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Abstract: Endoplasmic reticulum (ER) stress activated in granulosa cells contributes to the patho-
physiology of polycystic ovary syndrome (PCOS). In addition, recent studies have demonstrated that
Notch signaling plays multiple roles in the ovary via cell-to-cell interactions. We hypothesized that
ER stress activated in granulosa cells of antral follicles in PCOS induces Notch signaling in these
cells, and that activated Notch signaling induces aberrant cumulus-oocyte complex (COC) expansion.
Expression of Notch2 and Notch-target transcription factors was increased in granulosa cells of PCOS
patients and model mice. ER stress increased expression of Notch2 and Notch-target transcription
factors in cultured human granulosa-lutein cells (GLCs). Inhibition of Notch signaling abrogated
ER stress-induced expression of genes associated with COC expansion in cultured human GLCs,
as well as ER stress-enhanced expansion of cumulus cells in cultured murine COCs. Furthermore,
inhibition of Notch signaling reduced the areas of COCs in PCOS model mice with activated ER
stress in the ovary, indicating that Notch signaling regulates COC expansion in vivo. Our findings
suggest that Notch2 signaling is activated in granulosa cells in PCOS and regulates COC expansion. It
remains to be elucidated whether aberrant COC expansion induced by the ER stress-Notch pathway
is associated with ovulatory dysfunction in PCOS patients.

Keywords: cumulus-oocyte complex expansion; endoplasmic reticulum stress; granulosa cell; notch
signaling; polycystic ovary syndrome; unfolded protein response

1. Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrinological and metabolic
disorder in women of reproductive age, affecting 6–20% of women in this age group. How-
ever, its pathophysiology remains to be fully elucidated [1]. Endoplasmic reticulum (ER)
stress is a recently recognized local factor in the follicular microenvironment, which plays
diverse roles in physiological and pathological conditions in the ovary [2]. ER stress in-
volves the accumulation of unfolded or misfolded proteins in the ER, which is incited by
various physiological and pathological conditions that increase the demand for protein
folding or attenuate the protein-folding capacity of the organelle [3,4]. ER stress results in
activation of several signal transduction cascades, collectively termed the unfolded protein
response (UPR), which affect a wide variety of cellular functions [5,6]. Previously, we
demonstrated that ER stress is activated in granulosa cells of antral follicles from PCOS
patients and a mouse model of this disease [7]. Activation of ER stress modulates various
cellular functions, such as the production of profibrotic cytokines, induction of apoptosis,
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accumulation of advanced glycation end products, and induction of aryl hydrocarbon
receptor, a receptor for endocrine-disrupting chemicals, thereby contributing to the patho-
physiology of PCOS [7–10].

The Notch pathway is one of the most conserved signaling systems in multicellular
organisms. It regulates a variety of cellular processes, including cell fate specification, cell
migration, cell adhesion, cell survival, and cell death, via juxtacrine cell-to-cell interac-
tions [11,12]. In the ovary, various studies, especially those examining the phenotypes of
Notch pathway component-knockout mice, showed that Notch signaling plays multiple
roles in physiological ovarian and follicular development. It regulates follicular assembly
and growth, steroidogenesis, and ovarian vascular development [11]. In addition to its
physiological roles, recent studies demonstrated that Notch signaling components are aber-
rantly expressed in the human ovary in several pathologies including PCOS, although the
findings are quite limited and conflicting [13–20]. Furthermore, the mechanisms that induce
aberration of Notch signaling and the downstream pathological effects of its aberration
remain unclear.

Based on these findings, we hypothesized that ER stress activated in granulosa cells
of antral follicles of PCOS ovaries induces Notch signaling in these cells, and that acti-
vated Notch signaling induces aberrant cumulus-oocyte complex (COC) expansion, given
that Notch signaling regulates cellular function via cell-to-cell interactions. To test this
hypothesis, we measured expression of Notch2 and Hes-related family bHLH transcription
factor with YRPW motif 2 (Hey2) and Hes family bHLH transcription factor 1 (Hes1) in
granulosa cells of antral follicles of PCOS patients and mice with dehydroepiandrosterone
(DHEA)-induced PCOS. Expression of the transcription factors Hey2 and Hes1 is driven by
Notch activation upon interaction with a Notch ligand. We focused on Notch2 among the
four Notch receptors (Notch1–4) since it is most abundantly expressed in granulosa cells
of human antral and preovulatory follicles [21]. We determined the effects of ER stress on
expression of Notch2 and Hey2 in cultured human granulosa-lutein cells (GLCs). Then, we
determined the intermediary role of Notch signaling in ER stress-induced expression of
various genes associated with COC expansion in cultured human GLCs. We also examined
the role of Notch signaling in ER stress-induced expansion of cultured mouse COCs. Finally,
we determined the in vivo effects of inhibition of Notch signaling on COC expansion in a
mouse model of PCOS.

2. Materials and Methods
2.1. Human Specimens

GLCs were obtained from patients undergoing oocyte retrieval for in vitro fertilization
(IVF) at the University of Tokyo Hospital, Matsumoto Ladies Clinic, and Phoenix ART Clinic.
The mRNA expression levels of various Notch signaling genes were examined in GLCs of 11
PCOS patients and 12 control patients. Women with PCOS were diagnosed according to the
Rotterdam criteria [22]. The inclusion criteria for control patients were a normal ovulatory
cycle, no endocrinological abnormalities, and a normal ovarian morphology determined
by ultrasonography. Characteristics of the patients were shown in Table 1. There were
no significant differences between the groups in terms of age, body mass index (BMI),
and serum basal follicle-stimulating hormone (FSH) level, while serum basal luteinizing
hormone (LH) level, LH/FSH ratio, and serum anti-Müllerian hormone (AMH) level were
significantly higher in PCOS patients (as expected). Immunohistochemical analysis was
performed of the ovaries of four PCOS patients and three control patients. Normal ovaries
were obtained from women with regular menstrual cycles without hormonal treatment
who underwent radical or extended hysterectomy for carcinoma of the uterine cervix or
endometrium. PCOS ovaries were obtained from women with oligo- or anovulation who
also underwent hysterectomy for uterine cancer. The findings of polycystic ovaries were
histologically confirmed.
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Table 1. Characteristics of the patients who provided follicular fluid samples.

Control (n = 12) PCOS (n = 11) p-Value

Age (years) 34.0 (26–40) 31.0 (24–37) 0.1236
BMI (kg/m2) 21.9 (19.7–25.4) 21.8 (18.1–26.4) 0.8916

LH (mIU/mL) 4.8 (2.1–5.6) 7.9 (5.9–15.4) 0.0002
FSH (mIU/mL) 7.2 (5.3–8.3) 6.5 (4.9–8.4) 0.1057

LH/FSH 0.64 (0.32–0.91) 1.28 (0.87–2.23) <0.0001
AMH (ng/mL) 2.56 (1.51–6.73) 8.33 (5.44–24.63) 0.0010

Data are presented as median (range). BMI, body mass index; LH, luteinizing hormone; FSH, follicle-stimulating
hormone; AMH, anti-Müllerian hormone.

2.2. PCOS Animal Model

A well-established DHEA-induced PCOS mouse model was used in this study [7,23].
Three-week-old female Balb/c mice were obtained from Japan SLC, Inc. (Hamamatsu,
Japan). To examine activation of Notch signaling in ovaries of PCOS model mice, the
animals were divided into two groups. The control group (n = 7) was subcutaneously
injected daily with sesame oil for 20 days. The PCOS group (n = 7) was subcutaneously
injected daily with DHEA (60 mg/kg body weight; Sigma-Aldrich, St. Louis, MO, USA)
for 20 days. Ovaries were collected on day 21.

To examine the effect of inhibition of Notch signaling on COC expansion after ovula-
tory stimulation, PCOS model mice were intraperitoneally injected with 10 IU pregnant
mare serum gonadotropin (PMSG; Asuka Pharmaceutical, Tokyo, Japan) followed 48 h
later by 10 IU human chorionic gonadotropin (hCG; Mochida Pharmaceutical, Tokyo,
Japan). After PMSG injection, mice were injected intraperitoneally with 25 mg/kg
(3,5-difluorophenylacetyl)-L-alanyl-L-2-phenylglycine t-butyl ester (DAPT; Peptide In-
stitute, Inc., Osaka, Japan) (n = 4) or DMSO (n = 4) every 24 h and euthanized at 14 h after
hCG injection. DAPT is a gamma-secretase inhibitor, which inhibits release of the Notch
intracellular domain (NICD), an active form of Notch, thus serves as an inhibitor of Notch
signaling. The dose of DAPT administered to PCOS model mice was determined according
to the previous studies [24,25]. COCs were isolated from oviducts using 27-gauge needles.
The areas of COCs were measured under an optical microscope (Olympus IX70 microscope;
Olympus, Tokyo, Japan).

2.3. Follicle Isolation and COC Culture

Three-week-old female C57/BL6j mice obtained from Japan SLC, Inc. were intraperi-
toneally injected with 5 IU PMSG (Asuka Pharmaceutical). Forty-eight hours after the
injection, whole ovaries were collected from PMSG-primed mice and placed in Leibovitz
L-15 medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 0.1%
bovine serum albumin at 37 ◦C. Follicles were mechanically isolated from ovaries as previ-
ously reported [26]. Under a microscope, ovaries were cut, and follicles were mechanically
isolated from ovaries with 27-gauge needles. COCs were collected from preovulatory
follicles punctured with 27-gauge needles and cultured in ORIGIO Sequential Fert medium
(Cooper Surgical Fertility Solutions, Malov, Denmark) containing 10 IU/mL hCG (Mochida
Pharmaceutical) at 37 ◦C in a humidified atmosphere containing 5% CO2. To examine
COC expansion, COCs were incubated with an ER stress inducer, 2.5 µg/mL tunicamycin
(Wako, Osaka, Japan), with or without 20 µM DAPT (Peptide Institute, Inc.) for 15 h.
Subsequently, the areas of COCs were measured under an optical microscope (Olympus
IX70 microscope, Olympus).

2.4. Isolation and Culture of Human GLCs

GLCs were isolated as previously reported [8,27]. Follicular fluids were centrifuged, and
the pellet was resuspended in phosphate-buffered saline (PBS) containing 0.2% hyaluronidase
(Sigma-Aldrich) and incubated at 37 ◦C for 30 min. The suspension was centrifuged again
at 400 g for 30 min after being layered over Ficoll-Paque (GE Healthcare, Buckinghamshire,
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UK). GLCs were collected from the interface and washed with PBS. They were cultured in
12- or 48-well plates at a density of 5 × 105 or 5 × 104 cells/well, respectively, in Dulbecco’s
modified Eagle’s medium F-12 (DMEM/F-12; Thermo Fisher Scientific) containing 10%
fetal bovine serum (Sigma-Aldrich) and antibiotics (100 U/mL penicillin, 0.1 mg/mL
streptomycin, and 250 ng/mL amphotericin B; Sigma-Aldrich). Prior to experiments, all
GLCs were precultured for 3–5 days at 37 ◦C in a humidified atmosphere containing
5% CO2.

2.5. Treatment of Human GLCs

To evaluate the effect of ER stress on Notch signaling, human GLCs were preincu-
bated with an ER stress inhibitor, 1 mg/mL tauroursodeoxycholic acid (TUDCA; Tokyo
Chemical Industry Co., Tokyo, Japan), for 24 h, and then incubated with ER stress inducers,
2.5 µg/mL tunicamycin (Wako), for 24 h or 1 µM thapsigargin (Sigma-Aldrich), for 6 h. The
optimal concentrations of these drugs were chosen based on previous studies using human
GLCs [7,9,10]. To examine the effect of ER stress on expression of genes associated with
COC expansion, human GLCs were incubated with 2.5 µg/mL tunicamycin and 50 µM
DAPT in DMEM/F-12 containing 10 IU/mL hCG for 6 h. To knockdown activating tran-
scription factor 4 (ATF4), siRNA was obtained from Dharmacon (GE Healthcare) as SMART
pools: ON-TARGET plus human ATF4 (L-005125) for knockdown and ON-TARGET plus
nontargeting pool (D-001810-10-20) as the negative control. GLCs were transfected with
50 nM siRNA using Lipofectamine RNAiMAX (Thermo Fisher Scientific) for 24 h. Af-
ter transfection, the medium was removed, and GLCs were incubated with 2.5 µg/mL
tunicamycin for 24 h.

2.6. RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR

The RNA was isolated from human GLCs, followed by synthesizing the cDNA tem-
plate, using a SuperPrep II Cell Lysis & RT Kit for qPCR (TOYOBO, Osaka, Japan). To
measure the expression levels of mRNAs, quantitative real-time PCR was performed on
a Light Cycler system (Roche Diagnostics GmBH, Mannheim, Germany). The mRNA
expression levels were normalized to that of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), which served as an internal control. The primer sequences are shown in Table 2.
The PCR conditions were as follows: 40 cycles of 98 ◦C for 10 s, 60 ◦C for 10 s, and 68 ◦C for
30 s. All samples were analyzed in triplicate or quadruplicate for in vitro experiments.

Table 2. List of primers used for real-time qPCR.

Gene Forward 5′–3′ Reverse 5′–3′

Notch2 CAACCGCAATGGAGGCTATG GCGAAGGCACAATCATCAATGTT
Hey2 GCCCGCCCTTGTCAGTATC CCAGGGTCGGTAAGGTTTATTG
Hes1 CCCAACGCAGTGTCACCTTC TACAAAGGCGGCAATCCAATATG
ATF4 GGCTGGCTGTGGATGGGTTG CTCCTGGACTAGGGGGGCAA
Areg GTGGTGCTGTCGCTCTTGATA CCCCAGAAAATGGTTCACGCT
Ereg GTGATTCCATCATGTATCCCAGG GCCATTCATGTCAGAGCTACACT

Tnfaip6 TTTCTCTTGCTATGGGAAGACAC GAGCTTGTATTTGCCAGACCG
Has2 CTCTTTTGGACTGTATGGTGCC AGGGTAGGTTAGCCTTTTCACA
COX2 CTGGCGCTCAGCCATACAG CGCACTTATACTGGTCAAATCCC

GAPDH TGGACCTGACCTGCCGTCTA CTGCTTCACCACCTTCTTGA

2.7. Western Blotting

GLCs were lysed in PhosphoSafe Extraction Reagent (Merck, Darmstadt, Germany)
and centrifuged at 16,000× g for 5 min. Supernatants were recovered, and the protein
concentration was measured using the Bio-Rad Protein Assay (Bio-Rad Laboratories, Her-
cules, CA, USA). Equivalent amounts of denatured protein were subjected to SDS-PAGE
and then electrophoretically transferred to polyvinylidene difluoride membranes using
the Trans-Blot Turbo Transfer System (Bio-Rad Laboratories). After blocking with 5% skim
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milk prepared in Tris-buffered saline containing 0.1% Tween-20 at room temperature for 1 h,
membranes were probed with an anti-ATF4 (1:000, RRID: AB_2616025, Cell Signaling Tech-
nology, Danvers, MA, USA), anti-Notch2 (1:5000, RRID: AB_10693319; Cell Signaling Tech-
nology), or anti-β-actin (1:10,000, RRID: AB_476697, Sigma-Aldrich) antibody overnight
at 4 ◦C and then incubated with secondary antibodies (antirabbit RRID: AB_2099233 or
anti-mouse RRID: AB_330924, Cell Signaling Technology) at room temperature for 1 h.
Images were acquired using ECL Plus western blotting detection reagents (GE Healthcare)
on an ImageQuant LAS 4000 Mini luminescent image analyzer (GE Healthcare). β-actin
was used as a loading control. The immunoblot procedure was repeated at least three
times. Band intensity was quantified using ImageJ software (RRID: SCR_003073; National
Institutes of Health, Bethesda, MD, USA) [28].

2.8. Histology and Immunohistochemistry

Human and mouse ovaries were fixed in 10% neutral buffered formalin, embedded
in paraffin, and sectioned at a thickness of 5 µm. Sections obtained from the center of
each ovary were stained with hematoxylin and eosin. The ovarian sections were im-
munostained with an anti-Notch2 (1:200, RRID: AB_10693319, Cell Signaling Technology),
anti-Hey2 (1:500, AB_2118415; Proteintech Group, Tokyo, Japan), or anti-Hes1 (1:400,
RRID: AB_1209570; Abcam, Cambridge, UK) antibody using an EnVision+ Dual Link
System/HRP (DAB) Kit (Dako, Tokyo, Japan). Isotype-specific IgG served as a negative
control. Antigen retrieval was performed using Target Retrieval Solution (Dako). Im-
munohistochemistry was performed at least three times independently using identical
samples. Stained sections were examined by light microscopy using an Olympus BX50
fluorescence microscope (Olympus). ImageJ software (National Institutes of Health) was
used for quantitative analysis [28].

2.9. Statistical Analysis

All statistical analyses were performed using JMP Pro 15 software (RRID: SCR_022199;
SAS Institute Inc., Cary, NC, USA). All data are shown as means ± standard error of the
mean (SEM). Data were analyzed using the Student’s t-test for paired comparisons and
the Tukey-Kramer honest significant difference test for multiple comparisons. p < 0.05 was
considered statistically significant.

3. Results
3.1. Notch2, Hey2, and Hes1 Are Upregulated in Granulosa Cells of PCOS Patients

To evaluate Notch signaling in granulosa cells of antral follicles of PCOS patients, we
measured the mRNA expression levels of Notch2 and the transcription factors Hey2 and
Hes1, which are activated by Notch signaling, in GLCs of PCOS patients using quantitative
real-time PCR. We focused on Notch2 among the four Notch receptors (Notch1–4), and
Hey2 and Hes1 among several Notch target genes, including Hey1, 2, and L and Hes1–7,
since Notch2 and Hey2/Hes1 are the most abundantly expressed Notch receptor and
target genes, respectively, in granulosa cells of human antral and preovulatory follicles [21].
The mRNA levels of Notch2, Hey2, and Hes1 were significantly higher in GLCs of PCOS
patients than in GLCs of control patients (p < 0.01 for Notch2, and p < 0.05 for Hey2 and
Hes1) (Figure 1A). Subsequently, we performed immunohistochemical analysis of ovaries
from PCOS patients to confirm the protein expression of Notch signaling components.
Immunoreactivity of Notch2, Hey2, and Hes1 was significantly higher in granulosa cells of
antral follicles from PCOS patients than in those from control patients (p < 0.05 for Notch2
and Hey2, and p < 0.01 for Hes1) (Figure 1B–J).
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Figure 1. Notch2, Hey2, and Hes1 are upregulated in granulosa cells of PCOS patients. (A) The 
expression levels of Notch2, Hey2, and Hes1 mRNAs in GLCs from control (n = 12) and PCOS (n = 
11) patients were measured by real-time PCR and normalized to that of GAPDH. (B–J) Immuno-
histochemical analysis was performed on antral follicles of ovaries from control (n = 3) and PCOS 
(n = 4) patients. Cross-sections of ovaries were stained with an (B–D) anti-Notch2, (E–G) anti-Hey2, 
or (H–J) anti-Hes1 antibody and counterstained with hematoxylin. (D,G,J) Quantitative analysis of 
immunohistochemical staining. Values represent means ± SEM, relative to the mean control value. 
The scale bars indicate 100 µm. * p < 0.05 and ** p < 0.01 compared with control. GC, granulosa cell 
layer; GCs granulosa cells. 

  

Figure 1. Notch2, Hey2, and Hes1 are upregulated in granulosa cells of PCOS patients. (A) The
expression levels of Notch2, Hey2, and Hes1 mRNAs in GLCs from control (n = 12) and PCOS (n = 11)
patients were measured by real-time PCR and normalized to that of GAPDH. (B–J) Immunohisto-
chemical analysis was performed on antral follicles of ovaries from control (n = 3) and PCOS (n = 4)
patients. Cross-sections of ovaries were stained with an (B–D) anti-Notch2, (E–G) anti-Hey2, or
(H–J) anti-Hes1 antibody and counterstained with hematoxylin. (D,G,J) Quantitative analysis of
immunohistochemical staining. Values represent means ± SEM, relative to the mean control value.
The scale bars indicate 100 µm. * p < 0.05 and ** p < 0.01 compared with control. GC, granulosa cell
layer; GCs granulosa cells.
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3.2. Notch2, Hey2, and Hes1 Are Upregulated in Granulosa Cells of PCOS Model Mice

Next, we investigated expression of Notch2, Hey2, and Hes1 in ovaries of PCOS model
mice. Immunohistochemical analysis revealed that the expression levels of Notch2, Hey2,
and Hes1 were significantly higher in granulosa cells of antral follicles from PCOS model
mice than in those from control mice (p < 0.01) (Figure 2). Together with the observations
of human specimens, these findings indicate that Notch2 signaling is induced in granulosa
cells of antral follicles in PCOS.
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Figure 2. Notch2, Hey2, and Hes1 are upregulated in granulosa cells of PCOS model mice. Immuno-
histochemical analysis was performed on antral follicles of ovaries from control (n = 7) and PCOS
(n = 7) mice. Cross-sections of ovaries were stained with an (A–C) anti-Notch2, (D–F) anti-Hey2,
or (G–I) anti-Hes1 antibody and counterstained with hematoxylin. (C,F,I) Quantitative analysis of
immunohistochemical staining. The scale bars indicate 100 µm. ** p < 0.01 compared with control.
GCs, granulosa cells.

3.3. ER Stress Increases Notch2 and Hey2 Expression in Cultured Human GLCs

To determine whether ER stress, which is activated in granulosa cells of antral follicles
in PCOS, is associated with induction of Notch2 signaling in these cells, we measured
the mRNA expression levels of Notch2 and Hey2 following treatment with an ER stress
inducer, tunicamycin or thapsigargin, in cultured human GLCs. Based on the results of the
expression pattern of Notch2 signaling molecules, we examined Hey2 as a representative
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target gene of Notch2 signaling hereafter. Tunicamycin and thapsigargin induce ER stress
in different manners: tunicamycin induces ER stress by blocking N-linked glycosylation,
resulting in accumulation of misfolded proteins in the ER, while thapsigargin induces ER
stress by inhibiting Ca2+ uptake into the ER, thereby attenuating the organelle’s protein-
folding capacity [10]. Both tunicamycin and thapsigargin significantly increased the levels
of Notch2 and Hey2 (p < 0.01), indicating that ER stress upregulates Notch2 and Hey2 in
human GLCs. This was further confirmed by the finding that pretreatment with the ER
stress inhibitor TUDCA significantly abrogated the positive effects of these ER stress induc-
ers on Notch2 and Hey2 expression (Figure 3A,B,D,E). The examination of the expression
level of ATF4, an UPR factor, confirmed the roles of tunicamycin and thapsigargin as ER
stress inducers and the role of TUDCA as an ER stress inhibitor, respectively (Figure 3C,F).
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Figure 3. Effects of ER stress on Notch2 signaling in cultured human GLCs. After preincubation
with TUDCA (1 mg/mL) for 24 h, human GLCs were treated with (A–C) tunicamycin (2.5 µg/mL)
for 24 h or (D–F) thapsigargin (1 µM) for 6 h. The expression levels of (A,D) Notch2, (B,E) Hey2,
and (C,F) ATF4 mRNAs were measured by real-time PCR and normalized to that of GAPDH. Values
represent means ± SEM, relative to the mean control value. The letters denote significant differences
between groups. Tm, tunicamycin; Tg, thapsigargin.

3.4. ER Stress Induces Notch2 Signaling via the ATF4 Pathway in Cultured Human GLCs

Among the three UPR branches activated by ER stress, several studies demonstrated
an association between the UPR branch involving ATF4 and Notch signaling in various
contexts [29–31]. Thus, we examined whether the ATF4 pathway mediates ER stress-
induced upregulation of Notch2 and Hey2 in granulosa cells. We used tunicamycin as an ER
stress inducer hereafter. Pretreatment of cultured human GLCs with ATF4-targeting siRNA
(siATF4) significantly abrogated tunicamycin-induced expression of Notch2 and Hey2 in
these cells, and concomitantly reduced ATF4 mRNA expression (p < 0.01) (Figure 4A,B).
Knockdown of ATF4 by siRNA was confirmed by real-time PCR and western blotting
(Figure 4C–E).
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Human GLCs were transfected with siATF4 or negative control siRNA for 24 h and then treated
with tunicamycin (2.5 µg/mL) for 24 h. The expression levels of (A) Notch2, (B) Hey2, and (C) ATF4
mRNAs were measured by real-time PCR and normalized to that of GAPDH. (D) The protein
expression level of ATF4 in GLCs was analyzed by western blotting. β-Actin was used as a loading
control. (E) Quantitative analysis of western blotting. Values represent means ± SEM, relative to the
mean control value. The letters denote significant differences between groups. Tm, tunicamycin.

3.5. Notch2 Signaling Mediates ER Stress-Induced Expression of Various Genes Associated with
COC Expansion in Cultured Human GLCs

To examine whether ER stress-induced Notch2 signaling is involved in expansion of
cumulus cells, we first measured the mRNA levels of genes associated with COC expansion,
including amphiregulin (Areg), epiregulin (Ereg), tumor necrosis factor alpha-induced
protein 6 (Tnfaip6), hyaluronan synthase 2 (Has2), and cyclooxygenase 2 (COX2). Treatment
with tunicamycin significantly increased the mRNA expression levels of all of these genes
in cultured human GLCs (p < 0.01), and these effects were significantly abrogated by
treatment with DAPT (p < 0.01 for Areg, Ereg, Tnfaip6, and COX-2, and p < 0.05 for
Has2) (Figure 5A–E). DAPT serves as a Notch inhibitor by inhibiting gamma-secretase,
which releases NICD, an active form of Notch, which in turn drives expression of Notch
target genes, including Hey2. The inhibitory effect of DAPT on activation of Notch2
signaling induced by ER stress was confirmed by analysis of Hey2 mRNA expression
and of protein expression of NICD, an active form of Notch2. Tunicamycin-induced
Hey2 mRNA expression was abrogated by treatment with DAPT (p < 0.01) (Figure 5F).
Furthermore, western blot analysis showed that treatment with DAPT significantly reduced
the tunicamycin-induced expression of NICD in GLCs (p < 0.01) (Figure 5G,H).

3.6. Notch Signaling Mediates ER Stress-Enhanced Expansion of Cultured Murine COCs

Next, we examined the effects of activation of ER stress and inhibition of Notch
signaling on COC expansion using cultured murine COCs. COCs were obtained from
preovulatory follicles of PMSG-primed mice, and the areas of COCs in each treatment group
were measured under an optical microscope. Treatment with tunicamycin significantly
increased the COC areas (p < 0.01), and this effect was significantly abrogated by treatment
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with DAPT (p < 0.01) (Figure 6). These findings suggest that Notch signaling plays an
intermediary role in ER stress-enhanced expansion of COCs.
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Figure 5. Notch2 signaling mediates ER stress-induced expression of various genes associated
with COC expansion in cultured human GLCs. Human GLCs were incubated with tunicamycin
(2.5 µg/mL) and DAPT (50 µM) in medium containing hCG (10 IU/mL). The expression levels
of (A) Areg, (B) Ereg, (C) Tnfaip6, (D) Has2, (E) COX2, and (F) Hey2 mRNAs were measured by
real-time PCR and normalized to that of GAPDH. (G) The protein expression level of an active form
of Notch2 (Notch intracellular domain) in GLCs was analyzed by western blotting. β-Actin was used
as a loading control. (H) Quantitative analysis of western blotting. Values represent means ± SEM,
relative to the mean control value. The letters denote significant differences between groups. Tm,
tunicamycin; NTM, Notch transmembrane domain; NICD, Notch intracellular domain.
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ing hCG (10 IU/mL) supplemented with tunicamycin (2.5 µg/mL) and/or DAPT (20 µM) for 15 h.
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analysis of the areas of COCs. Values represent means ± SEM. ** p < 0.01. Tm, tunicamycin.

3.7. Notch Signaling Mediates COC Expansion in PCOS Model Mice

Given that ER stress is activated in PCOS ovaries [7], we wondered whether COC
expansion is affected in PCOS and, if so, whether Notch signaling plays a regulatory
role in this process in vivo. The areas of COCs collected from oviducts after induction of
superovulation followed by hCG administration were significantly larger in PCOS model
mice than in control mice (p < 0.01) (Figure 7). Furthermore, administration of DAPT
significantly reduced the COC areas of PCOS mice (p < 0.01). These findings suggest that
Notch signaling regulates COC expansion in PCOS.
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Figure 7. Notch signaling mediates COC expansion in PCOS model mice. Mice were injected
subcutaneously with DHEA (60 mg/kg body weight) (PCOS, n = 4 or PCOS + DAPT, n = 4) or sesame
oil (control, n = 4) daily for 20 days. Mice were injected intraperitoneally with 10 IU PMSG followed
48 h later with 10 IU hCG. After PMSG injection, mice were injected intraperitoneally with DAPT
(25 mg/kg) (PCOS + DAPT) or DMSO (control or PCOS) every 24 h. Mice were euthanized at 14 h
after hCG injection. COCs were isolated from oviducts. (A–C) Representative microscopic images of
COCs harvested from each group of mice: (A) control, (B) PCOS, and (C) PCOS treated with DAPT.
The scale bars indicate 200 µm. (D) Quantitative analysis of the areas of COCs. Values represent
means ± SEM. ** p < 0.01.

4. Discussion

The present study shows that expression of Notch2 and the Notch-target transcription
factors Hey2 and Hes1 is higher in granulosa cells of antral follicles of PCOS patients and
a mouse model of PCOS than in those of control participants and control mice, respec-
tively. ER stress, which is activated in granulosa cells of antral follicles in PCOS, increased
expression of Notch2 and Hey2 in cultured human GLCs, and this was mediated by the
UPR branch involving ATF4. ER stress increased the expression of genes associated with
COC expansion in cultured human GLCs and enhanced the expansion of cumulus cells
in cultured murine COCs, and these effects were abrogated by inhibition of Notch signal-
ing. Finally, COC expansion was enhanced in PCOS model mice, and inhibition of Notch
signaling reduced the areas of COCs in these mice.

Expression of Notch2, Hey2, and Hes1, which are the most typical Notch receptor
and target transcription factors of Notch signaling in granulosa cells of antral follicles,
is increased in these cells in PCOS, indicating that Notch2 signaling is induced in PCOS.
Existing findings about Notch in PCOS ovaries are quite limited and conflicting. Further-
more, most of them are based on transcriptome profiling of Notch and/or target genes,
without examination of protein expression [13–20]. In addition, all existing reports about
granulosa cells utilized human GLCs or cumulus cells harvested at IVF after ovarian stim-
ulation. Bioinformatic analysis showed that Notch signaling pathways are enriched in
PCOS [20]. Notch1 and Notch2 mRNAs were upregulated in GLCs/cumulus cells of PCOS
patients compared with those of control participants in some reports [15,18], while other
reports showed that Notch2, Notch3, and Hes1 mRNAs were downregulated [16,17,19].
The present study showed that mRNA expression of Notch2 and target transcription factors
of Notch2 signaling, Hey2 and Hes1, was increased in GLCs of PCOS patients. We further
demonstrated that protein expression of Notch2, Hey2, and Hes1 was increased in granu-
losa cells of antral follicles in PCOS patients without ovarian stimulation necessary for IVF,
as well as in PCOS model mice. Together, our findings suggest that Notch2 signaling is
induced in granulosa cells of antral follicles in PCOS.

Two types of ER stress inducers increased expression of Notch2 and Hey2 in human
GLCs, and these effects were abrogated by pretreatment with an ER stress inhibitor. This
shows that ER stress, which is activated in granulosa cells of antral follicles in PCOS, in-
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duces Notch2 signaling in these cells. ER stress activates Notch signaling in various human
cells, including kidney cells, pancreatic β-cells, glioma cells, vascular endothelial cells, and
coronary smooth muscle cells [29,31–35]. ER stress and Notch signaling are speculated to be
closely associated in various tissues. Under ER stress, the sensor proteins, inositol-requiring
enzyme 1 (IRE1), double-stranded RNA-activated protein kinase-like ER kinase (PERK),
and activating transcription factor 6 (ATF6), activate the three branches of the UPR. Induc-
tion of a transcription factor ATF4 is involved in the UPR pathway activated by PERK [5].
Our study shows that the UPR branch involving ATF4 mediates induction of Notch2 signal-
ing by ER stress in human GLCs. The ATF4 pathway is closely related to proinflammatory
signaling in various cells including human granulosa cells [27,36,37]. Notch signaling
is activated in several pathologies associated with inflammation, including nonalcoholic
steatohepatitis and osteoarthritis, and contributes to their pathogenesis [38–40]. Taken
together with the finding that the microenvironment of follicles is inflammatory in PCOS
ovaries [41,42], our results suggest that it is plausible that ER stress, inflammation, and
Notch signaling worsen the follicular microenvironment in PCOS in a coordinated manner.

ER stress enhanced COC expansion in vitro, which was accompanied by increased
expression of various genes associated with COC expansion, and the effects were abrogated
by inhibition of Notch2 signaling. Two reports have evaluated the role of ER stress in COC
expansion [43,44], while no study has investigated the role of Notch in this phenomenon.
The ER stress inducer thapsigargin enhances murine COC expansion and expression of
related genes [43], consistent with the findings of this study. COC expansion is impaired in
model rats lacking ATF4 in their ovarian tissue [44]. The findings of our in vitro study show
that Notch2 signaling mediates ER stress-induced COC expansion. No previous study has
examined the mechanisms that regulate ER stress-induced COC expansion and related
genes. Given that Notch signaling regulates a variety of cellular processes via cell-to-cell
interactions, it plausibly plays a regulatory role during COC expansion where interactions
between cumulus cells change drastically. PCOS model mice treated with DAPT exhibited
smaller areas of COCs than nontreated PCOS model mice. These findings further confirmed
the role of Notch signaling in ER stress-enhanced expansion of COCs since ER stress is
activated in granulosa cells of antral follicles in PCOS. A previous study demonstrated
that ATF4, an UPR factor that was shown to mediate induction of Notch2 signaling by ER
stress in the current study, plays a crucial role in COC expansion [44]. Our findings suggest
that Notch signaling mediates the induction of COC expansion and its related genes by ER
stress in PCOS ovaries.

There are several limitations of this study. One is that we did not examine whether
COC expansion is enhanced in PCOS patients. It is quite difficult to measure the areas of
COCs harvested at IVF since rapid manipulation of COCs is required in clinical settings for
oocytes to have a good prognosis. Only one study compared the area of COCs harvested at
IVF between patients with and without PCOS (n = 5, respectively), showing that the areas
of COCs were significantly smaller in PCOS patients than in controls [45]. The authors
also showed that mRNA expression of genes related to COC expansion was lower in
COCs of PCOS patients than in those of controls. However, it is debatable whether mRNA
expression of COC expansion-related genes in COCs harvested at IVF (i.e., more than 30 h
after hCG administration) reflects the in vivo status of COC expansion. mRNA expression
of these genes is induced shortly after hCG administration, peaks around 4–9 h after
hCG administration, and decreases thereafter. Further study is needed to clarify whether
COC expansion is dysregulated in humans in the same way as in model mice as shown
in this study. Another limitation of our study is that the pathophysiological implication
of enhanced COC expansion in PCOS was not determined. In particular, it is unclear
whether this phenomenon is associated with ovulatory dysfunction, which is one of the
main reproductive phenotypes of PCOS. COC expansion is a critical ovulatory event since
animal models of cumulus matrix disruption frequently display impaired ovulation [46]. A
recent study showed that prematurely ruptured dominant follicles in the natural cycles of
infertile women often retain COCs, and the percentages of both immature and overmature
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COCs are higher among these unextruded COCs in postrupture follicles than among COCs
harvested from prerupture follicles [47]. These findings indicate that abnormal maturation
of COCs, in not only immature but also overmature COCs, is associated with a failure
of COC extrusion, leading to ovulatory dysfunction. It remains to be elucidated whether
enhanced COC expansion (i.e., overmature COCs) induced by ER stress via Notch signaling
plays a causative role in ovulatory dysfunction in PCOS.

5. Conclusions

We showed that Notch2 signaling is activated in granulosa cells in PCOS. Notch
signaling mediates ER stress-induced expansion of COCs. It remains to be elucidated
whether aberrant COC expansion induced by the ER stress-Notch pathway is associated
with ovulatory dysfunction in PCOS patients.
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