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Abstract: Osteogenesis imperfecta(OI) is a disease caused by substitution in glycine residues with
different amino acids in type I collagen (Gly-Xaa-Yaa)n. Collagen model peptides can capture the
thermal stability loss of the helix after Gly mutations, most of which are homotrimers. However,
a majority of natural collagen exists in heterotrimers. To investigate the effects of chain specific
mutations in the natural state of collagen more accurately, here we introduce various lengths of
side-chain amino acids into ABC-type heterotrimers. The disruptive effects of the mutations were
characterized both experimentally and computationally. We found the stability decrease in the
mutants was mainly caused by the disruption of backbone hydrogen bonds. Meanwhile, we found a
threshold value of local hydrogen bonding energy that could predict triple helix folding or unfolding.
Val caused the unfolding of triple helices, whereas Ser with a similar side-chain length did not.
Structural details suggested that the side-chain hydroxyl group in Ser forms hydrogen bonds with
the backbone, thereby compensating for the mutants’ decreased stability. Our study contributes to
a better understanding of how OI mutations destabilize collagen triple helices and the molecular
mechanisms underlying OI.

Keywords: collagen; heterotrimer; hydrogen bond; MD simulation; OI mutation

1. Introduction

Collagen is the most abundant protein in humans and accounts for 30% of all protein.
It provides tensile strength for skin, bones and blood vessels [1–4]. The sequence of
collagen contains unique repeats of Gly-X-Y, where the X position is usually occupied by
proline (Pro) and the Y position is usually (2S,4R)-4-hydroxyproline (Hyp) [5,6]. Three
collagen chains are intertwined to form a characteristic triple helix secondary structure.
The structure is defined as a homotrimer where all three chains are identical; otherwise,
it is called a heterotrimer. Each polypeptide chain is offset by one amino acid, which can
present Gly in every cross-section of the triple helices [7]. Under this arrangement, the
amide protons of Gly form hydrogen bonds (H-bond) with the carbonyl oxygen of the X
residue of the adjacent peptide chain. The formation of a series of ladder-like H-bonds
from the N-terminus to the C-terminus of collagen is the main driving force in stabilizing
the triple helix structure [3,8]. Despite these facts, collagen’s triple helix structural change
has not been studied in relation to H-bond destruction.

There are 28 types of collagen in humans, the largest of which is type I collagen,
with a heterotrimeric structure consisting of two α1 chains and one α2 chain [4]. Medical
research has found that when a single point mutation occurs in type I collagen, Gly is often
replaced by other residues, which leads to a variety of connective tissue diseases, including
osteogenesis imperfecta (OI) [2,9–11]. Symptoms in patients with OI vary widely, ranging
from mild multiple fractures to severe perinatal lethality [12,13]. A single-base substitution
in a Gly codon can lead to any of the eight different residues: Ser, Cys, Ala, Val, Asp, Glu,
Arg and Trp [14–16]. Current studies have shown that the identity of the residue replacing
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Gly appears to be closely related to the clinical severity of OI cases; however, the links
between mutation types and disease symptoms are unclear.

In previous studies, OI mutation sites were inserted into a highly stable host model to
construct mutants. The effects of mutations on collagen triple helix structures were charac-
terized by X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy and circular
dichroism (CD) experiments [15,17–27]. This host model is called a collagen model peptide,
often containing Gly–Pro–Hyp repeating sequences that can form stable helix structures in
solution. Different types of OI mutation motif sequences have been introduced into the
homotrimer to disrupt helix structures, resulting in a significant reduction in thermal stabil-
ity. It was found that mutations located on different chains can trigger different disruptive
effects [15,28,29]. A typical Gly→ Ala mutant (POG)4POA(POG)5 (PDB ID 1CAG) was
investigated by NMR. The results showed that Ala substitution led to a decrease in melting
temperature (Tm) from 60 to 29 ◦C [30]. NMR studies have demonstrated differences
among the three chains’ substitution. High NH temperature gradients in the tailing chain
indicated that Ala caused H-bond destruction, whereas the other two Ala still had low NH
temperature gradients [31]. In order to better mimic the composition of type I collagen, in
recent years, with the development of rational heterotrimer synthesis technology, scientists
began to study OI mutations with heterotrimers as the host models [32–35]. When Gly→
Ala was introduced in the AAB model, 5 H-bonds were destroyed, caused by the mutation
in chain B [36]. In contrast, while the mutation occurred in chain A of the ABB model, only
1 H-bond was destroyed [37]. While there are studies on heterotrimers, little research has
been conducted to reveal chain specific mutation effects.

Molecular dynamics (MD) simulations have now become a new way to characterize
the effect of OI mutations on collagen’s triple helix structure in the host–guest model. In
a study, changes in backbone H-bonds conformation showed one series of the H-bonds
near the mutation site were disrupted, and the other part was remodeled into water-
mediated H-bonds. At the same time, different from the rod-like triple helical in the
crystal, the molecular tortuosity was significantly increased [29,38–40]. MD simulations
in a 1014-residue type I collagen model containing several OI mutations showed some of
the structures near the mutation site appeared to be complete triple helixes, whereas some
were partially unfolded, indicating differences in the structural damage were caused by
the mutations in different regions [41]. Although these studies suggest that Gly mutations
in the collagen sequence affect the triple helix structure, the disruptive effects of various
amino acids on the local area require further research.

Here we introduce serine, valine, aspartic acid and arginine to replace Gly in the
middle of three chains in the abc heterotrimer, respectively. The disruptive effects of
the mutations were characterized by biophysical experiments and molecular dynamic
simulations. The relationship between the reduced stability and conformational change was
studied, which will advance our understanding of collagen folding and related diseases.

2. Materials and Methods

Peptide design: Our laboratory has successfully constructed a heterotrimer model
with three different chains, named abc. This collagen-model peptide, as a platform, allows
us to study changes in single-chain mutants with the introduction of OI mutations. Based
on previous experiments with Ala mutants, the 17th amino acid of each chain was chosen
as the mutation site to reduce the effect of salt bridge change on thermal stability. In this
way, the influence of the H-bond swing due to the N- and C-termini was eliminated.

The peptides were synthesized using solid-phase FMOC chemistry and purified to
95% purity by reverse-phase HPLC with mass spectrometry at GL Biochem Ltd. (Shanghai,
China). The N- and C-termini were uncapped. The sequences of the characterized peptides
are listed in Table 1; the substituted Gly is highlighted in red.



Biomolecules 2022, 12, 1104 3 of 13

Table 1. Sequence of heterotrimer abc.

Chain Sequence

a YGPKGPKGPKGKOGPDGDOGDOGDOGPKGPKG
b YGPDGDOGDODOGPDGKOGPDGPDGPDGDOG
c YGKOGPDGPDGPKGKOGPKGKOGKOGKOGKOG

Circular Dichroism (CD) Spectroscopy: The peptides, as listed above, were dialyzed
in deionized water, freeze dried, weighed and then redissolved in 10 mM phosphate buffer
at pH 7.0 to make stock solutions. The stock solutions of A, B, C and the corresponding
peptides with the designed mutations were further diluted to 0.2 mM, mixed up at 1:1:1
ratio, heated at 80 ◦C for 10 min and then incubated at 4 ◦C for ~24 h before CD. The
CD experiments were performed in a Chirascan instrument (Applied Photophysics Ltd.,
London UK) using optically matched quartz cuvettes with a path length of 0.1 cm (Model
110-OS, Hellma, Müllheim, Germany). Three independent wavelength scans were used
from 190 to 260 nm at 4 ◦C with a 0.5 nm increment per step and a 0.5 s averaging time.
For temperature melting experiments, the data were recorded every 1 ◦C/step with a
6-min equilibration time from 4 to 80 ◦C. The temperature melting curves were acquired by
monitoring the ellipticity at 225 nm. The apparent melting temperature, Tm, was estimated
by the equation below:

F(T) =
θ(T)− θU(T)
θF(T)− θU(T)

(1)

where θ(T) is the observed ellipticity. (T) and (T) are estimated ellipticities derived from
linear fits to the folded and unfolded baselines. The melting temperature is estimated as T,
where F(T) = 0.5.

Molecular dynamics: The coordinates of chains a, b and c were used as the initial
structure for molecular dynamic simulations. The structure was placed in a truncated dodec-
ahedron periodic box of the explicit TIP3P water model with approximately 39,291 water
molecules. The distance from the surface of the box to the closest atom of the solute was
set to 10 Å. The simulation was carried out in the Amber99sb*-ILDN force field with
GROMACS. The lengths of bonds involving hydrogens were constrained, allowing for
a 2 fs time step. Long-range electrostatic interactions were evaluated in reciprocal space
using the particle-mesh Ewald method [42] with a maximum spacing for the FFT grid of
1.2 Å and an interpolation via a sixth-order polynomial. The minimal cut-off distance for
electrostatic and van der Waals interactions was set to 12 Å. The system was relaxed to a
local energy minimum using the steepest descent method [43]. Subsequently, a 10 ns NPT
and a 100 ns NVT simulation were conducted. A temperature of 298 K was maintained
via the velocity rescaling algorithm (0.1 ps relaxation time), and the pressure P = 1 bar was
controlled using the weak coupling method of Berendsen.

Cα triangles: The movement of collagen is regarded as the displacement of a series of
triangles, and the vertex of the triangle is the Cα of Gly and the adjacent chain (A1, A2).
The calculation process is as follows:

Gly (x1, y1, z1), A1 (x2, y2, z2), A2 (x3, y3, z3). Here, A2 pointed towards A1 determines
the y-axis direction.→

a
= (xa, ya, za), where

xa = x2 − x3 ya = y2 − y3 za = z2 − z3

Origin coordinates O (xo, yo, zo):

xo =
x2 + x3

2
, yo =

y2 + y3

2
, zo =

z2 + z3

2
.

Additionally, a vector→
b

on the plane,→
b

= (xb, yb, zb):

xb = x1 − xo, yb = y1 − yo, zb = z1 − zo
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The direction of the z-axis→
c

= (xc, yc, zc)

xc = ybza − zbya, yc = xbza − zbxa, zc = xbya − ybxa;

The direction of the x-axis→
m

= (xm, ym, zm)

xm = yazc − zayc, ym = xazc − zaxc, zm = xayc − yaxc;

The coordinates of any point i(xk, yk, zk) projected on this plane are i (xi, yi, zi)

xi = xk − xo, yi = yk − yo.

H-bond energy: The amide protons of Gly (N-H) in the collagen triple helix can form a
H-bond with the carbonyl oxygen (C=O) of the amino acid at the X position of the adjacent
chain. In a simulation, an H-bond is defined as the interatomic distance R between the
donor and acceptor less than 3.5 Å, and simultaneously, the hydrogen–donor–acceptor
angle α of less than 30◦ [44]. The H-bond energy was calculated as below:

EHB = D0

[
5
(

R0

R

)12
−6
(

R0

R

)10
]

F(θ) (2)

where R0 is the mean distance in a well-folded H-bond of abc. Here R0 = 2.9 Å, D0 is the well
depth and R is the interatomic distance between the nitrogen and oxygen. The restrictive
angle-dependence term, F(θ)= cos2(θ) cos2(ϕ), is sp3 donor–sp2 acceptor hybridization-
dependent, where the angle θ is the NGly-HGly-OXaa angle and the angle ϕ refers to the
CXaa-OXaa-HGly angle.

Statistical analysis: The experimental data from all studies are presented as means
± standard deviation (SD). One-way analysis of variance (ANOVA) was used to test the
experimental results. p < 0.05 was considered as statistically significant.

3. Results
3.1. Thermal Stability of Collagen with Gly Mutations

To investigate the impact of mutations on collagen structure, a previously designed
register and composition controlled abc heterotrimer was used as a host model (Figure 1a).
To explore the difference in reducing thermal stability caused by distinct side-chain amino
acids, four amino acids were introduced into the mutation sites (Figure 1b,c). To simplify it,
abc heterotrimeric helices with mutant were named after the amino acid and chain—for
example, a17S, b17S and c17S.
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Figure 1. (a): Cartoon-loop diagram of abc (PDB ID:5YAN) peptide models is represented with the
N-terminal at the left. The mutation residue is shown in spheres; (b) sphere model of mutant amino
acid; (c) sequence of abc and the H-bond pattern. The mutation residue is marked in red.
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To better understand the implications of mutations on structure, the triple-helical con-
formation and stability of mutant collagen were examined. Far-UV CD spectra recorded at
4 ◦C in PB showed a maximum of varying magnitudes at 225 nm for all host-guest peptides
examined (Figure 2a–c). The host peptide abc showed a value of
[θ]225 ≈ 7113 ± 276 deg·cm2·dmol−1 in standard conditions, indicating a stable triple-
helical conformation. The corresponding values of peptides Ser mutant were lower but still
showed a trend in self-assembly, with values of [θ]225 ≈ 1284, 1696, 3861 deg·cm2·dmol−1

in chain a, b and c, respectively. The absorption values of the other three mutants at this
wavelength were all near 0 deg·cm2·dmol−1, indicating that no helix was formed.
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To clarify the effects of the mutation sites on triple-helical stability, thermal transition
curves were determined by monitoring the change in ellipticity at 225 nm on the heater
(Figure 2d–f). The host peptide abc and peptides of three Ser mutants showed a sharp
thermal transition from the trimer (native) to monomer (denatured) state, with the Tm
values of 34.47 ± 0.3 ◦C [35] and 15.78 ◦C in a17S, 16.67 ◦C in b17S and 15.89 ◦C in c17S,
respectively (Table 2). In contrast to Ser mutants, a non-obvious change in the curve of
the ellipticities with the increase in temperature was recorded for the Arg, Val and Asp
mutations, suggesting a denatured conformation, even at low temperatures. In contrast
to Ser mutants, the ellipticities curve changes for Arg, Val and Asp mutations were not
evident with increasing temperature, suggesting a denatured conformation, even at low
temperatures (Figure 2d–f). When the full-wavelength scanning absorption value was
below 0 or the fitting temperature was below 10 ◦C, it was considered that no triple helix
was formed. Therefore, the triple-helix did not form in the Arg, Val and Asp mutants.

3.2. H-Bond Energy Destruction Due to Mutation

Average inter-chain H-bond energy (EHB) in various mutants, and abc was extracted
from the MD trajectories and calculated (Figure 3 and Figure S1). In abc, since the N and
C terminals were more flexible when exposed to the solvent, the energies of the H-bonds
1st–4th and 29th and 30th were lower (Figure S1a). In the region where the collagen
structure was stable, the energy of H-bonds was stabilized at 2.0 kal/mol, indicating that
H-bonds were well-formed. Correspondingly, in previous experimental studies, it was
found that the H-bond energy in the collagen helix was 2.0 kcal/mol [3,45] Meanwhile, the
probabilities (PHB) of H-bonds were calculated (Figure S2). Then the EHB in the well-folded
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region was compared with the PHB, defined as Eper
HB= EHB/PHB. The results showed that

the value of Eper
HB was close to two, suggesting that a stable H-bond in abc contains about

2 kcal/mol. In order to avoid interference from N- and C-termini, 6th–25th H-bonds were
chosen for analysis.

Table 2. Characterizations of different OI model systems.

Chain Mutation Tm Lost H-Bonds a EHB
b(kcal·mol−1)

Compensation
H-Bonds

a

a17S 15.78 ± 0.33 2 −1.65 ± 0.28 1
a17V / 2 −1.45 ± 0.66 /
a17D / 2 −1.73 ± 0.30 /
a17R / 3 −1.45 ± 0.61 /

b

b17S 16.67 ± 0.24 1 −1.70 ± 0.60 1
b17V / 3 −1.71 ± 0.62 /
b17D / 1 −1.68 ± 0.65 /
b17R / 1 −1.67 ± 0.70 /

c

c17S 15.89 ± 0.36 1 −1.76 ± 0.49 1
c17V / 1 −1.68 ± 0.66 /
c17D / 1 −1.71 ± 0.65 /
c17R / 1 −1.73 ± 0.66 /

a: An increase in H-bond energy of more than 10% is defined as lost. b: The energy value is the average of
13th–18th H-bonds.
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Figure 3. EHB of H-bond binding after Gly of chain a 17th site was mutated. Indexes 1–30 represent
the position of each H-bond in the collagen.

Around the substitution site, with different amino acids introduced, there was obvious
destruction of the H-bond in all mutants (Figure 3 and Figure S1b,c). When substitution
occurred in chain a, more than one H-bond was disrupted (Figure 3). In a17S, the 14th
H-bond demonstrated the greatest disruption with an average EHB increase from −2.0 to
−1.1 kcal/mol, and the 13th EHB decreased by 0.6 kcal/mol. In a17V and a17D, the 14th
and 16th H-bonds were broken; the EHB increased from 0.8 to 1.2 kcal/mol. Unlike these
two mutants, we observed that 3 H-bonds were disrupted in a17R (13th, 14th and 16th).
Substitution in the chain also broke one salt bridge in the side-chain (Figure S3), leading to
more damage to the local structure.
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Differently from the substitution in chain a that caused destruction of multiple H-
bonds, substitution in chain b and c only destroyed one H-bond significantly (Figure S1b,c).
In b17X, the 17th H-bond was disrupted with the EHB in range −0.1 to −0.40 kcal/mol.
Similar to the chain b mutant, the substitution in chain c affected only one H-bond as
well (18th). These results indicate that the destruction of the helical structure is not only
determined by amino acid type, but is also related to the sequence environment around the
substituted site.

3.3. Cα-Triangle Reference Area

The repetition of the G–X–Y sequence in collagen results in its trajectory appearing
like the displacement of a series of triangles, with each side length representing the folding
degree of the region. To describe the local regional structure changes after substitution,
and to avoid the oscillating effects of the N-terminal and C-terminal, the trajectory was
extracted at 5000 frames, and the mean side-length of the 14–18th triangle was calculated.

Figure 4a shows the side-lengths of five triangles in abc and chain a mutants; the
position of the corresponding triangle in triple helix is shown on the right; and Gly is
marked in green. The side lengths of the triangles in abc were 4.81 ± 0.09 Å, suggesting
that in the absence of mutations, the side lengths and the structure of the triangles were
very stable. In all three chains, the mutations resulted in an increase in the A1–A2 length of
the next triangle at the C-termini (Figure 4 and Figure S4). Meanwhile, the Gly mutations
in chains a and b also led to an increase in the length of Gly-A1 prior to the N-termini.
Among the four mutant amino acids, the side length of the triangle in both Val and Asp was
damaged greatly. For example, in all chains of Val, the mutation resulted in the decrease
in side length to 7 Å (Figure 4 and Figure S4). The Ser mutant demonstrated the least
disruption compared to the other amino acids, with an increase of around 5.5–6.5 Å in the
triangle length. In addition, the introduction of Asp showed different effects on the three
chains: the maximum triangle length of a17D increased to 6Å; b17D and c17D increased to
around 7 Å.

Biomolecules 2022, 12, x FOR PEER REVIEW 7 of 13 
 

S1b,c). In b17X, the 17th H-bond was disrupted with the EHB in range −0.1 to −0.40 

kcal/mol. Similar to the chain b mutant, the substitution in chain c affected only one H-

bond as well (18th). These results indicate that the destruction of the helical structure is 

not only determined by amino acid type, but is also related to the sequence environment 

around the substituted site. 

3.3. Cα-Triangle Reference Area 

The repetition of the G–X–Y sequence in collagen results in its trajectory appearing 

like the displacement of a series of triangles, with each side length representing the folding 

degree of the region. To describe the local regional structure changes after substitution, 

and to avoid the oscillating effects of the N-terminal and C-terminal, the trajectory was 

extracted at 5000 frames, and the mean side-length of the 14–18th triangle was calculated. 

Figure 4a shows the side-lengths of five triangles in abc and chain a mutants; the po-

sition of the corresponding triangle in triple helix is shown on the right; and Gly is marked 

in green. The side lengths of the triangles in abc were 4.81 ± 0.09 Å , suggesting that in the 

absence of mutations, the side lengths and the structure of the triangles were very stable. 

In all three chains, the mutations resulted in an increase in the A1–A2 length of the next 

triangle at the C-termini (Figures 4 and S4). Meanwhile, the Gly mutations in chains a and 

b also led to an increase in the length of Gly-A1 prior to the N-termini. Among the four 

mutant amino acids, the side length of the triangle in both Val and Asp was damaged 

greatly. For example, in all chains of Val, the mutation resulted in the decrease in side 

length to 7 Å  (Figures 4 and S4). The Ser mutant demonstrated the least disruption com-

pared to the other amino acids, with an increase of around 5.5–6.5 Å  in the triangle length. 

In addition, the introduction of Asp showed different effects on the three chains: the max-

imum triangle length of a17D increased to 6Å ; b17D and c17D increased to around 7 Å . 

 

Figure 4. The side length of the Cα triangle after substitution. (a) The side lengths of the 14th–18th 

triangle of abc and chain a mutants. abc is represented by a bar graph with right-slanted lines, and 

other mutants are shown in various colors, as indicated in the above. (b) 14th–18th triangle structure 

of abc; Gly is shown in lime green; A1 and A2 sites are marked in the graph. Statistical significance 

was calculated using one-wany ANOVA. Values are mean ± SD. **** p < 0.0001, versus abc alone. 

These results indicate that larger side-chains appear after the introduction of Gly-X 

mutation, leading to an increase in the distance between chains near the mutation site and 

the destruction in the local structure of collagen. 

3.4. Side Chain Pattern in Collagen-like Peptide Helix 

Although the increase in inter-chain distance may indicate disruption of the triple 

helix structure, how specific side-chains are distributed in collagen requires further study. 

Figure 4. The side length of the Cα triangle after substitution. (a) The side lengths of the 14th–18th
triangle of abc and chain a mutants. abc is represented by a bar graph with right-slanted lines, and
other mutants are shown in various colors, as indicated in the above. (b) 14th–18th triangle structure
of abc; Gly is shown in lime green; A1 and A2 sites are marked in the graph. Statistical significance
was calculated using one-wany ANOVA. Values are mean ± SD. **** p < 0.0001, versus abc alone.

These results indicate that larger side-chains appear after the introduction of Gly-X
mutation, leading to an increase in the distance between chains near the mutation site and
the destruction in the local structure of collagen.
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3.4. Side Chain Pattern in Collagen-like Peptide Helix

Although the increase in inter-chain distance may indicate disruption of the triple
helix structure, how specific side-chains are distributed in collagen requires further study.
Here we took the plane formed by the triangle as the projection plane, and then projected
the carbon atoms in the amino acid side-chain to the plane to study the motion state of the
side-chain. At the same time, the distributions of nitrogen atoms and hydrogen atoms in
the most disrupted H-bonds in the mutants and the conventional H-bonds in abc were also
projected on this plane. The changes of H-bonds before and after were compared.

Some of the scatter plot results are shown in Figure 5 and Figure S5. Gly, A1 and A2
are the vertices of the previous triangle (Figure 5a). In abc, the distribution of hydrogen
atoms fell mostly inside the triangle, and the H-bond was also approximately perpendicular
to the A1–A2 side (Figure 5b,c). However, due to the increase in the length of Gly-A1 in
the a17S, the corresponding Gly position was shifted from its stable position, and the side
length of A1–A2 was stable (Figure 5d). The distributions of H-bond atoms in b17S and
c17S are shown in Figure S4. Therefore, the oxygen atom shifted correspondingly with the
shift in the upper vertex, leading to an increase in H-bond distance, which is consistent
with the increase in H-bond energy.
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Figure 5. The distributions of nitrogen, oxygen and hydrogen atoms in H-bonds. (a) Top view of
the Cα triangle. (b) The distribution of hydrogen atoms in a stable triangle. (c) The distribution of
nitrogen and oxygen atoms in a stable H-bond. (d) The distribution of nitrogen and oxygen atoms in
a broken H-bond in a17S. Hydrogen atoms are shown in black, nitrogen atoms are shown in blue,
and oxygen atoms are shown in red.

For the Ser mutation, the carbon atom (black) of the side-chain methyl group and the
oxygen atom (red) of the hydroxyl group distribution are shown in Figure 6a and Figure
S6a,d. Since -CH2-OH has a short side-chain length and a hydrophilic group -OH, some
of its side-chains may be contained within the collagen helix region. Thus, the internal
space of the triple helix was enlarged, and then the collagen structure was destroyed. Val
mutants showed a similar distribution with Ser mutant, which was consistent with the
similarity in the side-chain lengths of them (Figure 6b and Figure S6b,e). Moreover, because
of the hydrophobicity of the Val side-chain, it has a tendency to be wrapped inside the
collagen. The two methyl groups of the Val side-chain -CH-(CH3)2 demonstrated the same
distribution, indicating that CG1 and CG2 have the same properties.
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As the length of the side-chain increased, the distribution of heavy atoms in the side-
chain of Asp and Arg showed another pattern, and all the side-chains were exposed in the
solution (Figure 6c and Figure S6c,f). This result suggests that large side-chains cannot be
located inside the triangle formed by Cα due to space obstruction.

3.5. Compensating H-Bond in Ser Mutation

Despite Ser and Val mutants exhibiting similar changes in H-bond and side-chain
atomic distribution, these two mutants possessed huge differences in thermal stability
characterization. To investigate this difference and the reason for the observed thermal
stability of Ser, the possibility of side-chain H-bond under the presence of -OH in the Ser
side-chain was taken into consideration.

It is shown that the -OH carried by Ser can form compensatory H-bonds with Gly in
adjacent chains (Figure 7b–d). For example, Ser in chain a could act as a hydrogen donor,
and the 14th Gly in chain c acts as a hydrogen accepter to form a compensatory H-bond
(Figure 7b). PHB of chain a’s compensatory H-bond is 0.40, and the PHB of Ser in chains b
and c with the 17th Gly in the adjacent chain are 0.38 and 0.49, respectively.

Due to the existence of G–X–Y repeating units in the collagen sequence, it is of interest
how the G–X–Y unit in the mutant region could stabilize the triple helix structure. In order
to investigate this question, the sum EHB of 6 H-bonds and Ala mutant (not published)
was calculated (Figure 8). The results showed that after the single-point insertion of
Ala, the energy increased from the initial −12 kcal/mol to around −10.5 kcal/mol. CD
experiments also demonstrated that the substitution of Ala maintained a stable triple
helix structure. When Gly was substituted with other amino acids, the sum of the energy
increased to more than −10.5 kcal/mol, where the triple helix structure was disrupted.
While adding compensatory H-bonds, the energy of this region dropped to −10.5 kcal/mol
again (Figure 8); thus, Ser mutations still maintained the triple helix structure. The observed
clinical severity for different residues indicate that Asp, Val and Arg may lead to more
severe phenotypes than Ser [11], which is consistent with our research.
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Figure 7. Snapshots of a section of the simulated collagen-like peptide triple-helix show the new
direction of the H-bond compared to the original abc. The H-bond was formed between the Ser
O-H and the Gly O on the adjacent chain, shown with a yellow dash. (a) No compensatory H-
bonds in abc; (b) Compensatory H-bonds in a17S formed between 17th Gly in chain a and Ser in
chain a; (c) Compensatory H-bonds in b17S formed between 14th Gly in chain c and Ser in chain b;
(d) Compensatory H-bonds in c17S formed between 17th Gly in chain b and Ser in chain c.
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4. Discussion

The conformation and thermal stability of Gly substitution on the triple-helix were
observed within 12 heterotrimers. Results showed that, although Gly substitutions could
cause various conformational changes dependent on substituting residue identities, the
stability of the triple helices should be mainly affected by the loss of backbone H-bonds.
Various conformational changes occurred when Gly was substituted by side-chains of
different sizes. Smaller side-chains, such as Val and Ser, could be inserted into triple helices
or exposed to surfaces, and larger side-chains of Arg, were well exposed to solution. These
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conformational changes are also associated with the chemical environment surrounding the
substitution site. In chain a substitution, an inter-chain salt bridge was severely disrupted
by the large side-chain of aa. In Gly→ Ser, the side-chain hydroxide group of Ser formed a
new H-bond with the backbone amide group of Gly.

Here, a threshold value of local (mutations site 13th–18th H-bonds) H-bonding energy
(=−10.5 kcal/mol) could be a good indicator of triple helix folding, which roughly corre-
sponds to 0.75 H-bond loss in our system. The destruction of EHB can be caused by either
severe disruption of a single H-bond or partial loss of multiple H-bonds. Notably, the newly
formed side-chain backbone H-bond in Gly→ Ser substitution could compensate for the
loss of the backbone H-bonds and help maintain the stability. The compensating H-bond
was also observed in AAB-type collagen heterotrimer containing Gly→ Ser substitution
with NMR [37].

Amino acid sequence statistics in OI cases revealed that Ala and Ser mutations had
the mildest phenotypes, whereas the homotrimer substitution yielded similar results [15].
The order of different Gly replacements in peptides can be represented as Ala < Ser < Arg <
Val < Asp. This study confirms that substitutions introduced in individual chains has led
to the same trend. Since the formation of fiber bundles requires helical stacking [13,46], the
large side-chain in the Gly→ Arg substitution may not only destabilize triple helices but
also disrupt the assembly of fibers. Due to the length and sequence complexity of whole
collagen, the molecular mechanism of OI mutations should be far more complicated than
the local distortions described with the host–guest study of the collagen model peptide [17].
However, our study provides a method for dynamic analysis of local distortion caused by
OI mutations, which may lay the foundation for future long-chain collagen research.

Supplementary Materials: Supporting Information including details of chain b and c mutants. The
following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/
biom12081104/s1. Figure S1: EHB of H-bond in abc and after Gly of chain b and c 17th site was
mutated.; Figure S2: Probability of H-bond binding of abc and change after Gly of chain b and c 17th
site was mutated; Figure S3: Salt-bridge changes in a17S; Figure S4: The side length after chain b
and c mutation in Cα triangle; Figure S5: The distribution of nitrogen and oxygen atoms in a broken
H-bond in b17S and c17S; Figure S6: The distribution of mutant amino acid side-chains in chain b
and c mutants.
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