
Citation: Stevens, A.O.; He, Y.

Benchmarking the Accuracy of

AlphaFold 2 in Loop Structure

Prediction. Biomolecules 2022, 12, 985.

https://doi.org/10.3390/

biom12070985

Academic Editors: Cristina Maracci,

Alice Romagnoli, Stefano Motta

and Daniele Di Marino

Received: 30 May 2022

Accepted: 12 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Benchmarking the Accuracy of AlphaFold 2 in Loop
Structure Prediction
Amy O. Stevens 1 and Yi He 1,2,*

1 Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA;
ao630@unm.edu

2 Translational Informatics Division, Department of Internal Medicine, University of New Mexico,
Albuquerque, NM 87131, USA

* Correspondence: yihe@unm.edu

Abstract: The inhibition of protein–protein interactions is a growing strategy in drug development. In
addition to structured regions, many protein loop regions are involved in protein–protein interactions
and thus have been identified as potential drug targets. To effectively target such regions, protein
structure is critical. Loop structure prediction is a challenging subgroup in the field of protein
structure prediction because of the reduced level of conservation in protein sequences compared to the
secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements
in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the
X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in
2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting
protein loop regions. We have constructed an independent dataset of 31,650 loop regions from
2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined
structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the
results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for
short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation
(RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see
that as the number of residues in a given loop increases, the accuracy of AlphaFold 2’s prediction
decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average
TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to
the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands
in proteins.

Keywords: AlphaFold 2; loop structure prediction

1. Introduction

Protein structure is both critical to understand protein function and key in virtual
drug screening and drug design. Technical challenges have held the problem of protein
structure prediction at the forefront in biology for the past decade. Traditional experimental
methods such as X-ray crystallography and NMR are time consuming and expensive [1].
Furthermore, these experimental methods often produce structures with regions that must
be reconstructed to fully understand protein structure and dynamics. Notably, more than
half of the proteins in the Protein Data Bank [2] have missing regions [3]. These missing
regions most often correspond to loops. Loops are protein regions that are neither α-helices
nor β-strands. Because loop regions are most frequently found near the surface of the pro-
tein, they are readily exposed to solvent and other proteins [4]. This enables loops to have
key roles both in protein structure and biological function [5–7]. Structurally, their position
allows the loops to shield the proteins’ hydrophobic core; functionally, their position allows
loops to be readily involved in protein function and protein–protein interactions [6–8].
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Because loops are key players in the overall structure and dynamics of proteins [5,9], it is
critical to reconstruct missing regions from efforts in protein structure prediction.

Most methods in protein structure prediction heavily rely on the PDB because of the
accuracy of homology modeling [10]. Homology modeling builds protein structures by
observing sequential patterns for proteins with existing structures. Unlike α-helices and
β-strands, loops have high sequence variability and structural irregularity [11], and thus
have a larger deviation from homologue templates [12–17]. Lacking an accurate homologue,
loops remain the most inaccurate or altogether missing regions of the model [18]. Notably,
not all loops are equal when it comes to protein structure prediction. Long loops are even
more difficult to reconstruct than short loops because of the nature of the data accessible
in the PDB. While it has a reasonable dataset of short loops [19,20], the PDB is missing
adequate data to build long loops. Without adequate homologues, ab initio methods are
left to predict the structure of long loops. However, ab initio methods have shown to be
much less accurate than knowledge-based methods [21].

Various protein loop structure prediction methods have gained the attention of the
scientific community, including RosettaNGK [22], GalaxyLoop-PS2 [23], DaReUS-Loop [24],
ArchPRED [25], FREAD [26], SuperLooper2 [27], LoopIng [28], CODA [29] and Sphinx [21].
Many of these methods have excelled in community-wide CASP experiments. RosettaNGK
is an ab initio method that uses a hybrid energy function that combines both physics-based
and knowledge-based energy terms. GalaxyLoop-PS2 is also an ab initio method that
implements a unique energy function. GalaxyLoop-PS2 considers multiple energy terms,
such as short-range, hydrophobic, and electrostatic interactions. LoopIng is a knowledge-
based method that considers both sequence and geometry. Finally, CODA and Sphinx
are hybrid loop prediction methods that combine both ab initio and knowledge-based
methods. While these protein structure prediction methods have proved to be useful tools,
AlphaFold 2 has recently surpassed them all.

The original AlphaFold [30] outperformed all other teams at the Critical Assessment
of protein Structure Prediction (CASP 13) competition in 2018. The newly upgraded
AlphaFold 2 [30] produced predictions that approach a score of 90 in the global distance
test (GDT_TS), where a score above 90 is considered roughly equivalent to the accuracy of
an experimentally predicted structure. The purpose of this work is to explore the accuracy
of AlphaFold 2 in specifically predicting loop regions of protein structures. Here, we
consider a dataset of 31,650 loop regions at least three residues in length from 2613 proteins
with both experimentally determined structures and AlphaFold 2 predicted structures.
Both RMSD and TM-score indicate that AlphaFold 2 is a good predictor of the structure of
loop regions. Furthermore, DSSP analysis indicates that AlphaFold 2 slightly over-predicts
regular secondary structure content. Lastly, we see that as the length of the loop increases,
the accuracy of predictions by AlphaFold 2 decreases, as indicated by RMSD, TM-score,
and DSSP.

2. Methods

We build a dataset of 31,650 loop regions at least 3 residues in length from a set of
2613 crystal structures that were deposited in the Protein Data Bank after AlphaFold 2 was
trained. Non-secondary structural regions within the crystal structures were identified
by DSSP analysis [31], where each amino acid is assigned a specific secondary structure
type (none, turn, bend, parallel beta sheet, antiparallel beta sheet, alpha helix, pi helix, or
3–10 helix). Any residue classified as none, turn, or bend was considered as a loop region
and included in our further statistical analyses. The corresponding tertiary structures of
the loop regions are extracted from both the experimental structure and the AlphaFold 2
structure by using BioPython [32]. All AlphaFold 2 structures were obtained from the
AlphaFold Protein Structure Database at https://alphafold.ebi.ac.uk (accessed on 3 January
2022) [30]. Note that the experimental structure and the AlphaFold 2 structure for each
loop region are 100% sequence identity. The link to download the dataset used in the work
is available at the end of the paper.

https://alphafold.ebi.ac.uk
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3. Results

This work considers a dataset of 2613 proteins with both experimentally determined
structures and AlphaFold 2 predicted structures. The fraction of the loop regions in a
protein can affect the prediction accuracy of any structure prediction software. To quantify
the fraction of loop residues in each protein in our dataset, we performed DSSP [33]
analysis across each full-length protein. DSSP, or Dictionary of Secondary Structure of
Proteins [33], analysis assigns secondary structure types to each residue in a protein. Each
residue is assigned a secondary structure type of either none, turn, bend, parallel beta-sheet,
antiparallel beta-sheet, alpha helix, pi helix, or 3–10 helix. Loop residues are defined by the
DSSP secondary structure types as none, turn, and bend. As shown in Figure 1, the fraction
of loop residues in the experimentally determined structures (EX, tan) and the AlphaFold 2
predicted structures (AF2, blue) and are in relatively good agreement with each other.
In both cases, the proteins in the dataset have a Gaussian distribution of the fraction of
loop residues centered around 40%. Notably, the AlphaFold 2 predicted structures on
average have a slightly greater fraction of loop residues (none, turn, or bend) than the
experimentally determined structures. All subsequent analysis is performed only over the
loop regions of the given dataset (the 31,650 loops). As shown in Figure 1b, this dataset
is comprised of loops ranging from 1 to 65 residues in length. Notably, 82.7% of loops
are comprised of fewer than 10 residues, and 98.2% of loops are comprised of fewer than
20 residues.

Figure 1. Summary of the dataset. (a) Fraction of coiled residues in the full-length protein structures
based on DSSP analysis. The tan curve represents DSSP analysis across experimentally determined
structures (EX), and the blue curve represents DSSP analysis across AlphaFold 2 predicted structures
(AF2). (b) Length of each loop structure in the dataset. Loops range from 1 to 65 residues in length.

To quantify the accuracy of AlphaFold 2 in predicting the structure of loop regions,
the Root Mean Square Deviation (RMSD) and the Template Modeling score (TM-score) [34]
were calculated for each AlphaFold 2 predicted loop structure using the equivalent exper-
imentally predicted loop structure as a reference. RMSD is a traditional metric that has
been a standard in comparing protein structures. It measures the average distance between
atoms of structurally aligned proteins. Challengingly, RMSD is limited by size-dependency,
so it is difficult to directly compare proteins of different sizes with RMSD. TM-score is a
metric that was designed to overcome the imperfections of RMSD when comparing protein
structures. First, the TM-score weights errors that occur at short distances stronger than
those at long distances. Second, TM-score includes a length-dependency term to normalize
distance errors. As a result, TM-score produces values that, unlike RMSD, are indepen-
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dent of size. In this work, we will consider both traditional RMSD and size-independent
TM-score to explore the accuracy of AlphaFold 2.

The average RMSD of all loop regions is 0.44 Å, and 89.6% of all loops have an
RMSD less than 1.0 Å (Figure 2a). The average TM-score of all loop regions is 0.78, and
86.7% of all loops have a TM-score greater than 0.5 (Figure 3a). Next, we calculated the
average RMSD and the average TM-score based on the number of residues in the loop.
As shown in Figure 2b, RMSD increases with increasing the length of the loops up to
approximately 20 residues. Once the loop length is greater than 30 residues, it is difficult to
assess the reliability of the AlphaFold 2’s performance because of the large variation with
limited data points. Furthermore, a linear correlation (R2 = 0.3083) between the number of
residues and RMSD (Figure 2c) was obtained. Different from RMSD, the TM-score weights
local structure accuracy. As shown in Figure 3b, TM-score decreases with increasing loop
length up to approximately 20 residues. Like RMSD, it is difficult to assess AlphaFold
2’s performance at lengths greater than 20 residues because of the large variation with
limited data points. Figure 3c provides the linear correlation (R2 = 0.0739) between the
number of residues and TM-score across all lengths of loops. It should be noted that the
linear regression of average RMSD as a function of the number of residues for loops up
to 20 residues in length has a R2 value of 0.9648 Å, while the linear regression of average
RMSD as a function of the number of residues in a loop for loops greater than 20 residues
in length has a R2 value of 0.1167. Similarly, the linear regression of average TM-score as
a function of the number of residues in a loop for loops up to 20 residues in length has
a R2 value of 0.8967, while the linear regression of average TM-score as a function of the
number of residues in a loop for loops greater than 20 residues in length has a R2 value of
0.0045. These results indicate that both RMSD and TM-score indicate good agreement for
short loop regions between the AlphaFold 2 predicted structures and the experimentally
determined structures. AlphaFold 2 predictions should be carefully evaluated for loop
regions consisting of 20 or more residues.

Figure 2. RMSD of AlphaFold 2 predicted structures with the equivalent experimentally determined
structure as a template. (a) RMSD of all loops region. (b) Average RMSD as a function of the number
of residues in a loop with standard error bars. (c) Average RMSD as a function of the number of
residues in a loop with linear regression (R2 = 0.3083). RMSD increases as the number of residues in
the loop regions increases.

Previous work has suggested that AlphaFold 2 may over-confidently predict structures
that correspond to unresolved regions of experimentally determined structures [35]. Here,
we used DSSP analysis to determine if AlphaFold 2 has the tendency to over-predict
secondary structure content in protein loop regions. We performed DSSP analysis to
determine the secondary structure type of each residue in all 31,650 loop regions. It should
be noted that full DSSP representation is used for this analysis. After summing the number
of residues that correspond to each type across all loop regions, we divided these sums by
the total number of residues (212,630 residues in 31,650 loops) to report the fraction of each
DSSP secondary structure type. This calculation was performed for both the experimentally
determined structures and the AlphaFold 2 predicted structures. Table 1 reports the fraction



Biomolecules 2022, 12, 985 5 of 11

of each DSSP secondary structure type in the experimental and AlphaFold 2 structures.
Our results suggest that AlphaFold 2 has the tendency to slightly over-predict secondary
structure content, as 2.28% of residues in loop regions of AlphaFold 2 predicted structures
have been assigned a secondary structure type of parallel beta sheet, antiparallel beta
sheet, alpha helix, pi helix, or 3–10 helix. Interestingly, our data suggest that AlphaFold 2
specifically over-predicts helices, as 88.5% of predicted secondary structure corresponds to
helices (alpha helices, pi helices, or 3–10 helices) while only 11.5% of predicted secondary
structure corresponds to beta sheets (parallel beta sheets or antiparallel beta sheets).

Figure 3. TM-score of AlphaFold 2 predicted structures with the equivalent experimentally deter-
mined structure as a template. (a) TM-scores of all loop regions. (b) Averaged TM-score as a function
of the number of residues in a loop with standard error bars. (c) Averaged TM-score as a function
of the number of residues in a loop with linear regression (R2 = 0.0739). TM-score increases as the
number of residues in the loop regions increases.

Table 1. Fraction of DSSP secondary structure types in experimentally determined and AlphaFold
2 predicted structures. AlphaFold 2 predicted secondary structure content (parallel beta sheet,
antiparallel beta sheet, alpha helix, pi helix, or 3–10 helix) in 2.28% of loop residues.

DSSP Secondary Structure Type Experimental Structures AlphaFold 2 Structures

None 78.64% 76.66%

Turn 12.92% 14.51%

Bend 8.44% 6.55%

Parallel beta sheet 0% * 0.10%

Antiparallel beta sheet 0% * 0.16%

Alpha helix 0% * 0.74%

Pi helix 0% * 0.03%

3–10 helix 0% * 1.25%
* By definition, the experimental structures of loop regions in our dataset have 0% parallel beta sheet, antiparallel
beta sheet, alpha helix, pi helix, and 3–10 helix.

While the above DSSP analysis considers all loop regions as a sum, here we will
consider secondary structure content changes in each individual loop region. We calculated
the percent change in secondary structure content (∆SSE) from any given experimentally
determined structure to its corresponding AlphaFold 2 predicted structure. AlphaFold 2
accurately predicts no secondary structure content in greater than 90% of loops (Figure 4a,
∆SSE is equal to 0%). Oppositely, AlphaFold 2 over-predicts the content of secondary
structure content in approximately 6.5% of loops (Figure 4a, ∆SSE greater than 0%). Next,
we calculated the average percent change in secondary structure content as a function of the
number of residues in each loop. Our results indicate that the percent change in secondary
structure content increases as the number of residues in the loop increases (Figure 4b). In
other words, as the length of the loop increases, AlphaFold 2’s tendency to over-predict
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the secondary structure content also increases. Our dataset suggests a linear correlation
(R2 = 0.4204) between the number of residues and ∆SSE (Figure 4c).

Figure 4. Percent change in secondary structure content (∆SSE) from experimentally determined
structures to AlphaFold predicted structures. (a) ∆SSE of all loop regions. Greater than 90% of loops
have a ∆SSE of 0%. (b) Average ∆SSE as a function of the number of residues in a loop with standard
error bars. (c) Average ∆SSE as a function of the number of residues in a loop with linear regression
(R2 = 0.4204). ∆SSE increases as the number of residues in the loop regions increases.

We selected representative loops to visualize the alignment of AlphaFold 2 predicted
structures to experimentally determined structures. Here, we selected six representative
loops from six example proteins: 6Q8F [36] (5 res), 6TCA [37] (10 res), 6ROP [38] (15 res),
7KS0 [39] (20 res), 6WJG [40] (30 res), and 6UE5 [41] (50 res). It is important to note that
these examples were selected because they have an RMSD closest to the average RMSD of
loops of the given length. The structural alignment of each AlphaFold 2 predicted structure
(AF, blue) to its corresponding experimentally determined structure (EX, tan) is shown in
Figure 5. Figure 5 provides a visual representation that as the number of residues in the
loop increases, the RMSD also increases. It also provides a visual representation that as
the number of residues in the loop increases, the secondary structure content increases. As
suggested by DSSP analysis, this increase in secondary structure content most prevalently
corresponds to helices.

Our dataset indicates that the accuracy of AlphaFold predicted structures decrease
as the number of residues in the loop region increases. This correlation between accuracy
and length of loop is directly linked to the increase in flexibility. To explore this possibility,
we calculated the average pLDDT score of each AlphaFold 2 predicted loop structure by
averaging the pLDDT score of each atom in the given loop. The average pLDDT score
of all loop regions is 82.9, and 73.2% of all loops have a pLDDT score greater than 80.0
(Figure 6a). Next, we calculated the average pLDDT score based on the number of residues
in the loop. As shown in Figure 6b,c, pLDDT score is not clearly correlated with increasing
the length of the loops (R2 = 0.0174). Interestingly, these results suggest that pLDDT scores
are not indicative of the widely accepted belief that increasing loop length will decrease the
accuracy of the prediction.



Biomolecules 2022, 12, 985 7 of 11

Figure 5. Representative examples of AlphaFold 2 predictions. The experimentally determined
structures (EX) are shown in tan, and the AlphaFold 2 predicted structures (AF) are shown in blue.
As the number of residues in the loop increases, the RMSD between the experimentally determined
structures and the AlphaFold predicted structures also increases. Furthermore, as the number of
residues in the loop increases, the secondary structure content in the AlphaFold 2 predicted structures
also increases.

Subsequently, to understand how well AlphaFold 2 pLDDT scores correspond to the
accuracy of the predicted structure, we explored the correlation between pLDDT scores and
TM-score. Our calculations show that pLDDT scores increase with increasing TM-score
(Figure 7). These results suggest that AlphaFold 2 pLDDT scores properly correspond to
the accuracy of the predicted structure. Additional correlation analyses were performed
to explore any correlation between b-factor and pLDDT score (Figure S1), the number of
residues in each loop and the number of residues in the full-length protein (Figure S2),
hydrophilicity and pLDDT score (Figure S3), and hydrophobicity index and pLDDT score
(Figure S4). We did not observe any clear correlations. These analyses are included in
the SI.
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Figure 6. pLDDT scores of AlphaFold 2 predicted structures. (a) pLDDT scores of all loop regions.
(b) Average pLDDT scores as a function of the number of residues in a loop with standard error bars.
(c) Average pLDDT scores as a function of the number of residues in a loop with linear regression
(R2 = 0.0174). pLDDT scores are not correlated with the number of residues in the loop regions.

Figure 7. pLDDT score as a function of TM-score (blue) with standard error bars and mini-
mum/maximum pLDDT scores. As TM-score score increases, the average pLDDT score increases.
Gray bars represent the number of loops in each TM-score range. Most loops (16,596 or 52.4%) have a
TM-score between 0.85 and 1.00.

Lastly, we considered how the structural variability of loops affects predictions by Al-
phaFold 2. By definition, loops are highly flexible regions that can take multiple structures.
Whether experimentally determined or computationally predicted, a loop structure can
only represent one of the many possibilities in the loop’s structural ensemble. Because of
this, directly comparing the AlphaFold 2 predicted loop structure to an experimentally
determined structure has obvious limitations. Our goal was to explore whether the loop
regions of AlphaFold 2 predicted structures fall within differences between the experimen-
tally determined structures. We selected five proteins from the dataset with at least three
unique experimentally determined structures, all without missing residues. We compared
two sets of RMSD values: (1) the RMSD between loops of different experimentally de-
termined structures of one protein and (2) the RMSD between loops of the AlphaFold 2
prediction structure and each experimentally determined structures of the same protein.
We repeated these RMSD calculations for all five selected proteins. The first set of RMSD
values represent the experimental range of accuracy (Figure 8, tan), and the second set of
RMSD values represent the accuracy of AlphaFold 2 predictions against experimentally
predicted structures (Figure 8, blue). Results are shown in Figure 8. The experimental range
of accuracy has an average RMSD of 0.35 Å, and the accuracy of AlphaFold 2 prediction
against the experimentally predicted structures has an average RMSD of 0.28 Å. These
results suggest that AlphaFold 2 predicted structures fall within the experimental range
of accuracy.
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Figure 8. Comparing the experimental range of accuracy to the accuracy of AlphaFold 2 predictions
with RMSD. The experimental range of accuracy has an average RMSD of 0.35 Å, and the accuracy
of AlphaFold 2 prediction against the experimentally predicted structures has an average RMSD of
0.28 Å.

4. Discussion

AlphaFold 2 has significantly outperformed all other protein structure prediction
methods available today. This work demonstrates that AlphaFold 2 can accurately predict
the structure of short loop regions in proteins, especially for loops shorter than 10 residues.
However, extra caution is needed when dealing with longer loop regions. Because the
vast majority of loop regions in our dataset are short loop regions (98.2% of loops are less
than 20 residues in length), AlphaFold 2 predicted structures have an average RMSD of
0.44 Å and an average TM-score of 0.78. Furthermore, AlphaFold 2 predicted structures
report no secondary structure content in approximately 93% of loop regions. These results
demonstrate that AlphaFold 2 can slightly over predict the regular secondary structures
(α-helices and β-strands).

RMSD increases as a function of the length of the loop, as loops comprised of less than
10 residues have an average RMSD of 0.33 Å while loops comprised of more than 20 residues
have an average RMSD of 2.04 Å. The TM-score decreases as a function of the length of
the loop, as loops comprised of less than 10 residues have an average TM-score of 0.82
while loops comprised of more than 20 residues have an average TM-score of 0.55. Echoing
trends in RMSD and TM-score, secondary structure content also increases in AlphaFold 2
predicted structure as the number of residues in the loop region increases. Loops comprised
of less than 10 residues have an average ∆SSE of 1.3% while loops comprised of more than
20 residues have an average ∆SSE of 12.5%. In other words, the AlphaFold 2 predicted
structures of loops comprised of more than 20 residues have 12.5% more secondary structure
content than their corresponding experimentally determined structures.

The correlation between accuracy and length of the loop is linked to the increase in
flexibility. The pLDDT score of AlphaFold 2 has been suggested to be an indicator of the
flexibility/disorder of a residue/region [30]. In our dataset, average pLDDT scores do not
clearly correlate with the length of the loop region. In the case of loop regions, it seems that
the average pLDDT scores failed to distinguish the prediction accuracy. Interestingly, the
average pLDDT scores do correlate to the accuracy of the prediction based on TM-score,
suggesting that AlphaFold 2’s pLDDT scores properly correspond to the accuracy of the
predicted structure. In summary, this work supports AlphaFold 2 as a good predictor of
the structure of loop regions while exposing limitations of AlphaFold 2 as the length of
loop increase.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12070985/s1, Figure S1: Correlation between b-factor and
pLDDT score; Figure S2: Correlation between the number of residues in each loop region and the
number of residues in the corresponding full-length protein; Figure S3: Correlation between the
fraction of hydrophilic residues and the accuracy of AlphaFold 2 predicitons in loops greater than
20 residues in length; Figure S4: Correlation between the hydrophobicity index and the accuracy of
AlphaFold 2 predicitons in loops greater than 20 residues in length.
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