 

Schistosomiasis. From the 1000 alkaloids on SistematX, five compounds were identified 

with potential multitarget schistosomicidal activity [144]. In the fourth VS study, 1955 

diterpenes on SistematX were employed to search for compounds against SARS-CoV-2. 
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Nineteen compounds were identified as potential SARS-CoV-2 inhibitors [145]. In the 

most recent VS campaign, the researchers were seeking acetylcholinesterase (AChE) in-

hibitors, which is an approach for the treatment of Alzheimer’s disease. They employed a 

combined approach in which machine learning classification models and molecular dock-

ing calculations were used to identify two promising AChE inhibitors [146]. Other appli-

cations of SistematX include chemotaxonomic studies using self-organizing map algo-

rithms [147] and the profile of over 2000 metabolites from the Asteraceae family while 

screening for inhibitors of Leishmania major dihydroorotate dehydrogenase [148]. 

6.3. UEFS 

The NP database of the State University of Feira de Santana [131] was developed and 

is maintained by the State University of Feira de Santana in Bahia, Brazil (UEFS, for its 

acronym in Portuguese: Universidade Estadual de Feira de Santana). The database contains 

NPs that have been separately published, but there is no common publication nor public 

database for it. Nevertheless, it is accessible via ZINC. There are 503 NPs in the database. 

It is possible to download the whole database in .mol2 or .sdf format, and it provides a 

bulk download of the SMILES strings. The available information of the NPs includes cal-

culated physicochemical properties, biological targets, and binding affinity, together with 

the bibliographic reference. There is a cross-reference for the biological targets to Reac-

tome which is an open source, open access, manually curated and peer-reviewed pathway 

database [149]. Finally, it is possible to find information about the vendors of individual 

compounds. 

6.4. CIFPMA 

The NP database of CIFLORPAN from the University of Panama, Republic of Pan-

ama (CIFPMA) was developed by the Center for Pharmacognostic Research on Panama-

nian Flora (CIFLORPAN, for its acronym in Spanish: Centro de Investigaciones Farmacog-

nósticas de la Flora Panameña), College of Pharmacy of the University of Panama. The first 

version was published in 2017 [132], containing 354 molecules; in 2019, the database was 

updated to 454 compounds [133]. The compounds have been tested in over 25 in vitro and 

in vivo bioassays, for different therapeutic targets including anti-HIV (human immuno-

deficiency virus), antioxidants, and anticancer. In fact, the compound structures are avail-

able upon request. 

A chemoinformatic analysis of the database suggested that, in general, the com-

pounds have drug-like properties. The database was compared to the TCM@Taiwan and 

UEFS databases mentioned in sections 5 and 6.3 and other NP databases. It was found 

that CIFPMA has the largest scaffold diversity compared to other databases. Moreover, 

unique scaffolds were found in the CIFPMA database. Finally, it was established which 

scaffolds are present in compounds with experimental cytotoxic effect, anti-HIV-1, anti-

malarial, anti-trypanosomatid, and antifungal activities [132]. 

The database was part of another chemoinformatics study, which involved a com-

parison of several NP databases against other databases with compounds of synthetic 

origin. The study revealed that so many of the NPs and synthetic compounds share the 

same chemical space. Moreover, the NPs present a larger fingerprint-based diversity than 

the synthetic compounds. Furthermore, the study revealed that NPs have a higher pro-

portion of chiral carbons and atoms with sp3 hybridization and greater complexity, while 

synthetic products contain a greater proportion of aromatic atoms. Lastly, cyclicity, rela-

tive shape, and flexibility are very similar in NPs and synthetic compounds [133]. 

6.5. UNIIQUIM 

The database was created at the National Autonomous University of Mexico 

(UNAM, for its acronym in Spanish: Universidad Nacional Autónoma de México) by The 

Informatics Unit of the Institute of Chemistry (UNIIQUIM, for its acronym in Spanish: 
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Unidad de Informática del Instituto de Química). The database [134] is composed of NPs from 

Mexico and mainly NPs isolated and characterized by the Department of Natural Prod-

ucts of the Institute of Chemistry, UNAM. The number of NPs on the database is not clear, 

and the website is only in Spanish. The information on the NPs includes the IUPAC name, 

CAS registry number, physicochemical properties, the species that synthesizes the NP, the 

spectroscopic techniques employed to characterize the compound, experimental biologi-

cal activity, and reference to either the article where the NP is reported or to the articles 

that report the biological activities. In the current version, it is not possible to make a bulk 

download. The content can be browsed displaying a table either with the chemical struc-

tures or with the producing organism. Furthermore, the content can be browsed in a table 

that contains the bibliographic references. 

In a study, the chemical and toxicological profile of molecules with analgesic activity 

was described. The results showed that most of the compounds probably interact with the 

opioid receptor. Moreover, the predicted acute toxicity is low, and none is predicted to be 

mutagenic. The study concludes that due to the structural diversity, the common nocicep-

tion activity and the predicted safety profile as nonmutagenic agents highlights the im-

portance of the molecules for further studies on the search of analgesic and nociception 

effects [150]. 

6.6. BIOFACQUIM 

The database was curated and constructed in Mexico by the Computer-Aided Drug 

Design at the School of Chemistry (DIFACQUIM, for its acronym in Spanish: Diseño de 

Fármacos Asistido por Computadora) research group, UNAM. The first version came out in 

2019 [135] and contained 423 NPs isolated and characterized in Mexico at the School of 

Chemistry, UNAM, between the years 2000 and 2018. Later, in 2020, a second version 

came out [136], and the database was updated with NPs isolated and characterized by 

research groups of other Mexican institutions, reaching a total of 531 molecules. Nowa-

days, the database contains 553 NPs. The database is composed mainly of NPs that come 

from plants, followed by fungus, and to a lesser extent, propolis and marine animals. 

There is a website for the first version of the database, and it allows the user to search the 

compounds by name. Moreover, it is possible to retrieve compounds by kingdom (plant, 

fungus, propolis). The entire database can be downloaded in .csv format. The latest ver-

sion of the database is available on a different website [136], and it is possible to download 

the whole database in .sdf format. Information on the NPs includes the compound name, 

SMILES strings, bibliographic reference, taxonomic rank (kingdom, genus, species), place 

where it is found, the source from which the NP was isolated, biological activity, and IC50 

value. The database is also available at ZINC, and it is part of the COCONUT database. 

A chemoinformatics analysis of the first version of the database concluded that the 

compounds have a broad coverage in the chemical space and overlap regions in the drug-

like space. Furthermore, compounds very similar to drugs approved for clinical use were 

identified [135]. In another study, a structural content analysis of the second version was 

performed. BIOFACQUIM was compared to ChEMBL 25 (1,667,509 molecules) and a da-

tabase with 169,839 NPs. The researchers concluded that 44.3% of the unique compounds 

contained in BIOFACQUIM are focused on drug-like space in terms of physicochemical 

properties. Additionally, a significant number of compounds and scaffolds (79 and 29, 

respectively) were identified that were not present in the two large reference sets [136]. 

Finally, an in silico absorption, distribution, metabolism, excretion and toxicological (AD-

MET) profile of the second version of BIOFACQUIM was performed. The study con-

cluded that the absorption and distribution profiles of the compounds in BIOFACQUIM 

are similar to those of approved drugs, while the metabolism profile is comparable to that 

in other NP databases. The excretion profile of the compounds is different from that of the 

approved drugs, but their predicted toxicity profile is comparable [151]. 

An independent VS study looked for beta-glucosidase inhibitors. The pharmacolog-

ical applications of these compounds include obesity, diabetes, hyperlipoproteinemia, 



Biomolecules 2022, 12, 1202 14 of 21 
 

cancer, HIV, and hepatitis B and C. Employing classification models (two-variable artifi-

cial network), eight compounds were identified from BIOFACQUIM as active [152]. In 

addition, in an independent study, Barrera-Vázquez et al. looked for senolytic compounds 

which selectively eliminate senescent cells. Cellular senescence is a cellular condition that 

involves significant changes in gene expression and the arrest of cell proliferation. The 

elimination of senescent cells delays, prevents, and improves multiple adverse outcomes 

related to age. Through the use of chemoinformatics tools (fingerprinting and network 

pharmacology), and employing two NP databases, InflamNat and BIOFACQUIM, three 

senolytic compounds were identified [153]. 

Table 4 summarizes the main applications of databases of representative Latin Amer-

ican natural products to identify bioactive compounds. 

Table 4. Practical applications of the databases of Latin American natural products. 

Database Name Disease or Symptom Causative Agent 
Number of Identified 

Compounds 
Reference 

NuBBEDB 
Chagas disease 

Tuberculosis 

Trypanosoma cruzi 

Mycobacterium tuberculosis 

10 

13 

[139] 

[140] 

SistematX 

Chagas disease 

Leishmaniasis 

Schistosomiasis 

Coronavirus disease 2019 

Alzheimer’s disease 

Trypanosoma cruzi 

Leishmania donovani 

Schistosoma mansoni 

SARS-CoV-2 

 

13 

13 

5 

19 

2 

[142] 

[143] 

[144] 

[145] 

[146] 

UNIIQUIM Pain  6 [150] 

BIOFACQUIM 

Obesity 

Diabetes 

Hyperlipoproteinemia Can-

cer 

HIV/AIDS * 

Hepatitis B and C. 

 

Age-related diseases 

 

8 

 

 

 

 

 

 

3 

[152] 

 

 

 

 

 

[153] 

* Human immunodeficiency virus infection and acquired immunodeficiency syndrome 

(HIV/AIDS). Although CIFPMA does not appear in the table, their compounds have been assayed 

in a wide range of in vitro and in vivo bioassays. 

7. Conclusions and Perspectives 

Nature is a significant source of structurally novel compounds that remains far from 

being fully explored. NP databases play an important role in the drug discovery process, 

serving as a systematic and organized source of potential novel hit and lead molecules. 

Several chemoinformatic methods have been used to organize, characterize, and mine dif-

ferent NP databases, identifying promising molecules. Nevertheless, many obstacles slow 

down the drug discovery from NPs driven by chemoinformatics approaches. Firstly, not 

all the NP databases are open source, restricting the access to a certain number of research 

groups with enough resources to pay for the access. Even if a research group has sufficient 

resources to pay for access, it will always be more attractive to resort to an open access 

database. As a consequence, myriads of NPs will remain inaccessible due to the payment 

restriction. On the other hand, access to many open access NP databases is not possible 

anymore; thus, invaluable information is lost, perhaps forever. The number of countries 

and research groups that curate and create NP databases is limited; just a few countries 

have tried to characterize NPs specific to their geographical region. Therefore, an 
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incalculable number of novel molecules are still to be discovered. Nowadays, the number 

of open access and still available NP databases is limited. Therefore, there is a sense of 

urgency to keep curating and creating new NP databases. 

Latin America stands out for its rich and unique biodiversity, which maybe encom-

passes a third of global biodiversity [126]. Regardless, just a few Latin American countries 

have gathered and characterized NPs from their region in a database. As far as we know, 

research groups in Colombia, Peru, and El Salvador are currently building compound da-

tabases to be released in the future. Previously, the need for a unified NP database that 

represents the biodiversity of Latin America has been pointed out [35]. Currently, in Mex-

ico, the DIFACQUIM research group, in collaboration with several other countries in Latin 

America, is working on the creation and curation of a NP database that will gather all the 

NP databases of Latin America. The construction is in an early stage. Nevertheless, it will 

try to encompass the actual published NP databases and the upcoming ones.  

In this review, we also surveyed the practical applications of the Latin American NP 

databases in medicinal chemistry. It was concluded that most of the Latin American NP 

databases had been used as a basis to identify multiple promising candidates to be con-

sidered for further development for the treatment of numerous diseases. The growth of 

the practical applications of the Latin American NP databases is anticipated in the near 

future. 
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